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Abstract 

Conditional expectations and residuals (CERES) and partial residual (PR) plots have been used in linear 

regression model for the identification of outliers. But not much work has been done on how they perform 

in generalized linear models (GLM). Binomial regression model is a very important type of GLM which 

have wide applications in dealing with Liver cancer and many other types of data. In this paper, CERES 

and PR plots is used in binomial regression to detect the outliers. Through real data set, the performance 

of these plots on the detection of possible outliers is observed separately. The CERES plot performs well 

in order to diagnose this problem. However, the performance of the CERES and PR plot is found very 

similar to detect outlier by using simulated data but visualization of CERES plot is better as compared to 

the PR plots. 
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1. Introduction 

In classical regression it is assumed that the error and consequently the response follow a normal 

distribution. But in reality, this assumption does not hold and we used the generalized linear 

model (GLM), which was developed by Nelder and Wedderburn (1972), is a flexible generalization of a 

linear regression model that allows the distribution of the response other than normal. The GLM has wide 

applications in modeling Liver cancer and many other types of data. The estimation GLM parameters and 

their optimality heavily depend on some standard assumptions and violations of this assumption 

misinterpret the estimated parameter and misleading the entire statistical inference. Outlier is one of the 

important reasons for violating the standard assumption of a regression model. Therefore, diagnostics are 

required to check the standard assumption before estimating parameter. 
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Many formal diagnostic tests are available, and these tests are based on certain regularity conditions 

and are therefore more computationally intensive. Under various conditions in the GLM class, conditional 

expectations and residuals (CERES) and partial residual (PR) plots may provide useful information. PR 

plots, according to Fowlkes (1987) and Landwehret al. (1984), can be used to determine nonlinearity in 

binary logistic regression. The technique of algorithm for regularized GLMs was explored by Park and 

Hastie (2007). These plots for GLMs are also studied by Landwehr and Pregibon (1993). Imran and 

Akbar (2020) addressed the construction of PR using response residuals for the inverse Gaussian 

regression model in order to investigate structure and utility for visualizing outliers, Multicollinearity, 

heteroscedasticity, and curvature as a function of selected predictors. Cook (1998) also discussed about 

the curvature of CERES and PR plots. However, identification of outliers using CERES and PR plots was 

not established. 

In this study, CERES and PR plots for binomial regression models (BRM) are generated and the 

diagnostics provided by these plots are examined for model specification. Applied sciences often require 

techniques that are simple, efficient, and widely applicable, as well as ones that are computationally 

simple. Learning and applying computationally intensive statistical methods is difficult for practitioners. 

This article investigates this concept while emphasizing the significance of CERES and PR plots in 

regression diagnostics without the use of traditional measures like a statistical test. The main objective of 

the study was to identify the outliers by using CERES and PR plots. The comparison of CERES and PR 

plots for the identification of outliers using real and simulated data was also made. 

The paper is organized as follows: in Section 2, we present the material and methods which include 

introduction of GLM, BRM and the construction of CERES and PR in BRM. The numerical example is 

given in Section 3 and simulation study is presented in the next Section. Finally, conclusion of the study 

is presented in Section 5. 

 

2. Material and Methods 

In this section, first generalized linear model and binomial regression model is introduced. Then 

construction procedure of CERES and PR plots in binomial regression model is described.  

 

2.1 Generalized linear model (GLM)  

In this section, we describe CERES and PR plots in detecting outliers in binomial regression. Let us 

consider the model  

   𝑌𝑌 = 𝑓𝑓(𝑋𝑋) +  𝜀𝜀,              (1) 
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where 𝑌𝑌 =  (𝑦𝑦1 ,𝑦𝑦2 , … ,𝑦𝑦𝑝𝑝)′  is an 𝑛𝑛 × 1 vector of response; X = (𝑋𝑋1 ,𝑋𝑋2 , … ,𝑋𝑋𝑝𝑝)′ is a 𝑛𝑛 × 1 covariate 

matrix; and 𝜀𝜀 is 𝑛𝑛 × 1 random vector. The conditional distribution of Yon X for a GLM for a set of n 

observations due to McCullagh and Nelder (1983) is, 

    𝑑𝑑𝑦𝑦|𝑥𝑥(𝑦𝑦|𝜃𝜃,𝜓𝜓) = exp�𝜃𝜃𝑦𝑦 – 𝜇𝜇(𝜃𝜃) 
𝜐𝜐(𝜓𝜓)

+  𝑤𝑤(𝑦𝑦,𝜓𝜓)�,           (2) 

where 𝜇𝜇(. ), 𝜐𝜐(. ),  w(.,.) are well-known smooth functions; 𝜃𝜃 is an unknown scalar-valued parameter that 

is dependent on X; and is 𝜓𝜓 an unknown dispersion parameter. 

𝐸𝐸(𝑌𝑌|𝑋𝑋)=𝜕𝜕𝜇𝜇
𝜕𝜕𝜃𝜃

= 𝜇𝜇(𝑥𝑥) and 𝑉𝑉(𝑌𝑌|𝑋𝑋)= �𝜕𝜕
2𝑢𝑢

𝜕𝜕𝜃𝜃2
�  𝜐𝜐(𝜓𝜓). 

There is no consideration of the dispersion parameter 𝜓𝜓; when calculating 𝜇𝜇(𝑥𝑥), as a result, 𝜐𝜐(𝜓𝜓) is 

presumed to be established. This function's log-likelihood function 𝛽𝛽 is, 

ɩ(𝛽𝛽) = 𝑙𝑙𝑛𝑛𝑙𝑙(𝛽𝛽) = exp�𝜃𝜃𝑦𝑦 – 𝜇𝜇(𝜃𝜃) 
𝜐𝜐(𝜓𝜓)

+  𝑤𝑤(𝑦𝑦,𝜓𝜓)�. 

The predictors are portioned as  𝑋𝑋′ = (𝑋𝑋1′  ,𝑋𝑋2′), where 𝑋𝑋𝑗𝑗 is 𝑝𝑝𝑗𝑗 × 1 , j = 1, 2. The regression function can 

be modeled according to Cook and Croos-Debrera (1998) is as follows,     

                      𝜂𝜂(𝑥𝑥) = ℎ�𝜇𝜇(𝑥𝑥)� =   𝛼𝛼0 +  𝛼𝛼1′𝑋𝑋1 + 𝑔𝑔(𝑋𝑋2)                                                    (3) 

and 𝑔𝑔(𝑋𝑋2) is an unknown function of 𝑋𝑋2 and is assumed as (𝑋𝑋2)  =  𝛼𝛼2′𝑋𝑋2.  Assume that the regression 

function has a parametric form and that it is given by       

𝜂𝜂(𝑥𝑥) = ℎ�𝜇𝜇(𝑥𝑥)� =  𝛼𝛼0 +  𝛼𝛼1′𝑋𝑋1 +  𝛼𝛼2′𝑋𝑋2, 

In Eq. (3) the term ‘ℎ�𝜇𝜇(𝑥𝑥)�’ refers to a relation function centred on a monotonic and differentiable 

probability distribution and (𝛼𝛼0 + 𝛼𝛼1′ +  𝛼𝛼2′ )′ is consisting of a vector of unknown parameters (𝑝𝑝1 + 1)×

1 vector. The regression function, 𝜇𝜇(𝑥𝑥)=ℎ−1 (𝜂𝜂(𝑥𝑥)), is a function of 𝑥𝑥 or function of  𝜂𝜂 depending on 

interest and concerns.  

 

2.2 Binomial regression model (BRM) 

The binomial response variable's probability density function is given by 

𝑓𝑓(𝑦𝑦;  𝑛𝑛, 𝜇𝜇)  =  �
𝑛𝑛
𝑦𝑦� 𝜇𝜇

𝑦𝑦(1 − 𝜇𝜇)𝑛𝑛−𝑦𝑦y = 0,1,2, … ,n. 

It can be written as y ~ binomial (y; n, 𝜇𝜇). The mean and variance of y are, E(y) = 𝑛𝑛𝜇𝜇 and var(y) =  𝑛𝑛𝜇𝜇(1 −

 𝜇𝜇) respectively. In logistic regression, which serves as a running example in this article, we begin with a 

binomial (n, 𝜇𝜇) random variable Y*|X, where the unknown probability of "success" p, may depend on X. 

The known index n may vary from observation to observation but is assumed to be independent of X.  
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The observed fraction of successes from a standard binomial trial is then Y = Y*/n. In terms of Eq. (2) & 

(3) 

     𝜂𝜂 =  𝜃𝜃 = h(𝜇𝜇) = log( 𝜇𝜇
1−𝜇𝜇

 )                         (4) 

𝜇𝜇(𝜂𝜂) = log (1 + exp (𝜂𝜂)), v(𝜓𝜓) = 1/n and g is an unknown scalar-valued function. Cook (1993) looked 

at how well PR plots could depict g in the special case of additive-error models where the relation is the 

identity function, 𝜂𝜂 = 𝜇𝜇, and the conditional distribution of Y/X can be defined as 

 Y/X = 𝛼𝛼0 + 𝛼𝛼1′𝑋𝑋1 +  𝑔𝑔(𝑋𝑋2) + ɛ,            (5) 

where ɛ is unaffected by X and has a mean of 0. Cook's research revealed that the output of PR plots is 

highly influenced by the conditional expectation E(𝑋𝑋1/𝑋𝑋2 ), with the best results obtained when the 

E(𝑋𝑋1/𝑋𝑋2), is linear in the value of 𝑋𝑋2. Consider summarizing the data by fitting  

 𝜂𝜂𝑓𝑓(x/b) = ℎ(𝜇𝜇𝑓𝑓) =  𝑏𝑏0 + 𝑏𝑏1
′𝑋𝑋1+  𝑏𝑏2

′ɩ(𝑋𝑋2)            (6) 

where 𝑏𝑏′ = (𝑏𝑏0, 𝑏𝑏1
′,  𝑏𝑏2

′)and ɩ (𝑋𝑋2) is a user-defined 𝑋𝑋2 function. The equipped model is indicated by the 

subscript 𝑓𝑓 on  𝜂𝜂𝑓𝑓 and  𝜇𝜇𝑓𝑓 . Based on Eq. (6) it is assumed that Estimated coefficients  𝑏𝑏�𝑗𝑗, j= 0, 1, 2, are 

obtained by minimizing a convex objective function. 

 𝑏𝑏�′ = (𝑏𝑏�0,𝑏𝑏�1′ ¸𝑏𝑏�2′ ) = argmin
𝑏𝑏

LN (b),             (7) 

LN (b) = 1
𝑁𝑁
∑ 𝑙𝑙(𝜂𝜂𝑓𝑓(𝑥𝑥𝑖𝑖|𝑏𝑏),𝑦𝑦𝑖𝑖)𝑁𝑁
𝑖𝑖=1   = 1

𝑁𝑁
∑ 𝑙𝑙(𝑏𝑏0  + 𝑏𝑏1

′𝑋𝑋i1 +   𝑏𝑏2
′ɩ(𝑋𝑋i2), yi)𝑁𝑁

𝑖𝑖=1  

L(. , .) is a convex objective function with respect to its first argument that is chosen by the consumer. 

Since it contains ordinary least squares, maximum probability, and some robust estimates, this class is not 

very restrictive. For logistic regression with the relation provided in Eq. (4) for example, the objective 

function corresponding to maximum likelihood is 

 L(𝜂𝜂𝑓𝑓(𝑥𝑥|𝑏𝑏),𝑦𝑦 ) = n{log(1 + exp(𝜂𝜂𝑓𝑓)) – y𝜂𝜂𝑓𝑓}.           (8)  

The maximum likelihood estimates are obtained from Eq. (2), (3) & (6). While maximum likelihood 

estimation is commonly used, it is not needed for the purposes of this article. The class of convex 

objective functions is a generalization of the class of objective functions corresponding to Eq. (7) 

 L(𝜂𝜂𝑓𝑓,y) =L(y – 𝜂𝜂𝑓𝑓) 

used by Cook (1993) for additive-error models (5).  
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2.3 Construction of PR and CERES plots in BMR  

A PR plot for 𝑋𝑋2 is obtained by first setting ɩ(𝑋𝑋2) = 𝑋𝑋2 and fitting Eq. (6) & (7) then constructing the (𝑝𝑝2 

+ 1)-dimensional plot {𝑝𝑝𝑝𝑝�2 ,𝑋𝑋2}, where 

 𝑝𝑝𝑝𝑝�2=(y –𝑢𝑢�𝑓𝑓)ℎ′ (𝑢𝑢�𝑓𝑓) + 𝑏𝑏�2′𝑋𝑋2            (9) 

is the partial residual for 𝑋𝑋2, ℎ′(.) is the first derivative of  h(.) with respect to u, 𝑏𝑏� obtained from Eq. (7) 

and 𝑢𝑢�𝑓𝑓 (x) = ℎ−1 (𝜂𝜂𝑓𝑓�𝑥𝑥|𝑏𝑏��) is the regression function 𝑢𝑢𝑓𝑓  evaluated at 𝑏𝑏� . The subscript "2" in 𝑝𝑝𝑝𝑝�2  is 

intended to remind that the partial residuals are for 𝑋𝑋2.  

To form a CERES plot for 𝑋𝑋2let us set ɩ(𝑋𝑋2) equal to a function E(𝑋𝑋1|𝑋𝑋2) that captures the behavior 

of 𝐸𝐸�(𝑋𝑋1|𝑋𝑋2). This function may be E(𝑋𝑋1|𝑋𝑋2) if known, an estimate E(𝑋𝑋1|𝑋𝑋2) based on smoothing, or a 

parameterized class of functions that includes E(X| 𝑋𝑋2) as a special case. Once ɩ(𝑋𝑋2) =𝐸𝐸� (𝑋𝑋1|𝑋𝑋2)  is 

specified, we fit Eq. (6) & (7). The CERES plot for 𝑋𝑋2 is then the (𝑝𝑝2+ 1)-dimensional plot {𝑐𝑐𝑝𝑝�2, 𝑋𝑋2}, 

where 

 𝑐𝑐𝑝𝑝�2 =(y –�̂�𝜇𝑓𝑓)ℎ′ (�̂�𝜇𝑓𝑓) + 𝑏𝑏�2′𝐸𝐸�(𝑋𝑋1|𝑋𝑋2)           (10)  

is the CERES residual for 𝑋𝑋2 constructed from the quantities defined in (8) but based on ɩ(𝑋𝑋2) =𝐸𝐸�(𝑋𝑋1|𝑋𝑋2). 

A CERES plot reduces to a PR plot when 𝑏𝑏�2′𝐸𝐸�(𝑋𝑋1|𝑋𝑋2) is a linear function of  𝑋𝑋2. Cook (1993) provided 

further discussion on the construction of𝐸𝐸�(𝑋𝑋1|𝑋𝑋2)   

Partial residuals as defined in Eq. (9) reduce to the usual definition of partial residuals in additive-

error models Eq. (5) because then the link is the identity function and ℎ′ = 1. For logistic regression Eq. 

(4) 

 (y –�̂�𝜇𝑓𝑓)ℎ′ (�̂�𝜇𝑓𝑓) = y − 𝜇𝜇�𝑓𝑓
𝜇𝜇�𝑓𝑓(1−𝜇𝜇�𝑓𝑓)

 

and the partial residuals Eq. (9) reduce to those defined by Landwehr et al. (1984) when the response is 

binary. Recall that in our formulation, y = y *| n. Generally, the first term on the right of Eq. (9) can be 

interpreted in terms of η as the score scaled by the expected information per observation, all evaluated at 

�̂�𝜇𝑓𝑓, that 

(𝑦𝑦 −  𝜇𝜇) ℎ′(𝜇𝜇)  =  
𝜕𝜕 𝑙𝑙𝑙𝑙𝑔𝑔 𝑑𝑑𝑦𝑦|𝑥𝑥 /𝜕𝜕𝜕𝜕

−𝐸𝐸�𝜕𝜕2𝑙𝑙𝑙𝑙𝑔𝑔𝑑𝑑𝑦𝑦|𝑥𝑥 /𝜕𝜕𝜕𝜕2�
 

because   𝐸𝐸 �𝜕𝜕 𝑙𝑙𝑙𝑙𝑔𝑔 𝑑𝑑𝑦𝑦|𝑥𝑥  /𝜕𝜕𝜕𝜕
�  =  0 

and −𝐸𝐸�𝜕𝜕2𝑙𝑙𝑙𝑙𝑔𝑔𝑑𝑑𝑦𝑦|𝑥𝑥 /𝜕𝜕𝜕𝜕2� = 𝐸𝐸 �𝜕𝜕 𝑙𝑙𝑙𝑙𝑔𝑔 𝑑𝑑𝑦𝑦|𝑥𝑥  /𝜕𝜕𝜕𝜕
�
2
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(𝑦𝑦 –  𝜇𝜇) ℎ′(𝜇𝜇) can also be interpreted as the standardized score weighted by the inverse of its standard 

deviation. If we let �̂�𝜂𝑓𝑓(X) =  �̂�𝜂𝑓𝑓 (X|𝑏𝑏�), the quantity  𝜂𝜂�𝑓𝑓 + (y– 𝑢𝑢�𝑓𝑓)ℎ′ (𝑢𝑢�𝑓𝑓) The adjusted dependent variable, 

which is used in iterative estimation techniques such as the Newton-Raphson process, is often referred to 

as the adjusted dependent variable (McCullagh and Nelder, 1983). Expression Eq. (8) coincides with all 

partial residual definitions that we are aware of, including those of Collett (1991) and McCullagh and 

Nelder (1983). However, maximum likelihood estimation is not needed, and ‘g' may be a function of 

multiple predictors, necessitating the use of three-dimensional plots when 𝑝𝑝2= 2. Fitting a regression 

curve to the PR plot {𝑝𝑝𝑝𝑝�2,𝑋𝑋2} should yield a useful approximation of ‘g' up to a linear transformation if 

the correlation between g(𝑋𝑋2 ) and the regression function E(𝑝𝑝𝑝𝑝�2 |𝑋𝑋2 ) is sufficiently high. Because 

obtaining a closed-form for E(𝑝𝑝𝑝𝑝�2 |𝑋𝑋2) is difficult. 

An approximation is used to study the relationship between E(𝑝𝑝𝑝𝑝�2 |𝑋𝑋2 ) and g(𝑋𝑋2 ) and to use 

𝑔𝑔(𝑋𝑋2)  =  𝑏𝑏𝑋𝑋2. So the CERES and PR plots for BRM can be constructed by using Eq. (9) & (10). The 

first derivative of the binomial regression link function given in equation (4) is 

 ℎ′ (�̂�𝜇𝑓𝑓) = 1
𝜇𝜇(1−𝜇𝜇) 

Hence the fitted model by using log link for binomial regression can be expressed as 

�̂�𝜇𝑓𝑓 =
е𝛽𝛽�0 +𝛽𝛽�1′𝑥𝑥1 + 𝛽𝛽�2′𝑥𝑥2

1 +  е𝛽𝛽�0 +𝛽𝛽�1′𝑥𝑥1 + 𝛽𝛽�2′𝑥𝑥2
 

where the regression estimators are �̂�𝛽0, �̂�𝛽1′ , �̂�𝛽2′  the fitted model is  �̂�𝜇𝑓𝑓  and the predictors are  𝑥𝑥𝑖𝑖. Similarly, 

the CERES and partial residual for a model with p explanatory variables can be expressed as 

𝑝𝑝𝑝𝑝�𝑖𝑖=(y –𝑢𝑢�𝑓𝑓)ℎ′ (𝑢𝑢�𝑓𝑓) + 𝑏𝑏�𝑖𝑖′𝑋𝑋𝑖𝑖 𝑖𝑖 = 1, 2, … ,𝑝𝑝.         (11) 

 𝑐𝑐𝑝𝑝�𝑖𝑖 =(y –�̂�𝜇𝑓𝑓)ℎ′ (�̂�𝜇𝑓𝑓) + 𝑏𝑏�𝑖𝑖′𝐸𝐸�(𝑋𝑋𝑖𝑖|𝑋𝑋𝑖𝑖) 𝑖𝑖 = 1, 2, … ,𝑝𝑝.        (12)  

In addition, for p explanatory variables, the fitted model is 

     �̂�𝜇𝑓𝑓 = е𝛽𝛽
�0 +𝛽𝛽�1

′ 𝑥𝑥1 + 𝛽𝛽�2
′ 𝑥𝑥2+ …𝛽𝛽�𝑝𝑝′ 𝑥𝑥𝑖𝑖

1+ е𝛽𝛽�0 +𝛽𝛽�1
′ 𝑥𝑥1 + 𝛽𝛽�2

′ 𝑥𝑥2+⋯𝛽𝛽�𝑝𝑝′ 𝑥𝑥𝑖𝑖
              (13)        

3. Numerical Example 

In this section we considered a real data to check the performance of CERES and PR plots in the 

detection of outliers in binomial regression. This techniques discussed in the previous section is enforce 

here on the Liver cancer data used first by Zelterman (1999) and also later by Atkinson and Riani (2001). 

Zelterman  (1999) quoted data on the incidence of liver cancer in mice, which we reproduce in (Appendix 

A1), given the number of mice developing cancer and the total number tasted, which forms the binomial 
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denominator. There are eight doses, units unspecified, and observation are taken at nine unequally spaced 

times, making 72 observations in all. In this data, Liver cancer is regarded as regressand variable (Y) with 

two regressors, i.e. dose of a patient (𝑋𝑋1), and months of study (𝑋𝑋2). The data contains 72 observations. 

The response variable follows a binomial distribution and therefore a binomial regression model is 

applied here. The CERES and PR plots of BRM for the Liver cancer data are shown in Figures 3.1 and 

3.2. Because we have two predictors in the model, so there are two possible CERES and PR plots can be 

obtained. The summary of binomial regression model for Liver cancer data is presented in Table 

3.1. Based on the result, it shows that both of independents variables are significant (𝑝𝑝-value < 

0.05).  
Table 3.1 Binomial Regression Analysis for Liver Cancer Data 

Predictors Coefficients Standard error t-test 𝑝𝑝-value 

Constant 0.411 0.124 3.32 0.001 

𝑋𝑋1 0.1972 0.0905 2.18 0.033 

𝑋𝑋2 0.01788 0.00588 3.04 0.003 

𝑅𝑅2 = 16.88%,  𝑅𝑅2(𝑎𝑎𝑑𝑑𝑎𝑎) = 14.47% 

 

𝑌𝑌� = 0.411 +  0.1972 X1 +  0.01788 X2 

First we applied Grubbs test to check whether or not there is any outlier in Liver cancer data. Here 

the test statistics value of Grubbs test is 3.107 and p-value is 0.00047, which shows that outlier exist in 

the Liver cancer data.   

 

 
(a). CERES Plot (𝑿𝑿𝟏𝟏 = Dose of a patient) for outliers  (b). CERES plot ( 𝑿𝑿𝟐𝟐 =  𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝐌𝐌𝐨𝐨 𝐬𝐬𝐌𝐌𝐬𝐬𝐬𝐬𝐬𝐬) for outliers 

 Figure 3.1 CERES plots for binomial regression model for Liver Cancer Data 
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(a). PR plot (𝑿𝑿𝟏𝟏 = Dose of a patient) for outliers       (b). PR plot ( 𝑿𝑿𝟐𝟐 =  𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝐌𝐌𝐨𝐨 𝐬𝐬𝐌𝐌𝐬𝐬𝐬𝐬𝐬𝐬) for outliers 

Figure 3.2 PR plots for binomial regression model for Liver Cancer Data 

 

By using the real data set, outliers are clearly visible in Figure 3.1 (a) & (b) and present the CERES 

plots of 𝑋𝑋1 = Dose of a patient and 𝑋𝑋2 =  Month of study , respectively.  Figure 3.2 (a) & (b) present the 

PR plots, of 𝑋𝑋1 = Dose of a patient and 𝑋𝑋2 =  Month of study , respectively. In Figures 3.1 & 3.2 CERES 

and PR are plotted against each regressor respectively. The Liver cancer data is used first by Zelterman 

(1999) and also later by Atkinson and Riani (2001). The Zelterman used liver cancer data in his study, 

and they identified outlier observations are 11, 12, 20, 42, 48 and 67. In our study, it is found that  outliers 

observations in CERES plots are 11th, 12 th, 19 th, 44, 51 th and 67 th, on the other hand outliers observations 

in PR plots are 5 th, 11 th, 12 th, 27 th, 46 th and 62 th.  Three identified observations  (11 th, 12 th, and 67 th) by 

CERES plots and two identified observaions (11 th and 12 th) by PR plots are coincide with the identified 

outlier observation by Zelterman (1999). From both the plots, it is found that CERES plot identify outlier 

more accurately and gives better visual diagnostics for outliers as compared to PR residual plots. In the 

next section, the detection of outliers is made by using simulated datasets.  

 

4. Monte Carlo Simulation 

We use the Monte Carlo simulation used by Amin et al. (2019). In this study, the simulation's 

computational scheme and related model are as follows: 

𝑋𝑋𝑖𝑖𝑗𝑗 =  �(1 − 𝜃𝜃2)𝑍𝑍𝑖𝑖𝑗𝑗 + 𝜃𝜃𝑍𝑍𝑖𝑖(𝑗𝑗+1)  i= 1,2, … ,n;  j = 1, 2, ... ,p 

where𝑍𝑍𝑖𝑖𝑗𝑗  is provided by the standard normal distribution, i.e. 𝑍𝑍𝑖𝑖𝑗𝑗  N(0,1), and 𝜃𝜃  is the degree of 

multicollinearity in the above simulation equation, which is set to 0.8, 0.9, 0.95, and 0.99. We replaced 

the 19th, 21th, 23th and 25th observations in the entire data set with outlying observations in the independent 

variables X’s. 
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                                                      𝑋𝑋𝑖𝑖𝑗𝑗 =  𝑋𝑋𝑖𝑖𝑗𝑗 + 𝛼𝛼𝑜𝑜 i =19, 21, 23, 25.   j = 1, 2, … , p, 

where, 

𝛼𝛼𝑜𝑜 = 𝑋𝑋�𝑗𝑗 + 10 

�̂�𝜇𝑖𝑖 =
е𝛽𝛽�0 +𝛽𝛽�1′𝑥𝑥1 + 𝛽𝛽�2′𝑥𝑥2

1 +  е𝛽𝛽�0 +𝛽𝛽�1′𝑥𝑥1 + 𝛽𝛽�2′𝑥𝑥2
 

The response variable is generated randomly as y ~ B(1, �̂�𝜇𝑖𝑖 ). The regression coefficients are 

considered to be fixed as𝛽𝛽0 = 𝛽𝛽1 = 𝛽𝛽2 = 1.We chose four different sample sizes, with n being 25, 50, 

100, and 200, respectively. Each of the result is based on 10,000 simulations using the R software. The 

performance of the CERES and PR plots in BRM are assessed. The graphical displays of the CERES and 

the PR plots are presented in Figures 4.1 to 4.8. 

 

 
(a). CERES Plot (𝑿𝑿𝟏𝟏) for Outliers 19th, 21th, 23th, 25th  (b). CERES plot ( 𝑿𝑿𝟐𝟐) for Outliers 19th, 21th, 23th, 25th 

Figure 4.1 CERES plots for binomial regression model for simulated data, 𝑛𝑛 = 25 

   

 
(a). CERES Plot (𝑿𝑿𝟏𝟏) for Outliers 19th, 21th, 23th, 25th   (b). CERES plot ( 𝑿𝑿𝟐𝟐) for Outliers 19th, 21th, 23th, 25th 

 Figure  4.2  CERES plots for binomial regression model for simulated data, 𝑛𝑛 = 50 
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(a). CERES Plot (𝑿𝑿𝟏𝟏) for Outliers 19th, 21th, 23th, 25th   (b). CERES plot ( 𝑿𝑿𝟐𝟐) for Outliers 19th, 21th, 23th, 25th 

       Figure 4.3 CERES plots for binomial regression model for simulated data, 𝑛𝑛 = 100  

  

 
(a). CERES Plot (𝑿𝑿𝟏𝟏) for Outliers 19th, 21th, 23th, 25th  (b). CERES plot ( 𝑿𝑿𝟐𝟐) for Outliers 19th, 21th, 23th, 25th 

       Figure 4.4 CERES plots for binomial regression model for simulated data, 𝑛𝑛 = 200  

 

 
(a). PR plot (𝑿𝑿𝟏𝟏) for Outliers 19th, 21th, 23th, 25th         (b). PR plot ( 𝑿𝑿𝟐𝟐) for Outliers 19th, 21th, 23th, 25th 

              Figure 4.5 PR plots for binomial regression model for simulated data, 𝑛𝑛 = 25 
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(a). PR plot (𝑿𝑿𝟏𝟏) for Outliers 19th, 21th, 23th, 25th            (b). PR plot ( 𝑿𝑿𝟐𝟐) for Outliers 19th, 21th, 23th, 25th 

       Figure 4.6 PR plots for binomial regression model for simulated data, 𝑛𝑛 = 50 

 

 
(a). PR plot (𝑿𝑿𝟏𝟏) for Outliers 19th, 21th, 23th, 25th      (b). PR plot ( 𝑿𝑿𝟐𝟐) for Outliers 19th, 21th, 23th, 25th 

Figure 4.7 PR plots for binomial regression model for simulated data, 𝑛𝑛 = 100 

 

 
(a). PR plot (𝑿𝑿𝟏𝟏) for Outliers 19th, 21th, 23th, 25th   (b). PR plot ( 𝑿𝑿𝟐𝟐) for Outliers 19th, 21th, 23th, 25th 

Figure 4.8 PR plots for binomial regression model for simulated data, 𝑛𝑛 = 200 
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By using the simulated data set, outliers is clearly detected in Figures 4.1 to 4.4, by using CERES 

plots, while Figures 4.5 to 4.8, i.e PR plots also detected outliers but not clearly deected. For different 

sample sizes, outliers is detected by both CERES and PR plots and found observations 19th, 21th, 23th and 

25th are outliers i.e both the CERES and the PR plots correctly identify outliers.The CERES and PR plots 

is plotted against each regressors i.e (𝑥𝑥1,𝑥𝑥2). All the figures were made that clearly detects the outlier’s 

issue.  In comparison to the PR plots, the outliers in the CERES plots are far away from the CERES 

residuals trend line. In comparison to CERES and PR plots, the CERES plot provides a clearer visual 

diagnostic for outliers as compare to PR plots. 

 

5. Conclusions 

This article addresses the implementation of CERES and PR plots for the identification of outliers in a 

binomial regression model and then compare these two plots based on real life and simulated data. The 

real life data shows that CERES performs better in detecting outlier in binomial regression model than PR 

plots. However, in case of simulated data, both of these plots can successfully detect the all outliers in 

binomial regression model but the visualization to detect is better in CERES plots than PR Plots.  

Therefore, CERES plots can be used as a diagnostic tool to detect outlier in binomial regression model. 

Furthermore, this research can be extended by increasing the contamination level and calculating the 

swamping and masking rate in binomial regression model.     
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