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Abstract 

A new generalization of the skew-t distribution was proposed. The two-parameter lifetime model 

called the odd exponentiated skew-t distribution has the ability of fitting skewed, long and heavy 

tailed datasets. It is considered to be more flexible than the skew-t distribution as it contains it as a 

special case. Some basic properties of the distribution such as the order statistics, entropy, asymptotic 

behaviour, moment, incomplete moment, characteristic function and quantile function were derived. 

The odd exponentiated skew-t distribution parameter estimates were derived using the maximum 

likelihood estimation method and simulation studies performed to evaluate the finite sample 

performance of these parameter estimates showed that the parameter estimates were consistent and 

approached the arbitrary selected parameter values as the sample size is increased. The application 

using a real-life dataset indicated that the new distribution outperformed the other competing 

distributions. The hazard rate shape of the odd exponentiated skew-t distribution was found to be 

increasing and J-shaped which was also reflected in the application result. 

 

Keywords: Maximum likelihood estimation, Moments, Order statistics, Skew-t distribution, Odd 

exponentiated generator. 

 

1. INTRODUCTION 

The methods of extending the flexibility of various continuous probability distributions are well-

known in the literature. Hence, significant efforts in developing new families of flexible continuous 

probability distributions and extending the efficacy of the existing distributions have been made by 

several authors over the years due to inability of the classical distributions to fit various real-life 

datasets. The skew-t distribution introduced as an extension of the symmetric t-distribution has been 
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used extensively especially in the field of econometric, time series and financial analysis. Numerous 

authors have introduced various complex forms of the skew-t which lacked a defined expression for 

the density function, example of the forms can be found in Johnson et al. (1995), Azzalini and 

Capitanio (2003), Sahu et al. (2003) and Gupta (2002). Several authors have studied possible 

extensions and generalizations of the skew-t distribution: Shafiei and Doostparast (2014) proposed a 

new generalization of the skew-t distribution of Azzalini and Capitanio (2003) called the Balakrishnan 

skew-t (BST) distribution, as a scale mixture of the Balakrishnan normal distribution. The density 

function shape of the BST is right-skewed at different degree of freedom which gives it more 

flexibility in fitting skewed datasets. Aas and Haff (2006) proposed the generalized hyperbolic skew-t 

(GHST) distribution which is considered as a limiting case of the generalized hyperbolic (GH) 

distribution. They stated that the generalized hyperbolic skew-t (GHST) distribution can be 

represented as a mixing distribution comprising normal variance-mean mixture with the generalized 

inverse gaussian distribution. Khamis et al. (2017) proposed the Kumaraswamy skew-t (KwST) 

distribution which has the ability of fitting heavy-tailed and skewed datasets than the skew-t 

distribution of Azzalini and Capitanio (2014). Basalamah et al. (2018) introduced a new 

generalization of the skew-t distribution of Azzalini and Capitanio (2014) called the Beta skew-t 

(BST) distribution. The maximum likelihood and L-moments methods were used in demonstrating the 

flexibility of the BST distribution in fitting real datasets and the results were in favour of the BST 

distribution. These presented extensions with a lot of parameters were based on the complex skew-t 

distribution. 

The noncomplex one-parameter tractable skew-t distribution introduced by Jones and Faddy (2003) 

with defined density and distribution functions was established by introducing a scaling factor into the 

two degrees of freedom of the simplest student-t form derived by Jones (2002). The main aim of this 

article is to introduce a new hybridized distribution with fewer parameters, with the expectation it 

produces a better fit in certain real-world situations and in a wider range of real-life datasets in 

engineering, biology, medicine and finance. Additionally, a complete derivation of the statistical 

properties of the proposed distribution are provided. The purpose for developing the two-parameter 

hybridized distribution is to furnish a more flexible distribution with skewed and unimodal features 

that can handle properly skewed and leptokurtic real datasets often found in various fields better than 

existing two-parameter distributions. This new distribution in this article can find its potentiality as an 

alternative conditional error distribution in GARCH framework when used in volatility modeling. The 

rest of the paper is organized as follows. In Section 2, introduce the new distribution called the odd 

exponentiated skew-t (OEST) distribution. In Section 3, statistical properties of the proposed 

distribution are derived. In section 4, the maximum likelihood estimation method is applied to derive 

the estimates of the model parameters and simulation study performed to assess the performance of 
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the OEST parameter estimates. In section 5, a dataset application is illustrated to demonstrate the 

superiority of the new distribution while section 6 concludes the study. 

2. ODD EXPONENTIATED SKEW-T DISTRIBUTION 

 

Jones (2001) and Jones and Faddy (2003) established a tractable skewed extension of the symmetric 

student-t distribution known as the skew student-t (skew-t) distribution. The cumulative distribution 

function (CDF) is given as: 
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The probability distribution function (PDF) obtained by differentiating (1) is given as 
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where   is the skew parameter. 

The odd exponentiated family of distributions is a special case established by setting 1  in the 

density and distribution functions of the Weibull-G family (Bourguignon et al., 2014). The CDF is 

given by 
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The PDF by differentiating (3) is given as: 
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where 0   is the shape parameter,  G y and  g y  are the baseline distribution CDF and PDF.  

A two-parameter model called the odd exponentiated skew-t (OEST) distribution is introduced. The 

PDF is obtained by inserting Equations (1) and (2) into Equation (4) expressed as: 
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The corresponding CDF by inserting (1) in (3) is given as: 
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From now onward, a random variable Y having PDF (5) is denoted by  STOE  , where  ,    are 

set of parameters. 

The survival function is defined as    1s y F y  , given a random variable Y. Hence, the survival 

function  s y  of OEST distribution is given as: 
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The hazard rate function  h y  is given as: 
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To show the efficacy of the OEST distribution, the graphical structures of the OEST density function 

and distribution function are depicted in Figures 1 and 2 with the skew parameter   kept constant and 

the shape parameter  varied. Figure 1, indicates that the right tail of the density function gets lighter 

and tend to zero as  approach infinity. More so, Figure 2 indicates that the shape of the CDF is 

within the limits of zero and one, which justifies that the proposed OEST distribution is a valid 

distribution. 
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Figure 1: The OEST density function plots for some selected  var ied, 0.5     parameter values. 

 

Figure 2: The OEST distribution function plots for some selected  var ied, 0.5     parameter 

values. 
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Likewise, the shapes of the hazard rate function depicted in Figure 3, reveal that it can be increasing 

and J-shaped. 

 

Figure 3: The OEST hazard rate function plots for some selected  var ied, 0.5     parameter 

values. 

3. STATISTICAL PROPERTIES 

 

In this section, some basic statistical properties of the OEST distribution are derived. 

3.1 Quantile Function 

 

The quantile function    
1

Q u F y


  for  0,1u  of the OEST distribution is given by: 
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The median  0.5Q  is derived by setting 0.5u  in (9). The other quantiles can be derived similarly by 

setting 0.25u  and 0.75u  . 
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The OEST quantile function (9) can be used in generating random values from the OEST distribution. 

The Bowley skewness (Kenney & Keeping,1962) and Moors kurtosis (Moors, 1988) are as follows: 
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where (.)Q represent the quantile function. Using the OEST quantile function (9), the numeric values of 

the median (M), 25th and 75th percentiles, interquartile range (IQR), kurtosis (Ks), and skewness (Sk) 

for some chosen parameter values are provided in Table 1. It is clear from Table 1, as the values of   

increases at specific values of  , the skewness and kurtosis remain constant. More so, across 

different values of  , the skewness and kurtosis decreases indicating negative properties, 

respectively. 

 

Table 1: Descriptive statistics of the OEST distribution. 

    Ks Sk M 25th 75th IQR 

0.2 0.3 -0.0511 -0.0161 0.3627 0.1001 0.6170 0.5169 

 0.5 -0.0511 -0.0161 0.4683 0.1292 0.7965 0.6673 

 0.9 -0.0511 -0.0161 0.6283 0.1734 1.0687 0.8953 

 1.2 -0.0511 -0.0161 0.7254 0.2002 1.2340 1.0338 

 1.5 -0.0511 -0.0161 0.8111 0.2238 1.3796 1.1558 

0.4 0.3 -0.1616 -0.0725 0.1525 -0.0907 0.3627 0.4534 

 0.5 -0.1616 -0.0725 0.1968 -0.1171 0.4683 0.5853 

 0.9 -0.1616 -0.0725 0.2641 -0.1571 0.6283 0.7853 

 1.2 -0.1616 -0.0725 0.3049 -0.1813 0.7254 0.9068 

 1.5 -0.1616 -0.0725 0.3409 -0.2028 0.8111 1.0138 

0.6 0.3 -0.2291 -0.1106 0.0396 -0.2059 0.2361 0.4420 
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 0.5 -0.2291 -0.1106 0.0511 -0.2658 0.3048 0.5706 

 0.9 -0.2291 -0.1106 0.0685 -0.3658 0.4089 0.7655 

 1.2 -0.2291 -0.1106 0.0791 -0.4117 0.4722 0.8840 

 1.5 -0.2291 -0.1106 0.0884 -0.4603 0.5280 0.9883 

0.7 0.3 -0.2539 -0.1253 -0.0027 -0.2516 0.1908 0.4424 

 0.5 -0.2539 -0.1253 -0.0035 -0.3248 0.2463 0.5712 

 0.9 -0.2539 -0.1253 -0.0047 -0.4358 0.3305 0.7663 

 1.2 -0.2539 -0.1253 -0.0054 -0.5032 0.3816 0.8848 

 1.5 -0.2539 -0.1253 -0.0060 -0.5626 0.4266 0.9892 

1.5 0.3 -0.3599 -0.1935 -0.2167 -0.5054 -0.0216 0.4838 

 0.5 -0.3599 -0.1935 -0.2797 -0.6525 -0.0279 0.6246 

 0.9 -0.3599 -0.1935 -0.3753 -0.8754 -0.0374 0.8380 

 1.2 -0.3599 -0.1935 -0.4334 -1.0108 -0.0432 0.9676 

 1.5 -0.3599 -0.1935 -0.4846 -1.1301 -0.0483 1.0818 

 

3.2 Asymptotic Behaviour 

The limits of the OEST density function (PDF) are given by: 

   lim lim 0
y y

f y f y
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It is obvious that
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Similarly, for y  , we have 
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It is obvious that
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The results of the asymptotic behaviour infer that the OEST mode is unique. 

 

3.3 Mixture Representations 

 

The series expansion of the OEST distribution is derived for the density and cumulative functions. This 

mixture representation is important to derive several statistical properties of this distribution in full 

generality. If 1s   and k  a positive real non-integer, the generalized binomial theorem 

representation is given by: 

   
1

0

1
1 1

k j j

j

k
s s

j






 
    

 
          (17) 

 

The expanded form of the PDF, applying the series expansion in Equation (17) in (5) leads to: 
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The preceding equation reveals that the PDF expression is likely an infinite linear combination of the 

skew-t density functions. Thus, we can obtain the statistical properties of the OEST distribution from 

the properties of the skew-t distribution. Also, another expanded form of the PDF is given by 
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The expanded form of the CDF of the OEST distribution by applying series expansion to Equation (6), 

is given by 
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where 
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3.4 Moments 

 

Let  ,STY OE    be a random variable, then the gth moment of Y is given by 
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Taboga (2017, p.413, s.50.1.5) showed that (21) can be rewritten as: 
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After some algebra, using the Beta function expression    1

0
, 1B y y dy

  
    . The rth moment 
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The incomplete moment of the OEST distribution is derived. Let  ,STY OE    be a random variable, 

the gth incomplete moment for any 0t  is given by 
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After some algebra, using the Beta function expression    
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Remark: The first incomplete moment    1
0

t

t yf y dy    of OEST distribution can be obtained by 

inserting 1g   in (25). 

3.5 Characteristics Function 

The characteristics function of a random variable Y is a function  X t  defined as: 
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Inserting Equation (23) into Equation (26), the characteristics function of the odd exponentiated skew-

t (OEST) distribution is given as: 
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where 
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3.6 Order Statistics 

 

Let 
1 2, , , nY Y Y be a random sample from a continuous distribution and 1: 2: :n n n nY Y Y   are the order 

statistics obtained from the sample. The rth order statistic 
:r nY  is defined as 
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Inserting Equations (5) and (6) in Equation (28), applying series expansion. The rth order statistics for 

OEST distribution is given as 
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Remark: The minimum and maximum order statistics is derived by setting 1r   and r n  in 

Equation (29). 

 

3.7 Entropies 

 

The variation of uncertainty in a random variable is normally measured by the entropy (Rényi, 1961). 

The Rényi entropy  R 
  is expressed as: 

   
1

log
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R
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  , 0   and 1         (30) 

Using the PDF mixture representation of OEST distribution in (19),  f y


is given as: 
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Hence, the Rényi entropy of the OEST distribution using the expression by Taboga (2017, p.413, 

s.50.1.5), is expressed as: 
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Using the expression of the Beta function    1

0
, 1B y y dy

  
    . The Rényi entropy of the 

OEST distribution is given as: 
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Likewise, the q-entropy (Tsallis, 1988) is defined as: 
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Using the PDF mixture representation of OEST distribution in (19),  
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Hence, the q-entropy of the OEST distribution is given as: 
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4 MODEL ESTIMATION 

 

4.1 Parameters Estimation 

 

Let 1 2, , , nY Y Y  be a random sample from the OEST distribution with unknown parameter vector 

 ,
T

   . The likelihood  L  of the OEST distribution is expressed as: 
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The log-likelihood function  LL  is given as: 
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Taking the partial derivative of the log-likelihood l , with respect to  and   equating to zero, the 

normal equations are obtained as follows: 
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The non-linear equations (38) and (39) are solved numerically via iterative methods using statistical 

software such as R, MATLAB and Maple. The maximum likelihood estimates (MLEs) are asymptotic 

normally distributed i.e.,  ˆˆ ,n       follow  2 0,  , where   is the variance-covariance matrix 

obtained by inverting the observed Fisher information  F  given as follows: 
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For each parameter of OEST distribution, the asymptotic  1 100%  confidence intervals are 

estimated with 
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where, upper th percentile of the standard normal distribution is  . 

4.2 Simulations Study 

 

The simulation study for the average MLEs, absolute bias, variance, Mean Square Errors (MSE), and 

Root Mean Square Errors (RMSE) are performed for the OEST distribution. For 10000N  , random 

numbers of sample size 30,50,150,300,1000n   are generated using the OEST quantile function as in 

equation (9). The absolute bias, MSE and RMSE are computed for  ˆ ˆˆ ,S    using 
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The simulation results for the average MLEs, absolute bias, variance, MSEs, and RMSEs for different 

combinations of the parameters   and   are given in Table 2. These estimates are sensibly 

consistent and approach the parameter values as the sample size increases. The absolute bias, 

variance, RMSEs, and MSEs decrease for all parameter mixtures as the sample size increases which 

implies that the OEST parameter estimates are very much consistent, better estimated and approaches 

the arbitrary selected parameter values as the sample size increases. 

 

Table 2: Simulation results 

 1.2, 0.7    

n Par AE ABS Var MSE RMSE 

30   1.241 0.041 0.064 0.066 0.256 

   0.687 0.013 0.061 0.061 0.248 

50   1.222 0.022 0.035 0.035 0.187 

   0.691 0.009 0.037 0.037 0.193 

150   1.206 0.006 0.101 0.011 0.103 

   0.696 0.004 0.012 0.012 0.110 

300   1.203 0.003 0.005 0.005 0.072 

   0.698 0.002 0.006 0.006 0.077 

1000   1.201 0.000 0.001 0.001 0.039 

   0.700 0.000 0.002 0.002 0.042 
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 1.5, 1.0    

n Par AE ABS Var MSE RMSE 

30   1.570 0.070 0.105 0.110 0.332 

   0.978 0.022 0.130 0.131 0.362 

50   1.539 0.039 0.055 0.056 0.237 

   0.985 0.015 0.079 0.079 0.281 

150   1.510 0.101 0.016 0.016 0.127 

   0.994 0.006 0.025 0.025 0.160 

300   1.506 0.006 0.008 0.008 0.088 

   0.997 0.003 0.012 0.012 0.112 

1000   1.501 0.001 0.002 0.002 0.048 

   0.999 0.001 0.004 0.004 0.061 

 

 

 1.7, 1.2    

n Par AE ABS Var MSE RMSE 

30   1.795 0.095 0.147 0.156 0.395 

   1.170 0.030 0.195 0.195 0.442 

50   1.752 0.052 0.074 0.077 0.277 

   1.180 0.020 0.118 0.118 0.344 

150   1.714 0.014 0.021 0.021 0.146 

   1.192 0.007 0.038 0.038 0.195 

300   1.708 0.008 0.010 0.010 0.100 

   1.196 0.004 0.019 0.019 0.136 

1000   1.702 0.002 0.003 0.003 0.055 

   1.199 0.001 0.005 0.005 0.074 
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 2.0, 1.5    

n Par AE ABS Var MSE RMSE 

30   2.141 0.141 0.244 0.264 0.514 

   1.457 0.043 0.324 0.326 0.571 

50   2.078 0.078 0.115 0.121 0.348 

   1.471 0.029 0.195 0.196 0.443 

150   2.022 0.022 0.031 0.031 0.177 

   1.489 0.010 0.063 0.063 0.251 

300   2.011 0.011 0.014 0.015 0.121 

   1.495 0.005 0.031 0.031 0.176 

1000   2.003 0.003 0.004 0.004 0.066 

   1.499 0.001 0.009 0.009 0.095 

 

5 APPLICATION 

In this section, the flexibility and superiority of the odd exponentiated skew-t (OEST) distribution over 

other two-parameter distributions are demonstrated using a real dataset. The odd exponentiated skew-t 

(OEST) distribution is compared with other competitive distributions such as the type-I half logistic 

skew-t (TIHLST), half logistic skew-t (HLST), Fréchet (FT), Pareto (PE), Lomax (LOMX), inverse 

Pareto (INVPE), type-I half logistic Burr X (TIHLBX) and skew Student-t (ST). The descriptive 

statistics of the dataset are provided in Table 3. 

  

The dataset represents the survival times (in days) of 72 guinea pigs infected with virulent tubercle 

bacilli. The dataset is given as follows:  

0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 

1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 

1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 

2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 

4.32, 4.58, 5.55. This dataset has previously been used by Jamal et al. (2019), Umar et al. (2019), 

Leren and Abdullahi (2020) and Ampadu and Anafo (2019). 

 

Table 3: Descriptive statistics of the dataset. 

 n Mean Median SD Skewness Kurtosis 

Dataset 72 1.791 1.595 1.011 1.294 5.046 

 

The performance measures are applied using the R-software package “AdequacyModel” to evaluate 

the fit of the distributions specified above. The distribution parameters are estimated using the 
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maximum likelihood estimation procedure. The following performance measures: Hannan-Quinn 

information criterion (HQIC), Akaike Information Criterion (AIC), Bayesian Information Criterion 

(BIC), Anderson Darling (AD), Cramer-von Mises (CVM), Kolmogorov-Smirnov (K-S) statistic and 

its p-value are provided in Table 4. The distribution is of a good fit if all the performance measures 

are smaller and the p-value is larger. Lastly, Table 5 presents the 95% and 99% confidence intervals 

for the OEST distribution parameters. 

 

 

 

Table 4: MLEs (SE) and performance measures. 

Model Par MLEs (SEs) AIC BIC HQIC CVM AD K-S 
p-

value 

OEST 
̂  0.0054(0.0022) 

206.52 211.18 208.28 0.054 0.278 0.085 0.645 
̂  0.0919(0.0397) 

TIHLST 
̂  0.6579(0.0889) 

288.94 293.60 290.81 0.064 0.366 0.374 
1.2e-

09 ̂  1.5812(0.5509) 

HLST ̂  3.5701(0.7450) 297.13 299.46 298.06 0.099 0.579 0.456 
3.8e-

14 

FT 
̂  1.1771(0.0819) 

255.59 260.25 257.45 0.575 3.659 0.192 0.001 
̂  1.0846(0.1125) 

PE 

̂  47.126(44.788) 

245.71 250.38 247.58 0.078 0.524 0.296 
3.3e-

06 
̂  84.038(81.125) 

̂  93.3635(73.8610) 

LOMX 
̂  40.0722(51.3010) 

245.92 250.58 247.78 0.078 0.522 0.300 
2.3e-

06 ̂  0.0142(0.0183) 

INVPE 
̂  13.0025(11.3630) 

258.46 263.12 260.32 0.320 2.160 0.257 
8.6e-

05 ̂  0.0980(0.0914) 

TIHLBX 

̂  -0.0788(0.0859) 

209.059 216.05 211.85 0.164 1.030 0.104 0.377 ̂  0.7835(0.0762) 

̂  25.8169(45.9911) 

ST 
̂  

5.7271(1.2579) 346.19 348.52 347.12 0.117 0.698 0.578 
2.2e-

16 
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Figure 4: Fitted density function plot (top left panel), distribution function plot (top right panel), 

probability-probability (PP) plot (bottom left panel) and quantile-quantile (QQ) plot (bottom right 

panel) of the OEST distribution. 
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Figure 5: The Box plot (top left panel), total time of test (TTT) plot (top right panel), OEST hazard 

rate function plot (bottom left panel) and OEST survival function plot (bottom right panel). 

 

From the results in Table 4, the performance measures of the OEST distribution are smaller when 

compared to other fitted distributions, so we infer that the OEST distribution provides a good fit than 

the other distributions. The flexibility and fitness of the OEST distribution is visible from Figure 4. It is 

clear that OEST distribution provides an appropriate fit for the dataset based on the density function, 

distribution function, P-P plot and Q-Q plot in Figure 4. The TTT (total time on test) plot in Figure 5, 

shows that the dataset exhibits an increasing failure rate function and OEST is capable of 

accommodating increasing failure rates. Likewise, the Box plot of the dataset is shown in Figures 5. 

 Furthermore, the hazard rate and survival plots of the OEST distribution, using the parameter 

estimates in Table 4 are also depicted in Figure 5. The hazard rate shape based on the OEST parameter 

estimates is increasing and J-shaped. The J-shaped means that the OEST distribution tend to have some 

observations at one end, very few in the middle and a large number of observations at the other end 

which gives it the capability of handling skewed and heavy tail datasets. The results in Table 5, shows 

that the parameter estimates fall within the 95% and 99% confidence intervals. 

 

Table 5.  OEST distribution parameter estimates confidence intervals 

CI     

95%   0.00109 0.00971   0.01409 0.16971  

99%   0.00025 0.01105   0.01013 0.19393  

 

6 CONCLUSION 

 

This article presents a new two-parameter distribution known as the odd exponentiated skew-t (OEST) 

distribution using the odd exponentiated transformation. The flexibility of the skew-t distribution is 

improved using this transformation. This mixture representation is important to derive several 

structural properties of this distribution in full generality. Some of them are provided such as the 

ordinary and incomplete moments, quantile function, entropy, characteristic function and order 

statistics. The new distribution parameter estimates are derived using the maximum likelihood 

estimation (MLE) procedure and simulation study showed that the MLE performed well in estimating 

the parameters of the new distribution. The application using a real dataset indicates that the OEST 

distribution outperformed the other competing distributions. Future research study will compare the 

performance of the OEST error conditional distribution to existing error conditional distributions such 

as the normal distribution, Student-t distribution, generalized error distribution, and its skew variants 

in modeling and forecasting volatility using GARCH framework. 
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