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Abstract 

Spatial effects are often simultaneously investigated with non-linear effects of continuous covariates 

and the usual linear effect. In this work the performance of models with and without spatial dependence 

in partitioned (PM) and non-partitioned models (NPM) for four (4) censoring percentages, three(3) 

levels of  Weibull baseline variances (WBV), and sample sizes 100, 500 & 1000 were investigated. 

Hazard models were adapted to the generalized additive predictors and analyses were carried out via 

MCMC simulation technique. The performances of the models were again assessed when fitted to the 

diabetic data set. Results suggest that; partition models outperformed the non-partition ones. Models 

with spatial dependence perform better than models without spatial dependence in denser event times 

and when WBVs are low.  The partition models perform better with spatial dependence than the Non-

partitioned models. For the diabetic data set, it is seen that covariates Age and Blood Sugar level (BSL) 

violates the proportionality assumptions upon test. Further assessment from the graph of coefficient 

against time; suggest that Age be put to cut-points while BSL was estimated for models with and without 

Penalized splines for the sake of comparison, since the graph shows just a slight deviation from 

proportionality.  Hazard rates for the time varying Age; indicate that as the time of study rolls by, the 

hazard of experiencing the event death from the disease increases steadily between intervals but 

constant within each time interval. A unit change in hazard rate for BSL indicates a decrease for PM 

implemented for with and without penalized splines.  The model without penalized splines was 

however, seen to be better with smaller DIC (Deviance Information Criteria) value. Marriage is seen to 

be significant in the management of the disease in comparison to single patients. In addition patients 

are advised to visit their physicians on a regular basis to run a routine check to keep their BSL in good 

range. The study provides a means of moving out of non-linear ruts in survival data analysis. Intervals 

increase sample sizes (pseudo-observations), which in turn improves the modified Partitioned 

model when they are with or without spatial dependence.  

Keywords:  Generalized Additive Model (GAM), Modification, Non-partition, Partition, Spatial 

dependence. 
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1.  Introduction 

Analysis of survival time data has gained considerable attention, particularly in medicine, where the 

conventional denotation ‘Survival analysis’ arises from (Hennerfeind, 2006). In several other bio-

statistical applications on censored follow-up time data, interest lies mainly on the prognostic role of 

clinical/biological covariates. To such end, non-parametric and semi-parametric methods have been 

preferred over parametric ones. The most widely adopted tool is the Cox model, which avoids any 

assumption of the functional form of the hazard function on time. However, such feature is not tenable 

if the interest lies on investigating the shape of the hazard or in predictive modeling (Kooperberg et al 

1995) when the Cox-model is extended to time-varying covariates and time-dependent effects, which 

combine to give the most general version of the hazard. Functional forms of continuous covariates and 

spatial correlation as a form of frailty model in medical research may most often affect the overall 

estimate of the hazard function. Progress would require specifying the form of this function of time. In 

such scenario where time is seen to be truly continuous a flexible or semi-parametric strategy is 

required, where mild assumptions are made about the baseline hazard. Specifically, time may be 

subdivide into reasonably small intervals and assume that the baseline hazard is constant in each 

interval, leading to a piece-wise survival model (cited in Omaku & Ibinayin, 2020). What modifications 

are possible to fit models that are interpretable in the face of these complexities of non-linear ruts in 

survival modeling? 

The Partitioned model (Piecewise models) is a special case of models that employ time-varying 

covariates (Rodriguez, 2007). This is because the Partition Model (PM) requires us to split up single-

spell duration data in the same way that we had to when we wanted to incorporate time-varying 

covariates. According to (Fabio et al. 2010) the PM arises as a quite attractive alternative to parametric 

models for the analysis of time to event data. Although parametric in a strict sense, the PM can be 

thought of as a nonparametric model as far as it does not have a closed form for the hazard function, it  

is also a proportional hazard (PH) model as its basic hazard rate can be specified in the following way:  

𝜆(𝑡, 𝑋)  =  𝜆0(𝑡)𝑒 
𝑋𝜗. The main difference is that the baseline hazard rate is allowed to vary in different 

time periods. 

In the simplest case of proportional hazards, the relationship between the hazard function of the 

PCE model and the covariates is expressed as follows: 

 𝜆𝑃𝐸(𝑡 𝑋𝑖⁄ ) = ∑ (𝐼(𝑡𝜖𝑇𝑘
𝐾
𝑘=1 )𝜆𝑘)exp(𝑋𝑖

𝑇𝜗)        (1) 

where: 𝜆1, … 𝜆𝐾  are the unknown parameters of the baseline hazard function; 𝜗 is the p × 1 vector of 

regression coefficients; and 𝐼(𝑡 ∈ 𝑇𝑘) is an indicator function being equal to 1 if 𝜏𝑘 − 1 ≤  𝑡 <  𝜏𝑘 and 

0 otherwise Cited in (Marano et al, 2016). 
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The model in (1) can be completely specified as 

 𝜆(𝑡,  𝑋𝑡) =

{
 

 
�̅�0(𝑡1)𝑒 𝑋1𝜗         𝑡𝜖(0, 𝜏1 )

�̅�0(𝑡2)𝑒 𝑋2𝜗         𝑡𝜖(𝜏1 , 𝜏2)
⋮

�̅�0(𝑡𝑘)𝑒 𝑋𝑘𝜗       𝑡𝜖(𝜏𝑘−1 , 𝜏𝑘)

        (2) 

𝜆(𝑡,  𝑋𝑡) =

{
 

 
exp[log(�̅�0(𝑡1) + 𝑋1𝜗]         𝑡𝜖(0, 𝜏1 )

exp[log(�̅�0(𝑡2) + 𝑋2𝜗]         𝑡𝜖(𝜏1 , 𝜏2)
⋮

exp[log(�̅�0(𝑡𝑘) + 𝑋𝑘𝜗]       𝑡𝜖(𝜏𝑘−1 , 𝜏𝑘)

                    (3) 

It is seen in (Clark & Ryan, 2002, Bastos & Gamerman, 2006 & Kim et al. 2006) that 

Partitioning is done by increasing the size of the dataset, from the original one, to such end, the data of 

each subject is replicated for each interval in which it is followed. For each replicate, a row data 

indicating subject covariates, time interval and the status of the subject within the interval is created for 

intervals say k=1,...,K. The essence of following subjects within intervals is to treat the dataset of 

wriggles or non-proportionality which makes interpretation sometimes impossible and difficult.  

Consider partitioning duration into J intervals with cut points 0 = 𝜏0 < 𝜏1 < 𝜏2 < ⋯ < 𝜏𝑘 = ∞. 

Define the kth interval as 𝐼𝑖 = [ 𝜏𝑘−1 , 𝜏𝑘), extending from the [𝑘 − 1)st boundary to the kth and 

including the former but not the latter, then assume that the baseline hazard is constant within each 

interval, so that 

𝜆0(𝑡) = 𝜆𝑖  𝑓𝑜𝑟  𝑡 𝑖𝑛  [𝜏𝑘−1,  𝜏𝑘)                      (4)  

Model the baseline hazard 𝜆0(𝑡) using k parameters  𝜆1, 𝜆2…𝜆𝑘 , each representing the risk for the 

reference group (or individual) in one particular interval. Since the risk is assumed to be piece-wise 

constant, the corresponding survival function is often called a piece-wise exponential (Marano et al, 

2016). 

Clearly, judicious choice of the cut points should approximate reasonably well almost any baseline 

hazard, using closely-spaced boundaries the hazard varies rapidly and wider intervals where the hazard 

changes more slowly. 

 

1.1 Spatial Dependence 

Spatial survival analysis has received a great deal of attention, due to the important role that 

geographical information can play in survival prediction, serving as a proxy for unmeasured and 

structured regional characteristics such as socioeconomic status, access to health care, pollution, etc. 

Literature on the spatial analysis of survival data has flourished over the last two decades, including the 

study of leukemia survival (Henderson et al, 2002), a geo-additive discrete time probit model by 

(Adebayo & Farmeir ,2003) to model regional and social economic variations of childhood mortality 

in Nigeria, childhood mortality (Kneib, 2006), asthma (Li & Lin, 2006), breast cancer (Banerjee and 
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Dey, 2005);( Zhou, Hanson, Jara, & Zhang, 2015a), political event processes (Darmofal, 2009), prostate 

cancer (Wang, Zhang, & Lawson 2012; Zhou, Hanson & Zhang 2017), pine trees (Li, Hong, Thapa, & 

Burkhart 2015a), threatened frogs (Zhou, Hanson, & Knapp 2015b), health and pharmaceutical firms 

(Arbia et al, 2016), emergency service response times (Taylor, 2017), and many others. Continous time 

geoadditive hazard rate model was proposed by   (Hennefeind et al, 2006). Within a unified frame work, 

their approach extends the Cox model with respect to several aspects often needed in applications. They 

generalized the common linear predictor to an additive predictor, including unknown functional forms 

for the baseline hazard, time varying effects of metrical covariates and spatial component for spatial 

effects 

 

1.2 Generalized Additive Models 

Generalized additive models (GAMs) are statistical models in which the conventional multiple linear 

regression is generalized to permit a much broader class of time varying and nonlinear functional form 

of continuous covariates and their effects; but still with additive relationships between response and 

predictor variables. GAMs, derived from the work of (Hastie & Tibshirani, 1986, 1990), provide 

flexible and effective means of moving out of the “linear rut” (Jones & Almond, 1992) in which a 

considerable amount of bio-statistical modeling is still located. In this work GAM is used to estimate 

the effects of several functional forms of covariates incorporated to the Modified partitioned model. 

In this study a modified Partitioned (PM) and Non-Partitioned (NPM) survival models with 

additive predictors to include the functional forms; of time varying covariates, nonlinear effects of 

metrical covariates and spatial terms for spatial dependence were considered. The performance of PM  

& NPM for with and without spatial dependence were assessed using the DIC (Deviance Information 

criterion). 

 

2. Materials and Method     

The risk data used for this paper was simulated from three levels of Weibull baseline hazard distribution, 

for sample sizes of 100, 500 & 1000 and four (4) censoring percentages of: no censoring “0%”, low 

“about 25%”, moderate “about 50%” and high “about 75%”. Cut off points were observed from the 

graphs of coefficients against time.  

 

Application to Diabetic Dataset 

Diabetic dataset for 452 patients who were admitted at the Nigerian Air Force Hospital, Abuja. Time 

from diagnosis of the disease for in-patients to death defines the failure time while those whose records 

read “alive” were right-censored because such patients had not died as at the time of the study. Other 

variables considered were; Age, Gender, Marital status and Blood Sugar Level (BSL). 
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2.1 Model Specification 

The Cox hazard model with Spatial effect as stated in (Zhou & Hanson, 2017) is as follows 

𝑆𝑥𝑖𝑗(𝑡) = 𝑆0(𝑡)
𝑒
𝑥𝑖𝑗
𝑇 𝜗+𝑣𝑖

,             (5) 

𝑓𝑥𝑖𝑗(𝑡) = 𝑒
𝑥𝑖𝑗
𝑇𝜗+𝑣𝑖𝑆0(𝑡)

𝑒
𝑥𝑖𝑗
𝑇 𝜗+𝑣𝑖−1𝑓0(𝑡)          (6) 

ℎ𝑥𝑖𝑗(𝑡) = 𝑒
𝑥𝑖𝑗
𝑇𝜗+𝑣𝑖 . 𝑓0(𝑡)                       (7) 

where 𝑆𝑥𝑖𝑗(𝑡) is the survival function of subjects i with xj covariate, 𝑓𝑥𝑖𝑗(𝑡) is the density function of 

subjects i with xj covariate, ℎ𝑥𝑖𝑗 is the hazard function of subjects i with xj covariate, 𝜗 =  (𝜗1, . . . , 𝜗𝑝)
𝑇 

is a vector of regression coefficients, 𝑣𝑖 is an unobserved spatial frailty associated with the survival 

function, and 𝑆0 (t) is the baseline survival with density 𝑓0(𝑡) corresponding to 𝑥𝑖𝑗 = 0 and 𝑣𝑖 = 0. 

  

    

2.2 Hennerfeind suggested the reprarametization of the Cox model (a Non Partition Model-NPM) 

as follows: 

𝜂(𝑡; 𝑧, 𝑤, 𝑣, 𝑥) =  𝑓0(𝑡) + ∑ 𝑓𝑗
𝑝
𝑗=1 (𝑡)𝑧𝑗 + ∑ 𝑓𝑗

𝑝+𝑞
𝑗=𝑝+1 (𝑤𝑗) + 𝑓𝑠𝑝𝑎𝑡(𝑣𝑗) + 𝑥

′𝛾                                     (8) 

The function 𝑓0(𝑡) is the baseline effect, and a function,  𝑓𝑗(𝑡)represents a time–varying effect of the 

covariate 𝑧𝑗. The functions 𝑓𝑗(𝑤1),..., 𝑓𝑞(𝑤𝑞) are possibly nonlinear effects of metrical covariates 

𝑤1, … , 𝑤𝑞 and 𝑓𝑠𝑝𝑎𝑡(𝑣𝑖) is a structured spatial effect, where  v, v =1,. . .,V is either a spatial index, with  

𝑣 =  𝑣𝑗 if subject j  is from area  v   or it is an exact spatial coordinate  𝑣 = (𝑥𝑗, 𝑦𝑣), e.g. for centriods 

of regions or if exact locations of individuals are known.  𝛾  is the usual linear part of the predictor. 

 

2.3 Expression (4) may be modified, when partitioning is done, as: 

𝜆𝑃𝑀(𝑡𝜔; 𝑧, 𝑤, 𝑣) = {𝐼(𝑡𝜖𝑇k(𝑓𝑘(𝑡𝜔))} + ∑ 𝑓𝑗
𝑝
𝑗=1 (𝑡𝜔)𝑧𝑗𝑘 + ∑ 𝑓𝑗𝑘

𝑝+𝑞
𝑗=𝑝+1 (𝑤𝑗𝑘) + 𝑓𝑠𝑝𝑎𝑡(𝑣𝑗𝑘)                (9) 

With its various terms defined as 𝑡𝜔 is the time variable varied for three (3) levels of Weibull 

distribution, the function 𝑓𝑘 = 𝑙𝑜𝑔𝜆𝑘 is the baseline effect varied for three (3) variance levels of Weibull 

distribution for the kth interval of PM,  𝑓0(𝑡) the baseline effect for the NPM, functions 𝑓𝑗(𝑡)𝑧𝑗𝑘,..., 

𝑓𝑝(𝑡)𝑧𝑝𝑘 are functional forms of time varying covariates 𝑧1𝑘 , … , 𝑧𝑝𝑘 in the kth interval , The functions 

 𝑓𝑗(𝑤𝑗𝑘),..., 𝑓𝑞(𝑤𝑞𝑘) are possibly nonlinear effects of metrical covariates 𝑤1𝑘, … , 𝑤𝑞𝑘 and 𝑓𝑠𝑝𝑎𝑡(𝑣𝑗𝑘) is 

a structured spatial effect, where  v, v =1, . . . ,V is either a spatial index, with  𝑣 =  𝑣𝑗𝑘 if subject j  in 

the kth  interval is from area  v   or it is an exact spatial coordinate  𝑣 = (𝑥𝑖, 𝑦𝑣), e.g. for centriods of 

regions or if exact locations of individuals are known.   
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2.4 Model Likelihood for the modified partitioned model 

𝐿𝑃𝑀 (𝜆, 𝛾, 𝛽; 𝐷, ∆ , 𝑧, 𝑤, 𝑣) = ∏ ∏ (
𝐾𝑗
𝑘=1 𝜆𝑘exp (𝑍𝑘

𝑛
𝑗=1 𝛾𝑗𝑘 + 𝛽𝑘𝑤𝑗𝑘 + 𝑣𝑗𝑘)

𝑑𝑖𝑘 . exp (𝜆𝑘 exp(𝑍𝑘𝛾𝑗𝑘 +

𝛽𝑘𝑤𝑗𝑘 + 𝑣𝑗𝑘) ∆𝑗𝑘).                      (10) 

where for each subject j there is a product of Kj terms, Kj being the number of intervals in which the 

subject is followed. In the expression above, djk is the status of the jth subject within the interval Tk (0 = 

alive or censored, 1 = failed); Δjk is the time spent in Tk by the subject. From expression (10) it may be 

seen that LPM is proportional to the product of Poisson likelihoods for Djk with mean parameters: 𝜇𝑗𝑘 =

𝜆𝑘 exp(𝑍𝑘𝛾𝑗𝑘 + 𝛽𝑘𝑤𝑗𝑘 + 𝑣𝑗𝑘) ∆𝑗𝑘. As a consequence, the expression of the Poisson regression model 

is: 

𝐷𝑗𝑘 ~𝑃𝑂𝐼𝑆𝑆𝑂𝑁(𝜇𝑗𝑘); log(𝜇𝑗𝑘) = 𝛼𝑘 + 𝑍𝑘𝛾𝑗𝑘 + 𝛽𝑘𝑤𝑗𝑘 + 𝑣𝑗𝑘 + log (∆𝑗𝑘) .                                    (11) 

where ℎ(𝑗) indicate the interval where 𝑡𝑗 falls, i.e. the interval where individual 𝑗 died or was censored, 

𝛼𝑘 = log(λk) are log-hazard parameters, and the term log(Δjk) is an offset . 

 

2.5 Partition model with regularized effects: 

{
 
 
 
 
 

 
 
 
 
 

𝑑𝑗𝑘 ~𝑃𝑂𝐼𝑆𝑆𝑂𝑁(𝜇𝑗𝑘)

log(𝜇𝑗𝑘) = 𝐵0
𝑇𝛼 + ∑ 𝑍𝑗𝑘,𝐵0

𝑇𝑝
𝑗=1 𝛾𝑗 +𝑤𝑘,𝑗𝐵0

𝑇𝛽𝑘 + 𝑣𝑗𝑘 + log(∆𝑗𝑘)

(𝛼|𝜏2)~𝑅𝑊(𝜏2, 𝑃𝑑); 𝜏
2~𝜋𝜏2

(𝛾𝑗|𝜏𝑗
2)~𝑅𝑊 (𝜏𝑗

2, 𝑃𝑑
(𝑗)
) ; 𝜏𝑗

2~𝜋𝜏2𝑗; 𝑗 = 1,… , 𝑝 

(𝛽𝑗|𝜏𝑗
2)~𝑅𝑊 (𝜏𝑝+𝑙

2 , 𝑃𝑑
(𝑝+𝑙)

) ; 𝜏𝑝+𝑙
2 ~𝜋𝜏2𝑗; 𝑙 = 1,… , 𝑞

𝑉𝑖 {𝑣𝑗}𝑗≠𝑖~𝑁(−∑ 𝑃𝑖𝑗𝑉𝑖𝑗 𝑃𝑖𝑖⁄{𝑗:𝑗≠𝑖} , 𝜏2 𝑃𝑖𝑖⁄ )⁄

                            (12) 

𝑑𝑗ℎ 𝑖s the status of the subject j in the kth, interval,  𝜇𝑗𝑘 is the mean likelihood of the partitioned model 

of subject j in the kth interval, The time-dependent effects for each covariate are: 𝑍𝑗𝐵0
𝑇𝛾1𝑗; j = 1, …,p. 

Thus, for each Zj, its values multiplied for a piecewise constant function: 𝐵0
𝑇𝛾𝑗; in the parameters. 𝛾1𝑗 =

(𝛾1,𝑗,1, … , 𝛾1,𝑗,𝐾)
𝑇 . This enables the effect of each Zj to vary in each interval Tk of the original partition 

of the follow-up: 𝐵0
𝑇𝛼 + 𝑍𝑗𝐵0

𝑇 = 𝛼ℎ + 𝑧𝑗𝛾𝑗,ℎ for  t∈Th .  

𝜏2 is the smoothing parameter, 𝑃𝑑  is the penalized term of order d for the random walk process of 

non-linear ruts (the log baseline hazard, the functional form of time varying covariate & the functional 

form of continuous covariate). πβ and 𝜋𝜏2 are generic prior densities for the regression coefficients 

(Omaku & Oyejola , 2020). 
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2.5.1 Bayesian P-Splines  

The Bayesian P-splines method  is based on a hierarchical model with non-informative priors for the 

regression coefficients (β ) and a Gaussian Random Walk (RW) prior of order d for the coefficients of 

the hazard function (B-spline), conditional to a smoothing parameter 𝜏 2 The general expression of the 

RW prior as suggested by (Lang & Brezger, 2004) and (Kooperberg & Intrator, 1995) is the following: 

𝛽𝑗/𝜏𝑗
2 ∝ exp(−

1

2𝜏𝑗
2  𝜆𝑗 𝛽′𝑗 𝐾𝑗𝛽𝑗)         (13) 

The penalty matrix 𝐾𝑗 is of the form  𝐾𝑗 = 𝐷
′𝐷 , where D is a first or second order difference 

matrix. For an independent and identical random effect, the penalty matrix is the identity matrix, i.e. 𝐾𝑗= 

I. The variance parameter 𝜏𝑗
2 controls the trade off between flexibility and smoothing and an inverse 

gamma prior (the conjugate prior) is assumed. i.e. 𝜏𝑗
2~𝐼𝐺(𝑎, 𝑏). 

 

2.5.2 Gaussian Random Field (GRF)  priors  

For spatial data, it is assumed in (Zhou & Hanson, 2017) that 𝑣𝑖  =  𝑣(𝑠𝑖) comes from a Gaussian 

random field (GRF) {𝑣(𝑠), 𝑠𝜖𝑆} such that 𝑣 =  (𝑣1, … , 𝑣𝑚) follows a multivariate Gaussian distribution 

as 𝑣~  𝑁𝑚(0, 𝜏
2𝑅), where 𝜏2 measures the amount of geographical variation across locations and the 

(i,j) element of R is modeled as 𝑅[𝑖, 𝑗]  =  𝜌(𝑠𝑖, 𝑠𝑗 ). Here  𝜌(. , . ) is a correlation function controlling 

the spatial dependence of v(s). In “survregbayes” package in R, the powered exponential correlation 

function 𝜌(𝑠𝑖, 𝑠𝑗 ). = 𝜌(𝑠𝑖, 𝑠𝑗, 𝜑 ). =  exp {−(𝜑‖𝑠 − 𝑠
′‖)𝑣} is used, where 𝜑> 0 is a range parameter 

controlling the spatial decay over distance, 𝑣𝜖 (0,2] is a prespecified shape parameter, and ‖𝑠 − 𝑠′‖ 

refers to the distance (e.g., Euclidean, great-circle) between s and 𝑠′ Therefore, the prior GRF(𝜏2, ∅) is 

defined as  𝑉𝑖 {𝑣𝑗}𝑗≠𝑖~𝑁(−∑ 𝑃𝑖𝑗𝑉𝑖𝑗 𝑃𝑖𝑖⁄{𝑗:𝑗≠𝑖} , 𝜏2 𝑃𝑖𝑖⁄ )⁄ 𝑖 = 1,… ,𝑚 where 𝑃𝑖𝑗 is the (i,j) element of 

𝑅−1 . 

 

2.6 Variable Transformation for Diabetic dataset 

For the sake of analysis the covariate “age” is considered as a continuous variable, Gender was coded 

“1” for “male” patients and “0” for “female” patients. Marital status was coded “0” for “single” patients 

and “1” for patients that are “married”. Blood Sugar Level (BSL) was considered to be continuous in 

nature. For the outcome variable patients that experienced the event death were coded “1” while those 

that were alive as at the time of study or those that were discharged were considered to be right censored 

and coded “0”. 

2.6.1 Models for Diabetic Dataset 

𝜂𝑁𝑃𝑀 = 𝑓0(𝑡) + 𝐴𝐺𝐸(𝑡)𝛿 + 𝛽. 𝐵𝑆𝐿 + 𝛾1𝐺𝑒𝑛𝑑𝑒𝑟 + 𝛾2𝑀𝑎𝑟𝑖𝑡𝑎𝑙 𝑠𝑡𝑎𝑡𝑢𝑠                            (14) 

log(𝜇𝑗ℎ , 𝛼, 𝛽, 𝛾1, 𝛾2) = 𝐵0
𝑇𝛼 + 𝐴𝐺𝐸(𝑡)𝛿 + 𝛽. 𝐵𝑆𝐿 + 𝛾1𝐺𝑒𝑛𝑑𝑒𝑟 + 𝛾2𝑀𝑎𝑟𝑖𝑡𝑎𝑙 𝑠𝑡𝑎𝑡𝑢𝑠              (15) 
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log(𝜇𝑗ℎ , 𝛼, 𝛽𝑖 , 𝛾1, 𝛾2) = 𝐵0
𝑇𝛼 + 𝐴𝐺𝐸(𝑡)𝛿 + 𝛽i(pslines)𝐵𝑆𝐿 + 𝛾1𝐺𝑒𝑛𝑑𝑒𝑟 + 𝛾2𝑀𝑎𝑟𝑖𝑡𝑎𝑙 𝑠𝑡𝑎𝑡𝑢𝑠       (16) 

Equation 15 differs from 16 as the latter estimates the effect of BSL (𝛽𝑖) via Penalty splines through 

some numbers of selected knots. Simulations and analysis were carried out in R using the coda package 

for spBayesSurv, version 3.6.2. Comparisons were done using Deviance Information Criterion (DIC) 

(smaller is better). 

 

2.7 Test for Non-Proportionality 

To test the hypothesis that the proportional hazard assumption is valid, the following statement of 

hypothesis is made. 

𝐻0:  𝛿1 = 𝛿2 = ⋯ = 𝛿𝑝= 0 (Assumption is valid) 

𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝛿𝑖
′𝑠 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑧𝑒𝑟𝑜 (Assumption violated) 

Decision rule: Reject 𝐻0 if 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤  𝛼 (level of significance) 

Residual measures are used to investigate the departure from the proportional hazard assumption.  

Schoenfeld residuals are usually calculated at every failure of time under the proportional hazard 

assumption, and usually not defined for censored observations. The overall significance test is called 

the global test of the model (cited in Adeniyi & Akinrefon, 2018). 

 

2.8 Simulation Study 

The survival function is given by 

𝑆(𝑡) = 𝑒𝑥𝑝(−𝐻0(𝑡)𝑒
𝛽(𝑡)𝑧𝑗+𝑤𝑗+𝑣𝑗)                                (17) 

Then, the cumulative distribution function of the non-proportional hazards model is 

𝐹(𝑡) = 1 − 𝑒𝑥𝑝(−𝐻0(𝑡)𝑒
𝛽(𝑡)𝑧𝑗+𝑤𝑗+𝑣𝑗)                    (18) 

The distribution function follows a uniform distribution on the interval from 0 to 1, denoted by U 

if 𝑈~𝑈(0,1) then 1 − 𝑈~𝑈(0,1). Therefore, the survival function follows a uniform distribution on 

the interval from 0 to 1. That is 

𝑈 = 𝑒𝑥𝑝(−𝐻0(𝑡)𝑒
𝛽(𝑡)𝑧𝑗+𝑤𝑗+𝑣𝑗) ~ 𝑈(0,1)                   (19)  

The failure time t can be solved by inverting H0 

𝑡 = 𝐻0
−1 (

−𝑙𝑜𝑔𝑈

𝑒
𝛽(𝑡)𝑧𝑗+𝑤𝑗+𝑣𝑗

)          (20) 

For Weibull baseline distribution, then 𝐻0
−1( ) = 𝛼𝑡

1
𝜂⁄  and the failure time is 

𝑡 = 𝛼 (
−𝑙𝑜𝑔𝑈

𝑒
𝛽(𝑡)𝑧𝑗+𝑤𝑗+𝑣𝑗

)
1
𝜂⁄
                                              (21) 
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The simulations apply the functional form of time varying covariate by (Bender et al , 2005) 

given as 

𝑓(𝑧) = 0.5√𝑡 ∗ 𝑦.        𝑦~𝑏𝑖𝑛𝑜𝑚(𝑁, 1, 0.5)                   (22) 

The functional form of the continuous covariates as in (Brezger, 2004) is given as: 

𝑓(𝑤𝑗) = 1.0/1.80𝑤𝑗                    (23) 

where 𝑤𝑖~U(−3,3). 

Co-ordinates for spatial correlations follow the uniform distribution.  𝑣1  =  𝑟𝑢𝑛𝑖𝑓(𝑁, 0, 40) 

and 𝑣2  =  𝑟𝑢𝑛𝑖𝑓(𝑁, 0, 100). Ulviya (2013), obtained the shape and scale parameters of the Weibull 

distribution from the formulas below  

𝜂 =
1

Γ(1+
1

𝛼
)
           (24)  

and 

(
Γ(1+

2

𝛼
)

(Γ(1+
1

𝛼
))2
− 1) = 0.5          (25)  

for a convenience choice of mean 1 and variance 0.5. Using the uniroot function in R. parameters were 

given to be approximately 𝛼 = 1.435523 and 𝜂 = 1.101321. We considered studying the impact of 

increasing and decreasing the variance of the Weibull distribution while keeping the mean at 1. The 

result is displayed in table 1 below 

 

Table 1: Shape and scale parameters of the Weibull distributions 

E(T) Var (T) 𝛼 𝜂 

1 0.25 2.101377 1.129063 

1 0.5 1.435523 1.101321 

1 0.75 1.157975 1.052847 

 

 

 

 

 

 

 

 

 

https://rdrr.io/r/stats/Uniform.html
https://rdrr.io/r/stats/Uniform.html
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3. Results and Discussion 

 

Table 2: DIC values for levels of censoring, three (3) levels of Weibull baseline variance, sample 

sizes for with and without spatial dependence in Non-Partition Model 

Censoring 

% 

Variance N=100 N=500 N=1000 

WSD WOSD WSD WOSD WSD WOSD 

0 

0.25 853.6004 854.1665 4068.979 4069.006 8779.792 8780.939 

0.50 962.164 962.253 4707.551 4709.29 10137.67 10143.15 

0.75 1032.945 1033.307 5138.187 5136.902 11028.65 11035.66 

25 

0.25 653.4635 653.4906 3210.955 3246.832 7007.161 7001.295 

0.50 716.3681 716.0612 3623.79 3578.655 7820.168 7828.612 

0.75 756.2604 755.0077 3848.511 3813.489 8272.722 8341.513 

50 

0.25 512.0976 498.3278 2407.989 2445.837 5000.534 5034.049 

0.50 520.4511 519.2795 2620.238 2606.079 5512.023 5520.44 

0.75 543.8143 543.4234 2607.02 2601.271 5698.33 5692.22 

75 

0.25 255.7324 255.4689 1280.065 1263.73 2695.128 2725.757 

0.50 312.231 488.3278 1338.623 1298.471 2850.098 2833.02 

0.75 269.8102 269.1235 1350.597 1340.108 2831.845 2807.207 

 

From table 2: models for 0% censoring, were better when represented With Spatial Dependence 

(WSD) than models Without Spatial Dependence at low and intermediate Weibull Baseline Variances 

(WBV) for all sample sizes. At high level of WBV, the Non-Partition Model without Spatial 

Dependence (NPMWOSD) was only seen to be better when sample size is 500.  

For 25% censoring, it is seen that models WSD are better for sample sizes 100 and 500, at low 

Weibull Baseline Variance. Model without Spatial Dependence (WOSD) outperformed models with 

spatial dependence at intermediate & high levels of Weibull Baseline Variances. Again, when sample 

size is increased to 1000, it is observed that models WSD at intermediate and high WBV are better. 

For 50% censoring, it is seen observed that when sample size is 100, models Without Spatial 

Dependence (WOSD) outperformed  on comparison to model incorporated WSD for all levels of WBV.  

Increment in sample sizes impact the models; at low WBV, when n=500 & 1000, models WSD 

were observed to be better on comparison to models WOSD. Model at intermediate level of WBV is 

seen to be better With Spatial Dependence, when sample size is 1000, while models for all sample sizes 

at high level of WBV were better when modeled WOSD   

For 75% censoring, models WOSD outperformed in most combination of sample size and levels 

of WBV. At low level of WBV, NPMWOSD had better DIC values to NPMWSD for sample sizes 100 

& 500 but not the case, when sample size is increased to 1000. At intermediate level of WBV it is seen 
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that NPMWOSD performed better than NPMWSD for sample sizes 500 and 1000. While at high level 

of Weibull Baseline Variance, NPMWOSD were better for all sample sizes. 

 

Table 3: DIC values for levels of censoring, three (3) levels of Weibull baseline variance, sample 

sizes for with and without spatial dependence in “Partitioned Model” (PM) 

Censoring % Variance N=100 N=500 N=1000 

WSD WOSD WSD WOSD WSD WOSD 

0 

0.25 832.1385 837.187 3999.343 4945.71 8597.94 8878.76 

0.50 943.7934 936.7658 4686.069 4143.179 10085.62 10119.98 

0.75 1005.326 1014.516 5076.758 5072.229 10970.23 10961 

25 

0.25 644.8024 648.6781 3181.119 3233.434 6939.78 6997.888 

0.50 702.3201 708.4976 3613.921 3538.044 7813.243 7808.675 

0.75 746.4749 753.0131 3829.991 3797.836 8263.318 8286.271 

50 

0.25 488.0027 468.4429 2356.165 2423.315 4942.05 5022.247 

0.50 515.8235 517.3664 2604.272 2556.05 5514.923 5508.376 

0.75 540.5304 527.3858 2552.504 2548.174 5707.325 5655.104 

75 

0.25 287.7841 266.2221 1275.756 1237.466 2677.361 2706.389 

0.50 299.871 461.421 1350.044 1289.735 2848.829 2706.389 

0.75 267.6131 261.0132 1353.066 1336.481 2841.659 2773.892 

 

For 0% censoring, models WSD are better than WOSD for all sample sizes when level of 

Weibull Baseline Variance (WBV) is low, increment in WBV to intermediate presents a better DIC 

values for models WOSD when sample sizes are 100 and 500 but better for PMWSD when the sample 

size is increased to 1000. At high level of WBV, PMWSD was better for sample sizes 100 and 500 but 

was outperformed by PPMWOSD when sample size is 1000. 

When censoring is 25%, it is noticed that models WSD are better for all sample sizes at low level 

of WBV and for all levels of WBV for sample size 100. Models WOSD perform better for sample sizes 

500 & 1000 at intermediate WBV and for sample size 500 for high WBV. 

When censoring is 50%, it is observed that, models WSD are better at low level of WBV for sample 

sizes 500 and 1000, models WOSD were observed to be better than Models WSD for sample sizes 500 

and 1000 at both intermediate and high WBVs. 

When censoring is 75%, at low level of WBV, the models WOSD out performed models WSD 

when sample sizes are 100 and 500, but better for model WSD when sample size is increased to 1000. 

At intermediate level of WBV for sample sizes 500 and 1000 PMWOSD are better in comparison to 

PMWSD. At high level of WBV, PMWOSD outperform PMWSD for all sample sizes. 
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Table 4: DIC values for levels of censoring, three (3) levels of Weibull baseline variance, sample 

sizes for Non-Partitioned Model (PM) and Partitioned Model with spatial dependence 

Censoring 

% 

Variance N=100 N=500 N=1000 

NPM PM NPM PM NPM PM 

0 

0.25 853.6004 832.1385 4068.979 3999.343 8779.792 8597.94 

0.50 962.164 943.7934 4707.551 4686.069 10137.67 10085.62 

0.75 1032.945 1005.326 5138.187 5076.758 11028.65 10970.23 

25 

0.25 653.4635 644.8024 3210.955 3181.119 7007.161 6939.78 

0.50 716.3681 702.3201 3623.79 3613.921 7820.168 7813.243 

0.75 756.2604 746.4749 3848.511 3829.991 8272.722 8263.318 

50 

0.25 512.0976 488.0027 2407.989 2356.165 5000.534 4942.05 

0.50 520.4511 515.8235 2620.238 2604.272 5512.023 5514.923 

0.75 543.8143 540.5304 2607.02 2552.504 5698.33 5707.325 

75 

0.25 255.7324 287.7841 1280.065 1275.756 2695.128 2677.361 

0.50 312.231 299.871 1338.623 1350.044 2850.098 2848.829 

0.75 269.8102 267.6131 1350.597 1353.066 2831.845 2841.659 

 

From table 4, it is observed that the Partitioned models outperformed the Non-partition models in 

most occasion of censoring percentages levels of Weibull baseline variances and sample sizes, the Non-

partition models were better.  For 50% censoring at intermediate & high levels of WBVs, when 𝑛 =

1000. For high censoring percentage (75%) at low levels of WBVs, when 𝑛 = 100; at intermediate and 

high levels of WBV, when 𝑛 = 500 and at high level of WBV, when 𝑛 =  1000.  

Again, from table 5, the Partitioned models outperformed the Non-partition models in most cases 

of censoring percentages, levels of Weibull baseline variances and sample sizes in terms of DIC. 

However, the Non-partition models were seen to be better for 0% censoring at intermediate level of 

WBV when sample sizes are 500 & 1000. For high censoring percentages (75%) at low level of WBV, 

when 𝑛 = 100. 

In this study, all models portray the same trend of DIC values with respect to increase in censoring 

percentages, levels of Weibull baseline variance and increase in sample sizes. It is observed that, a 

reduction in the event times (increased censoring) present better DIC values, increase in levels of 

baseline variance - increases the spread of the data which consistently reduce precision. Increase in 

sample sizes inflates the DIC values. 
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Table 5: DIC values for levels of censoring, three (3) levels of Weibull baseline variance, sample 

sizes for Non-Partitioned Model (PM) and Partitioned Model without spatial dependence 

Censoring 

% 

Variance N=100 N=500 N=1000 

NPM PM NPM PM NPM PM 

0 

0.25 854.1665 837.187 4069.006 4945.71 8780.939 8878.76 

0.50 962.253 936.7658 4709.29 4143.179 10143.15 10119.98 

0.75 1033.307 1014.516 5136.902 5072.229 11035.66 10961 

25 

0.25 653.4906 648.6781 3246.832 3233.434 7001.295 6997.888 

0.50 716.0612 708.4976 3578.655 3538.044 7828.612 7808.675 

0.75 755.0077 753.0131 3813.489 3797.836 8341.513 8286.271 

50 

0.25 498.3278 468.4429 2445.837 2423.315 5034.049 5022.247 

0.50 519.2795 517.3664 2606.079 2556.05 5520.44 5508.376 

0.75 543.4234 527.3858 2601.271 2548.174 5692.22 5655.104 

75 

0.25 255.4689 266.2221 1263.73 1237.466 2725.757 2599.078 

0.50 488.3278 461.421 1298.471 1289.735 2833.02 2706.389 

0.75 269.1235 261.0132 1340.108 1336.481 2807.207 2773.892 

 

3.1 Results for Diabetes Data 

This section presents the results of analysis of diabetic patients’ dataset who were admitted at the 

Nigerian air force hospital Abuja.  

 

Table 6: Test for Proportional hazard assumption for the diabetic data set 

Covariates Chisq p-value 

Age  

BSL 

Gender 

M.Status 

29.43    

11.88 

0.41 

4.25 

5.8e-08 

0.00057 

0.52180 

0.04915 

Global Test  31.95   2.0e-06 

 

 It is observed from table 6 that covariate Age and Blood Sugar Level (BSL) are not proportional 

with p-values 5.8e-08 and 0.00057, less than the significance level. The global test again indicates a 

violation of the proportional hazard assumption a double check from the plot of beta against time for 

Age & BLS were then examined for non-proportionality. 
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Figure 1: Graph of varying Coefficient of Age against time for diabetic patients 

 

The solid smooth line is the estimated curve of time dependent departure of Age from 

proportionality, and the dotted lines are the estimated confidence bands. 

From fig 1; it is observed from the graph of coefficient against time, that the effect of age on patient 

with the Diabetic disease is not constant through time, due to the non-parallel nature, which makes 

interpretation of hazard ratio difficult noticeable at time points 1.3, 4.2 and 5.8, the lower limits for the 

intervals. Non-overlapping intervals were then established to include the lower limits but not the upper 

limits, [0, 1.3), [1.3, 4.2), [4.2, 5.8), [5.8,∞). 

 

Figure 2: Graph of Varying Coefficient of Blood Sugar Level against time for diabetic patients 
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The solid smooth line is the estimated curve of time dependent departure of BSL from 

proportionality, and the dotted lines are the estimated confidence bands. 

Fig 2 shows that the effect of Blood Sugar Level on patient with the Diabetic disease is slightly 

not constant through time, due to the continuous nature of such measures, which again makes 

interpretation of hazard ratio difficult, parameter estimation of this variable will be carried out via 

Penalized splines of degree 1 (linear) since it has a better DIC than those of quadratic (degree 2) and 

higher polynomials. 

 

Table 7: Posterior coefficients for Non-Partition Model and Partition Model (PM) for Diabetic patient 

data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Table 7, it is seen that PM is a better model choice as it has the smaller DIC value and high 

predictive power with the LPML.  

The bit of time interval for Age suggest that for every additional year of age the baseline hazard is 

associated with approximately 11% decrease in hazard for the first interval of time. 8% increase, 11% 

increase, and about 12% increases in hazard for the second, third and fourth bits of time respectively. 

This means that as the time of study rolls by, the hazard for experiencing the event death from the 

disease increases steadily between intervals but constant within each time interval.  

NPM   Model Selection 

Criteria 

Covariates �̂� Hazard ratios DIC LPML 

Age -0.03962 0.961155  

1099.58 

 

-551.3091 BSL 0.13826 1.148274 

Gender 0.31786 1.374184 

M.Status -0.12299 0.884273 

PM  

Covariates �̂� Hazard ratios DIC LPML 

Age �̂�1 -0.11674 0.889817  

1081.807 

 

 

-544.0822 

�̂�2 0.07586 1.078812 

�̂�3 0.10176 1.107118 

�̂�4 0.11198 1.11849 

BLS 0.13685 1.146656 

Gender 0.33816 1.402365 

M.Status -0.07655 0.926307   
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BLS is continuous type variable, which suggest that for every unit increase in Blood Sugar Level 

(BSL) the baseline is associated with 15% increase in the hazard rate. 

Male patients are 1.4024 times at risk than their female counterparts. Those that are married are 

0.9263 times at risk than patients that are single. 

 

Table 8: Posterior coefficients for Non-Partition and Partitioned model with P-splines for continuous 

covariate “Blood Sugar Level (BSL) 

 

From table 8, it is noticed that the P-splines for the explanatory variable “BSL” execute in seven 

knots, to cushion in the smoothen effect that enables interpretation of hazard rates for BSL over time 

for Non-partitioned and Partitioned Models. We notice that PM outperforms the NPM with better values 

of DIC and LPML. Again, it is seen that the PM model in table 7 presents a better model when compared 

NPM (PI) n=452  Model Selection Criteria 

Covariates �̂� Hazard ratios DIC LPML 

Age -0.03885 0.961895  

 

 

 

 

1100.81 

 

 

 

 

 

-553.025 

pspline(BSL)   

1 

2 

3 

4 

5 

6 

7 

�̂�1 -13.36687 1.57E-06 

�̂�2 -9.25078 9.6E-05 

�̂�3 -11.26618 1.28E-05 

�̂�4 -10.50300 2.75E-05 

�̂�5 -10.19127 3.75E-05 

�̂�6 -11.27552 1.27E-05 

�̂�7 -9.70266 6.11E-05 

Gender 0.34914 1.417848 

M.Status -0.14009 0.86928 

PM (PD)                     n=964 

Covariates �̂� Hazard ratios DIC LPML 

Age �̂�1 -0.11393 0.89232  

 

 

 

 

 

 

1087.397 

 

 

 

 

 

 

 

-548.6908 

�̂�2 0.07522 1.078121 

�̂�3 0.09795 1.102908 

�̂�4 0.10517 1.110899 

pspline(BSL)   

1 �̂�1 -10.5240 2.69E-05 

2 �̂�2 -7.18950 0.000754 

3 �̂�3 -8.77347 0.000155 

4 �̂�4 -8.37850 0.00023 

5 �̂�5 -7.71938 0.000444 

6 �̂�6 -9.17565 0.000104 

7 �̂�7 -6.70699 0.001222 

Gender 0.36060 1.43419 

M.Status -0.09846 0.906232 
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with the PM on table 8 with respect to the DIC and LPML values of 1081.807 & -544.0822 respectively, 

also a model with the least number of parameters. 

The first value of the estimate 𝛽= -10.5240 represent the effect of the linear term as the hazard 

rates for BSL were estimated in six knots over the period of study for the PM. 

For every unit change in BSL, the baseline hazards across the six knots are associated with 99.92%, 

99.98%, 99.98%, 99.95%, 99.99%, 99.88% decrease in the hazard rates respectively. This represents a 

slight change in the hazard rate estimated through the study period for smooth effects from the linear 

combination of basic splines    

 

4. Conclusion  

Non-Partition models and Partition models with or without spatial dependence work better when we 

have more events times (ie low censoring percentage) often at low level of WBV. Increase in censoring 

and levels of WBVs adversely affect both models but better with increase in sample size. It is seen that 

the models without spatial dependence adapts well when censoring are high and when survival times 

gain more spread. Partition Models incorporates spatial effects better than those of Non-Partition 

Models, as Partition models were most of the time observed to out-perform the Non-partition models. 

It is observed that Age and Blood Sugar Level (BSL) covariates for the diabetic data set, violates 

proportionality assumptions upon test. Further assessment made from the graph of coefficient against 

time; suggest that Age be put to cut-points. This made the models interpretable via constant hazards for 

several mean posterior coefficients, this also enables a good assessment of changes due to Age 

differences for every interval for which such individual(s) were being followed and treated, this by 

implication could enhance; proper medical diagnoses/test, effective drug prescription, diet advise and 

overall management of patients with different peculiarities with regards to these variables.  The Time 

changing variable Age, suggest that as the time of study rolls by, the hazard of experiencing the event 

death from the disease increases steadily between intervals but constant within each time interval. For 

every unit change in hazard rates the baseline hazard is associated with a decrease throughout the period 

of study for partition models fitted for with and without Penalized splines. Marriage is seen to be 

significant in the management of the disease in comparison to single patients. In addition, patients are 

advised to visit their physicians on a regular basis to run a routine check to keep their BSL in good 

range. 

The study adds to knowledge in the following ways; provides a means of moving out of non-linear 

ruts in survival data analysis. Intervals increase sample sizes (pseudo-observations), which in turn 

improves the modified Partitioned model when they are with or without spatial dependence.  
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