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Abstract 

Autocorrelation plays a significant role in both time series and cross-sectional data. More often than 

none it rendered the inference of parameter estimates invalid and those other statistics that use the 

parameters. This study investigates the asymptotic behaviour of generalised least squares with 

Autocorrelated errors cum Markov Chain Monte Carlo simulation.  Bias and Mean Squares Error 

criteria were used to evaluate the finite properties of the estimator. The following sample sizes: 25, 50, 

100, and 250 were constructed and used. Thus 11,000 simulations with varying levels of Autocorrelated 

error were carried out. This is subjected to the level of convergence. Bias and Mean Squares Error 

criteria revealed improving performance asymptotically regardless of the level of Autocorrelated error. 

The study observed that asymptotic consistency and efficiency were obtained at the large sample which 

obeys the law of large number and points to the fact that variance of error terms tend towards zero and 

distribution tends to be normal when the law of large number is applied. In line with the above assertion, 

the study had developed novel Bayesian Generalized Least Squares Autocorrelated Estimator 

(BGLSAE) that capture the presence of autocorrelation in the dataset. The study, therefore 

recommended that large samples should be obtained to make the inferences stable.  

Keywords: Autocorrelation, Autocorrelation, Bayesian Inference, Gibbs Sampler and Markov Chain 

Monte Carlo Method.  

 

1. Introduction 

In a Bayesian framework, the knowledge about the parameters of the model is described by a probability 

distribution (Oloyede et al 2013). The generalized least squares (GLS) estimation does not bring about 

the uncertainty of model estimates for both error variance and variance of parameters �̂� (Reis et al 2005). 

Hisashi (2002), Chib and Greenbaerg (1994), and Chib (1993) examined Autocorrelated error of 

regression model in time series data structure via Bayesian framework. First-order Autocorrelated error 

term with assumed stationary in Bayesian experimental framework was examined in Hisashi (2002), 

where he compared maximum likelihood estimation with Bayesian estimation and concluded that 

Bayesian estimator has robust performance over maximum likelihood estimator. This was explored in 

view of time series data structure with time inclusive. Skiera, Reiner, and Albers (2018) described 

autocorrelation in regression analysis as residuals that correlate with each other. They further pointed 

out that autocorrelation leads to a situation where the predicted values are too high for some periods and 

too low for others and thus, a series of negative residuals alternate with a series of positive residuals.  
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Akpan and Moffat (2018) opined that if the assumption of no correlation in the error term is violated, 

then, the underlying model would be rendered invalid with the standard errors of the parameters 

becoming biased. Moreover, if the errors are correlated, the least squares estimators are inefficient and 

the estimated variances were not appropriate. They thereby evidently proved that generalized least 

squares is a panacea for the weaknesses of ordinary least squares and accounted for the presence of 

autocorrelation in the error terms.  

Mukherjee and Laha (2019) submitted that when the disturbance term exhibits serial correlation, 

the value of the standard error of the parameter estimates are affected and the predictions based on 

ordinary least square estimates (OLS) will be inefficient, in the econometrics technique. Although the 

parameter estimates of ordinary least squares (OLS) of are statistically unbiased in the sense that their 

expected value is equal to the true parameter. Shalabh (2020) conducted a study on regression analysis 

and he submitted that the carryover effect, at least in part, is an important source of autocorrelation. He 

further explained that autocorrelation could be introduced based on the effect of deletion of some 

variables, misspecification of the form of relationship can also introduce autocorrelation in the data and 

the presence of measurement errors on the dependent variable may also introduce the autocorrelation in 

the data.  

Lusomba (2020) observed that residuals from the estimation impulse response functions directly 

using linear regressions which are called Local Projections (LP) residuals are autocorrelated. Lazarus 

et al. (2018) claimed that LP has to be estimated with heteroscedasticity and autocorrelation consistent 

(HAC)/standard errors because Generalized least Squares (GLS) estimates would be inconsistent. He 

showed that under standard time series assumptions, the autocorrelation process is known and 

autocorrelation can be corrected for using GLS. Moreover, consistency and asymptotically normality of 

the LP GLS estimator, as well as the asymptotic efficiency of LP GLS relative to LP OLS.  

Miranda-Agrippino and Ricco (2018) submitted that since the autocorrelation process is known, 

LP GLS can be estimated using fully Bayesian methods and Bayesian LP have many advantages such 

as allowing the researcher to incorporate prior information for impulse responses at each horizon. 

The joint posterior distribution is the product of likelihood and prior which is divided by 

normalizing constant, thus normalizing constant often portend computationally intensive. It is usually 

assumed equal to unity. Meanwhile, the Markov Chain Monte Carlo simulation technique that draws 

correlated samples of parameters from the joint posterior distribution with normalizing constant set to 

unity would proffer a solution to the problem of intensive computation, Gilks et al (1996). 

To overcome those problems, the study adopted a fully Bayesian approach, which automatically 

averages over our uncertainty in the model parameters. In this paper, variance-covariance 

Autocorrelated error structure was incorporated into Bayesian generalized least squares. We extend our 

study to the multidimensional and more complicated cases and carry out simulation using Markov Chain 

Monte Carlo (MCMC); this paper also examined the finite sample properties of the estimator. These are 

the gaps that this study decides to fill.  
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2. Set-up and Model Designs 

Let 𝑦 = 𝑋𝛽 + 𝑢 with 𝑢~𝑁(0,
1

1−𝜌2 Σ) where Σ is a positive definite matrix of order 𝑛 × 𝑛 where  
1

1−𝜌2 Σ 

is covariance matrix of Autocorrelated errors. 

𝑦 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝑢𝑡                          (1)            

𝑢𝑡 = 𝑢𝑡𝜌 + 𝑣𝑡                                            (2) 

 

The variance-covariance matrix of Autocorrelated error as in Gary etal (2007) is shown below: 

𝐸(𝑈𝑈′) =
1

1−𝜌2

[
 
 
 
 
 
 
 

1      𝜌     𝜌2      .    .     .      𝜌𝑛−1

𝜌     1      𝜌      .      .     .      𝜌𝑛−2

𝜌2    𝜌      1      .       .    .         𝜌𝑛−3

.          .       .        .       .        .              .

.          .       .        .       .        .              .

.          .       .        .       .        .              .
𝜌𝑛−1     𝜌𝑛−2        𝜌𝑛−3      .    .   .  ]

 
 
 
 
 
 
 

                                                      (3)                                                         

𝐸(𝑈𝑈′) =
1

1−𝜌2 Σ                    (4)

       

The likelihood function of 𝜃, where 𝜃 = (𝛽, 𝜌, 𝜎2) given the sample vector 𝑋1, 𝑋2 = (1,2,… , 𝑛)′ 

and 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛)′ is expressed as 

𝐿(𝑦|𝜃, 𝜌, 𝜎, 𝑋) = (
2𝜋𝜎2

1−𝜌2)
−

𝑛

2
∏ exp {−

1

2σ2

1−𝜌2

∑ [yi − xβ]2n
i=1 }n

i=1                                                              (5)  

𝐿(𝑦|𝜃, 𝜌, 𝜎, 𝑋) = (2𝜋𝜎2)−𝑛/2(1 − 𝜌2)1/2 ∏ exp {−
(1−𝜌2)−1

2σ2
∑ [yi − xβ]2n

i=1 }n
i=1                    (6)                                

 

Incorporating Autocorrelated error covariance matrix (Σ) in equation (4) into the likelihood 

function of equation (6) resulted in to  

𝐿(𝑦|𝜃, 𝜌, 𝜎, 𝑋) = (2𝜋𝜎2)−
𝑛

2 ∏ |(1 − 𝜌2)
1

2Σ−1| exp {−
(1−𝜌2)

−1

2σ2
∑ (yi − xβ)′Σ−1(yi − xβ)n

i=1 }n
i=1           (7) 

 

To derive the full Bayesian density, the study conjugated the error density function, Equation (6) 

with multivariate normal distribution, and inverse-gamma distribution. Marginal posterior density was 

obtained by marginalizing the joint posterior density with respect to each parameter of interest. The 

study adopted prior density 𝜋(𝛽0, 𝛽1, 𝛽2, 𝜌, 𝜎) = 𝜋(𝛽0)𝜋(𝛽1)𝜋(𝛽2)𝜋(𝜌)𝜋(𝜎).-Thus normal distribution 

is considered for 𝛽𝑠, while inverse gamma is considered for 𝜎 and a uniform distribution is considered 

for 𝜌 such that 

 𝜋(𝛽) ∝ (2𝜋𝜎2)−
𝑛

2(1 − 𝜌2)
1

2 exp {−
1

2𝜎2  (𝛽 − 𝜇)2} , 𝛽 > 0;                                                         (8) 

𝜋(𝜎2) ∝ (𝜎2)−𝑎1+1 exp(−𝑏1/𝜎
2) , 𝜎2 > 0                    (9)                                                         

𝜋(𝜌) ∝ 𝑐                                                                           (10)                                                                                                       
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c is constant −1 < 𝜌 < 1                  

The posterior distribution of 𝜃 = (𝛽0, 𝛽1, 𝛽2, 𝜌, 𝜎), considering independence among the 

parameters is given by:  

𝜋(𝛽0, 𝛽1, 𝛽2, 𝜌, 𝜎|𝑋, 𝑦) ∝ 

(2𝜋𝜎2)−
𝑛

2(σ2)−(a1−1−n/2) exp {−
1

2𝜎2  (𝛽 − 𝜇)2}∏ |(1 − 𝜌2)1/2Σ|𝑛
𝑖=1 exp {−

(1−𝜌2)−1

𝜎4 (𝑏1 +

1

2
∑ (yi − xβ)′Σ−1(yi − xβ)}𝑛

𝑖=1                                                                                                                (11)                                                                                                                                                                                                                                         

 

where a1, 𝑏1 are the hyper-parameters for the inverse-gamma which were excluded for 𝛽-parameters 

since they would be estimated from the data and may be arbitrarily small leading to problems that may 

eventually affect the inferences. Integrating the posterior 𝜋(𝛽, 𝜌, 𝜎|𝑋, 𝑦) with respect to 𝜎2, thus we 

have joint a posterior distribution for (𝛽, 𝜌) 

 𝜋(𝛽0, 𝛽1, 𝛽2, 𝜌, 𝜎|𝑋, 𝑦) ∝ 

(2𝜋)−
𝑛

2 exp {−
1

2
 (𝛽 − 𝜇)2}∏ |(1 − 𝜌2)1/2Σ|𝑛

𝑖=1 exp {−𝑏1 −
(1−𝜌2)−1

2
∑ (yi − xβ)′Σ−1(yi −

𝑛
𝑖=1

xβ)}−(𝑎1−𝑛/2)                                 (12)  

 

This yields the following full conditional density of the parameters, 𝜌 and 𝜎: 

𝜋(𝛽0|𝜎
2, 𝜌, 𝜃, 𝑋, 𝑦) ∝ exp {−

1

2
 (𝛽0 − 𝜇)2}∏ |(1 − 𝜌2)1/2Σ|𝑛

𝑖=1 exp {−
(1−𝜌2)−1

2
∑ (yi −

𝑛
𝑖=1

xβ)′Σ−1(yi − xβ)}−(𝑎1−𝑛/2)                                              (13)                    

𝜋(𝛽1|𝜎
2, 𝜌, 𝜃, 𝑋, 𝑦) ∝ exp {−

1

2
 (𝛽1 − 𝜇)2}∏ |(1 − 𝜌2)1/2Σ|𝑛

𝑖=1 exp {−
(1−𝜌2)−1

2
∑ (yi −

𝑛
𝑖=1

xβ)′Σ−1(yi − xβ)}−(𝑎1−𝑛/2)                                                            (14)   

𝜋(𝛽2|𝜎
2, 𝜌, 𝜃, 𝑋, 𝑦) ∝ exp {−

1

2
 (𝛽2 − 𝜇)2}∏ |(1 − 𝜌2)1/2Σ|𝑛

𝑖=1 exp {−
(1−𝜌2)−1

2
∑ (yi −

𝑛
𝑖=1

xβ)′Σ−1(yi − xβ)}−(𝑎1−𝑛/2)                                                       (15) 

𝜋(𝜌|𝛽, 𝜎2, 𝑋, 𝑦) ∝ 𝑐𝑛𝑠𝑡

.                     ( (𝜎2|𝛽, 𝜌, 𝑋, 𝑦) ∝ ∏ |(1 − 𝜌2)
1

2Σ|𝑛
𝑖=1 (𝑏1 +

(1−𝜌2)
−1

2
∑ (yi − xβ)′Σ−1(yi −

𝑛
𝑖=1

xβ)}
−(𝑎

2+
𝑛
2
)
                             (16)                 

Gibbs sampling Algorithm update was performed on the full conditional distribution of  

𝛽 ∝ 𝑀𝑉𝑁(𝛽, 𝜎2(1 − 𝜌2)−1(𝑋′Σ−1𝑋)−1)                         (17)                 

    𝜎2 ∝

𝐼𝐺 (𝑎1 +
𝑛

2
, 𝑏1 +

(1−𝜌2)
−1

2
∑ (yi − xβ)′Σ−1(yi − xβ)𝑛

𝑖=1 ).                           (18)        

𝜌 ∝ unif(−1, 1)                         (19)
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2.1 Data Generation Processes 

The study adopted Gibbs sampler Experiments. The sample sizes were specified with 4 sets as follows: 

25, 50, 100 and 250. 𝜌 was systematically selected as - 0.9, -0.6, -0.3, -0.1, 0.1, 0.3, 0.6, 0.9. The 

covariates 𝑋1 and 𝑋2 are generated using a uniform distribution. The error term 𝑈 was generated based 

on 𝐸(𝑈𝑈′) ≠ 0. Thereafter, the study incorporated it into the model and the parameters 𝛽0, 𝛽1 and 𝛽2 

were set at 10, 1 and 1 respectively to generate variable y. The number of replications of the experiment 

was set at 11,000 with a burn-in of 1000 which specified the draws that were discarded to remove the 

effect of the initial values. The thinning was set at 5 to ensure the removal of the effect of autocorrelation 

in the MCMC simulation.    

 

3. Results and Discussion 

This study presented serially correlated error truncated linear model, the parameter estimates were 

obtained through the posterior point estimate of Gibbs sampler Algorithm using Marcov Chain Monte 

Carlo simulation. 

Setting 𝜌  equal zero indicates no Autocorrelated errors, whereas 𝜌′𝑠 were set between 0.1 to 0.9 

to capture various effect of Autocorrelated error in the regression inferences. This was observed 

asymptotically with the use of measurement metrics (Bias and Mean Squares error). Thus from the 

outcome of the study, the estimator performed better as well when  𝜌 = 0 .   

Table 1 revealed the outcome of the estimation of Bayesian GLS Autocorrelated Error (GLSAE) 

linear model. It showed that the bias for 𝛽0 and �̂�1  decreased algebraically as the 𝜌 decreased from 0.9 

to 0.1 across all the sample sizes from 25 to 250, though this is mainly for positive 𝜌. For the negative 

𝜌, the bias for �̂�0 and �̂�1 increased algebraically as the  𝜌 decreases from -0.1 to -0.9. We observed 

consistency for parameters �̂�0 and �̂�1 across all the sample sizes. Meanwhile, the bias for  �̂�2 showed 

inconsistency at sample sizes 25 and 50, but in sample size 100, the bias reduced as the 𝜌  reduced at 

positive and negative 𝜌, thus the study observed consistency.   
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Table 1. Performances of the Bayesian Generalized Least Squares Autocorrelated Errors (GLSAE) 

on the basis of Bias criterion 

 

 

 

 

 

 

 

 

Samples 𝜌 �̂�0 �̂�1 �̂�2 

25 

0.9 0.0133 -0.0025 -0.0001 

0.6 0.0116 -0.0021 0.0001 

0.3 0.0106 -0.0018 0.0004 

0.1 0.0104 -0.0018 0.0006 

0 0.0105 -0.0018 0.0007 

-0.1 0.0106 -0.0018 0.0007 

-0.3 0.0112 -0.0018 0.0009 

-0.6 0.0128 -0.002 0.0011 

-0.9 0.0148 -0.0023 0.0012 

50 

0.9 0.0120 -0.0030 0.0004 

0.6 0.0105 -0.0025 0.0006 

0.3 0.0093 -0.0022 0.0008 

0.1 0.0088 -0.0021 0.0009 

0 0.0086 -0.0020 0.0009 

-0.1 0.0085 -0.0020 0.0011 

-0.3 0.0086 -0.0021 0.0013 

-0.6 0.0092 -0.0023 0.0016 

-0.9 0.0104 -0.0026 0.0019 

100 

0.9 0.0204 -0.0028 -0.0009 

0.6 0.0178 -0.0024 -0.0007 

0.3 0.0158 -0.0019 -0.0005 

0.1 0.0151 -0.0018 -0.0003 

0 0.0149 -0.0017 -0.0003 

-0.1 0.0149 -0.0017 -0.0003 

-0.3 0.0152 -0.0017 -0.0002 

-0.6 0.0167 -0.0017 -0.0001 

-0.9 0.0191 -0.0019 -0.0001 

250 

0.9 0.0151 -0.0024 -0.0004 

0.6 0.0132 -0.0020 -0.0003 

0.3 0.0121 -0.0018 -0.0002 

0.1 0.0119 -0.0017 -0.0002 

0 0.0121 -0.0017 -0.0002 

-0.1 0.0123 -0.0017 -0.0002 

-0.3 0.0131 -0.0017 -0.0002 

-0.6 0.0149 -0.0019 -0.0002 

-0.9 0.0173 -0.0021 -0.0002 
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Figure 1: Performances of the Bayesian Generalized Least Squares Autocorrelated Errors (GLSAE) 

on the basis of Bias criterion 

 

Table 2 and Figure 2 revealed the mean squared error (MSE) criterion, the mean squares error for 

�̂�0, �̂�1  and �̂�2  decreased algebraically as the 𝜌 decreased from 0.9 to 0.1 across all the sample sizes, 

but the  mean squares error for  �̂�0, �̂�1  and �̂�2  increased algebraically as the 𝜌 decreased from -0.1 to 

-0.9 across all the sample sizes considered in the study. The study confidently concluded that there is 

efficiency with the decrease in 𝜌 leading to a decrease in mean squares error. 

 

Table 2. Performances of the Bayesian GLSAE on the basis of MSE criterion 
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Samples 𝜌 �̂�0 �̂�1 �̂�2 

25 

0.9 1.5562 0.0128 0.0264 

0.6 1.1780 0.0101 0.0201 

0.3 0.9578 0.0088 0.0161 

0.1 0.8988 0.0088 0.0146 

0 0.8956 0.0090 0.0143 

-0.1 0.9098 0.0094 0.0142 

-0.3 0.9912 0.0106 0.0148 

-0.6 1.2448 0.0136 0.0175 

-0.9 1.6563 0.0181 0.0225 

50 

0.9 0.7424 0.0070 0.0119 

0.6 0.5590 0.0054 0.0088 

0.3 0.4213 0.0045 0.0066 

0.1 0.3639 0.0043 0.0056 

0 0.3446 0.0043 0.0053 

-0.1 0.3314 0.0044 0.0050 

-0.3 0.3238 0.0049 0.0049 

-0.6 0.3589 0.0061 0.0054 

-0.9 0.4501 0.0082 0.0068 
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Figure 2: Performances of the Bayesian GLSAE on the basis of MSE criterion 

 

Table 3 and Figure 3 revealed the asymptotic performances of the Bayesian Generalized Least 

Squares Autocorrelated Error on the basis of bias, at �̂�0, the bias reduced algebraically as the sample 

sizes increased from 25 to 50 thereafter increased as the sample sizes increased from 50 to 100. After 

sample size 100, the study observed consistency as the sample sizes increased from 100 up to 250, the 

bias recorded were reduced across all the 𝜌’s deemed in the study. For  �̂�1  and �̂�2, the bias increased 

algebraically as the sample sizes increased from 25 to 50 thereafter decreased as the sample size 
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0.9 0.3801 0.0037 0.0046 

0.6 0.2862 0.0028 0.0035 

0.3 0.2265 0.0022 0.0028 

0.1 0.2058 0.0019 0.0026 

0 0.2011 0.0018 0.0025 

-0.1 0.2002 0.0018 0.0026 

-0.3 0.2098 0.0019 0.0027 

-0.6 0.2528 0.0022 0.0034 

-0.9 0.3299 0.0029 0.0044 

250 

0.9 0.1306 0.0013 0.0019 

0.6 0.0998 0.0009 0.0014 

0.3 0.0836 0.0008 0.0013 

0.1 0.0809 0.0007 0.0011 

0 0.0821 0.0007 0.0011 

-0.1 0.0849 0.0007 0.0011 

-0.3 0.0954 0.0008 0.0012 

-0.6 0.1234 0.0009 0.0015 

-0.9 0.1662 0.0013 0.0019 



Journal of Statistical Modeling and Analytics  Vol 4(2), 78-90. 2022 

 

86 
 

increased from 50 to 250. Therefore, the study observed consistency as the sample sizes increased from 

50 up to 250, the bias recorded were reduced across all the 𝜌’s. 

 

Table 3.  Asymptotic Performances of the Bayesian GLSAE on the basis of Bias 

 

 

Samples 𝜌 �̂�0 �̂�1 �̂�2 

25 0.9 0.0133 -0.0025 -0.0001 

50 0.9 0.012 -0.003 0.0004 

100 0.9 0.0204 -0.0028 -0.0009 

250 0.9 0.0151 -0.0024 -0.0004 

25 0.6 0.0116 -0.0021 0.0001 

50 0.6 0.0105 -0.0025 0.0006 

100 0.6 0.0178 -0.0024 -0.0007 

250 0.6 0.0132 -0.002 -0.0003 

25 0.3 0.0106 -0.0018 0.0004 

50 0.3 0.0093 -0.0022 0.0008 

100 0.3 0.0158 -0.002 -0.0005 

250 0.3 0.0121 -0.0018 -0.0002 

25 0.1 0.0104 -0.0018 0.0006 

 50 0.1 0.0088 -0.0021 0.0009 

100 0.1 0.0151 -0.0018 -0.0003 

250 0.1 0.012 -0.0017 -0.0002 

25 0 0.0105 -0.0018 0.0007 

50 0 0.0086 -0.0020 0.0009 

100 0 0.0149 -0.0017 -0.0003 

250 0 0.0121 -0.0017 -0.0002 

25 -0.1 0.0106 -0.0018 0.0007 

50 -0.1 0.0085 -0.002 0.0011 

100 -0.1 0.0149 -0.0017 -0.0003 

250 -0.1 0.0123 -0.0017 -0.0002 

25 -0.3 0.0112 -0.0018 0.0009 

50 -0.3 0.0086 -0.0021 0.0013 

100 -0.3 0.0152 -0.0017 -0.0002 

250 -0.3 0.0131 -0.0017 -0.0002 

25 -0.6 0.0128 -0.002 0.0011 

50 -0.6 0.0092 -0.0023 0.0016 

100 -0.6 0.0167 -0.0017 -0.0001 

250 -0.6 0.0149 -0.0019 -0.0002 

25 -0.9 0.0148 -0.0023 0.0012 

50 -0.9 0.0104 -0.0026 0.0019 

100 -0.9 0.0191 -0.002 -0.0001 

250 -0.9 0.0173 -0.0021 -0.0002 



Journal of Statistical Modeling and Analytics  Vol 4(2), 78-90. 2022 

 

87 
 

 

Figure 3: Asymptotic Performances of the Bayesian GLSAE on the basis of Bias 

 

Table 4 and Figure 4 revealed the mean squared error criterion, the mean squares error for �̂�0, �̂�1  

and �̂�2  decreased algebraically as the sample sizes increased from 25 up to 250 across all the 𝜌’s deemed 

in the study.  The study found out that there is efficiency with the decrease in mean squares error 

asymptotically. 

 

Table 4.  Asymptotic Performances of the Bayesian GLSAE on the basis of MSE criterion 

Samples 𝜌 �̂�0 �̂�1 �̂�2 

25 0.9 1.5562 0.0128 0.0264 

50 0.9 0.7424 0.007 0.0119 

100 0.9 0.3801 0.0037 0.0046 

250 0.9 0.1306 0.0013 0.0019 

25 0.6 1.178 0.0101 0.0201 

50 0.6 0.5539 0.0054 0.0088 

100 0.6 0.2862 0.0028 0.0035 

250 0.6 0.0998 0.001 0.0014 

25 0.3 0.9578 0.0088 0.0161 

50 0.3 0.4213 0.0045 0.0066 

100 0.3 0.2265 0.0022 0.0028 

250 0.3 0.0836 0.0008 0.0012 

25 0.1 0.8988 0.0088 0.0146 

50 0.1 0.3639 0.0043 0.0056 

100 0.1 0.2058 0.0019 0.0026 

250 0.1 0.081 0.0007 0.0011 

25 0 0.8956 0.0090 0.0143 

50 0 0.3446 0.0043 0.0053 

100 0 0.2011 0.0018 0.0025 

250 0 0.0821 0.0007 0.0011 
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Figure 4: Asymptotic Performances of the Bayesian GLSAE on the basis of MSE criterion 

 

4. Conclusion 

The study observed that modelling Autocorrelated Error in a full Bayesian improves the precision of 

the inferences of the estimates.   The study found it difficult to compare the findings with literature, this 

is because their works were based on time series data while the study was on cross sectional data. The 

study observed that asymptotic consistency and efficiency were obtained at large sample which obey 

the law of large number and point to the fact that variance of error terms tend towards zero and 

distribution tends to normal when law of large number is applied. In line with the above assertion, the 

study had developed novel Bayesian Generalized Least Squares Autocorrelated Estimator (BGLSAE) 

that capture the presence of autocorrelation in the dataset. More importantly, the study varied the 

25 -0.1 0.9099 0.0094 0.0142 

50 -0.1 0.3314 0.0044 0.005 

100 -0.1 0.2002 0.0018 0.0026 

250 -0.1 0.0849 0.0007 0.0011 

25 -0.3 0.9912 0.0106 0.0148 

50 -0.3 0.3238 0.0049 0.0049 

100 -0.3 0.2098 0.0019 0.0027 

250 -0.3 0.0954 0.0008 0.0012 

25 -0.6 1.2448 0.0136 0.0175 

50 -0.6 0.359 0.0062 0.0054 

100 -0.6 0.2528 0.0022 0.0034 

250 -0.6 0.1234 0.001 0.0015 

25 -0.9 1.6563 0.0181 0.0225 

50 -0.9 0.4501 0.0082 0.0068 

100 -0.9 0.33 0.0029 0.0044 

250 -0.9 0.1662 0.0013 0.002 
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Autocorrelated errors and examined the work asymptotically. The study concluded that asymptotically 

there exists consistency and efficiency in the estimation. The approach can be applied to further studies 

in the area of other econometrics, biometrics and time series models.  The study therefore recommended 

that large samples should be obtain to make the inferences stable. 
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