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Abstract  
 
A nonlinear autoregressive neural network (NARNN) model is a feedforward 
neural network for handling complex nonlinear time series problems. In this 
study, the tangent sigmoid (tansig) activation function with the different numbers 
of past values and different numbers of hidden neurons for the NARNN model 
is determined. The COVID-19 daily confirmed cases in Malaysia are collected 
with different amounts of samples used, which are 100, 500 and 900. Therefore, 
data from 100, 500 and 900 days before 21 September 2022 are extracted for the 
NARNN model training, validation and testing procedure. The lowest average 
mean squared error (MSE) becomes the best combination. The result shows that 
the past value is 1:10 and the number of neurons of 10 when the sample size is 
100. At sample size 500, past values of 1:10 and neurons of 8 enable the model 
to perform at its best. Whereas for sample size 900, the network setting of 1:5 
past value and five hidden neurons gives the least MSE. Multi-step ahead time 
series forecasting is conducted to forecast the number of confirmed COVID-19 
cases in 7 days from 22 to 28 September 2022. The result shown for 7-days-
ahead confirmed cases indicating Malaysia datasets, the best forecasting outcome 
occurs when 900 samples are inputted. 
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1. Introduction  
 
In December 2019, Coronavirus disease-2019 (COVID-19), a contagious disease transmitted through 
droplet or direct contact caused by the Severe Acute Respiratory Syndrome-Related Coronavirus 2 
(SARS-CoV-2) virus, was first discovered in Wuhan, China, as a mysterious pneumonia with symptoms 
of fever, cough and tiredness. The disease rapidly infiltrated other countries within a few months, mainly 
through person-to-person transmission and human mobility. A severe public health concern was 
triggered when the outbreak of COVID-19 was declared as the sixth Public Health Emergency of 
International Concern (PHEIC) by the World Health Organisation (WHO) on 30 January 2020, whereby 
the previous five were H1N1 (2009), Polio (2014), Ebola in West Africa (2014), Zika (2016) and Ebola 
in the Democratic Republic of Congo (2019) (Wu et al., 2020). Further, on 11 March 2020, the outbreak 
of COVID-19 was announced as a pandemic by WHO.  
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According to Namasudra et al. (2021), most government authorities implemented preventive 
measures and policies such as social distancing, contact tracing, enforced curfew or isolation and certain 
cities or even nationwide lockdowns to flatten the coronavirus curve and lower the mortality rate. 
However, controlling and preventing the spread of COVID-19 has met challenges due to uncertain 
waves and peaks in the number of cases. The evolution of SARS-CoV-2, which led to the emergence 
of several variants, worsened the situation. Meanwhile, the policymakers must consider the issues that 
arise, which include readiness in healthcare systems, resource crises, economic burden and community 
welfare (Khankeh et al., 2021). Forecasting during the pandemic is essential to have an effective 
decision-making system that can relieve the impact of COVID-19, as the prediction helps identify 
possible changes in the future. 

The COVID-19 dataset is collected as a series of time series data. Time series forecasting 
methods, which predict the futuristic outcomes based on historically timestamped data, are often 
employed to estimate the spread of an epidemic. Classical time series models such as autoregressive 
(AR), exponential, moving average (MA) (Rahimi et al., 2021), and vector autoregressive (VAR) 
models (Gomez-Cravioto et al., 2021) are used to model the COVID-19 cases in the previous studies. 
Other than that, the development of artificial intelligence (AI) nowadays added machine learning (ML) 
and deep learning (DL) techniques to prediction applications, including time series problems. Thus, 
research exists on COVID-19 data modelling using time series algorithms such as artificial neural 
networks (ANN). A neural network is a series of algorithms inspired by the operation framework of the 
human brain that uses interconnected nodes or neurons in a structure with layers. Machine learning 
enables computer programs to be trained to recognise patterns and solve complex problems, thus 
assessing the complexity of the COVID-19 time series data. 

According to Istaiteh et al. (2020), nonlinear approaches are recommended to deal with high 
variability and transient time series data. COVID-19 datasets collected have a nature of nonlinearity and 
non-stationarity due to the unstable trend of the COVID-19 outbreak. A nonlinear dynamic neural 
network model suitable for the nonlinear dataset, namely the nonlinear autoregressive neural network 
(NARNN), is developed by combining the nonlinear autoregressive (NAR) model and the multilayer 
feedforward artificial neural network (ANN) (Liu et al., 2021). The ANN model can extract nonlinear 
relationships in the data by applying activation functions between every two layers. The NARNN model, 
as a variant of ANN, has been proposed in the literature as a modelling tool for the COVID-19 dataset. 
This technique uses historical data based on the number of lags in the time series data as the lagged 
input (Adedeji et al., 2019). 

Benmouiza and Cheknane (2013) state that NARNN has high similarity with a Multilayer 
Perceptron (MLP), whereby both models are composed of neurons in an input layer, one or more hidden 
layers and an output layer. Both models are feedforward neural networks with backpropagation training 
algorithms, but the NARNN model consists of the feedback layers to approximate the nonlinear 
function. Therefore, the NARNN model is a widely used ANN for modelling dynamic structures and 
forecasting nonlinear time series. The architecture of the NARNN is represented by three layers: the 
input, hidden and output layers. A few network configuration parameters such as training algorithms, 
activation function, feedback delays or past values and the number of neurons in the hidden layer must 
be decided to build the NARNN model. The ultimate goal of the research is to obtain the best-
performing model that suits the data with minimum error since forecasting accuracy is always a matter 
of concern when providing insights. 

The NARNN model is a neural network with feedback connections where future values of a time 
series (the current output) depend on the past values (the past output). Hence, the number of past values 
and feedback delays differ from the current output. Patil et al. (2013), in their study to predict sea surface 
temperature with the NARNN model, concluded that it would be more reliable to train the model with 
more past input rather than a smaller data segment to improve the fitting flexibility. In the research 
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conducted by Pawlus et al. (2013) on vehicle collision modelling using the NARNN model, it has also 
been found that the increasing number of feedback delays will level up the model's performance. Raturi 
and Sargsyan (2018), when studying oil and gas price forecasting using the NARNN model, increased 
the past values from 50 to 100. As a result, there is a significant improvement in validation and 
regression and a palpable reduction of output error nearly two times. Meanwhile, there is also a 
reduction of autocorrelation error by almost 2.5 times. 

However, in some model architectures, the highest number of past values is not optimal. This 
scenario can be discovered in the study by Blanchard and Samanta (2020) regarding wind speed 
forecasting using the NARNN model. They have compared the past values by setting the values range 
from 2 to 72. Consequently, three out of five experiments using datasets with 60 past values as input 
have generated the best model performance even though 60 is not the highest number of past values. As 
the optimal number of past values is not necessarily high (Chi, 2021b), the study of soybeans global 
price time series forecasting has used 3 feedback delays with 8 hidden neurons in the NARNN model. 
Regarding COVID-19 forecasting, Ghazaly et al. (2020) set the number of delays from 1: 2 to 1: 10 for 
the NARNN model to forecast COVID-19 cases. The result reflects that the model with 1: 6 feedback 
delays has the lowest error.  

The number of hidden neurons is one of the important parameters of neural network models. In 
the neural network training process, the network weight and neuron bias are adjusted iteratively to 
optimise the accuracy of future value prediction (Sarkar et al., 2019). According to Olney et al. (2022), 
the number r of neurons in the hidden layer defines the configuration of the NARNN model by carrying 
a weight term for each delay state and a bias term. A number of hidden neurons also accounts for the 
complexity of a neural network, where a network system with more neurons would be more complex. 
A greater number of neurons not only longer the training time but also weakens its generalisation ability. 
However, reducing the number of neurons would lower the model fault tolerance (Chang et al., 2022). 
Hence, the suitable number of hidden neurons for a neural network model affects the network 
performance. 

In previous research regarding COVID-19 forecasting using the NARNN model, a different 
number of hidden neurons is set to train the model as the complexity needed for the model is different 
for each dataset training process. Ghazaly et al. (2020) tested the NARNN model's performance with 1 
to 4 hidden neurons in conducting COVID-19 forecasting. It turns out that a network with 3 hidden 
neurons recorded with the lowest MAPE becomes the most appropriate configuration. During a 
simulation study, Saliaj and Nissi (2022) found that configuring a maximum of 2 hidden neurons 
provides the best NAR neural network performance. However, in real COVID-19 time series 
forecasting, nea work structure with five hidden neurons gives a more accurate result with lower RMSE. 
Thus, a model with five hidden neurons becomes the choice of parameter. Therefore, the number of 
hidden neurons need to be tuned to the optimum depending on different requirement of network 
complexity. 
 
2. Materials and Methods  
2.1 Data set 

 
The COVID-19 dataset used in real data analysis is collected from the data source hosted by the Center 
of System Science and Engineering (CSSE) at Johns Hopkins University (JHU CSSE, 2020). The 
dataset is stored in the GitHub repository. This data source shows the number of confirmed COVID-19 
cases, deaths and recoveries for all affected countries. In the study, only the COVID-19 confirmed cases 
will be used for forecasting the number of confirmed cases. The data extracted for investigation is from 
5 April 2020 to 28 September 2022, even though the repository has aggregated COVID-19 time series 
data since 22 January 2020. Time series data of daily COVID-19 cases in Malaysia is extracted for data 
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analysis. The raw dataset of COVID-19 cases will be further extracted in the sample sizes of 100, 500 
and 900. 

Before modelling, the time series data is divided into training, validation and testing sets based 
on the ratio of 70%, 15% and 15%, respectively. The training dataset is used during the neural network 
training stage to update the network weights and biases and determine the gradient to produce a well-
generalised network model. The validation dataset ensures that the network is sufficiently trained and 
not overtrained. When the validation set error is at the minimum location and stops improving, the 
training is halted, and the network weights and biases are saved. Training neural networks must be 
stopped at suitable iterations to prevent overfitting and underfitting networks. The testing dataset is not 
involved in the training stage. The training dataset's purpose is to measure the forecasting performance 
of the NARNN model after all the forecasting work has been done (Zhou et al., 2016). 

 
2.2 Nonlinear Autoregressive Neural Network (NARNN) Model 

 
Artificial neural network (ANN) is inspired by the neural architecture of the brain system to tackle 
complex machine learning tasks and real-world problems. By mimicking the operation of the brain 
system to acquire knowledge with interconnected neurons, a neural network algorithm capable of 
learning based on past information is formed (Jeatrakul & Wong, 2009). The ultimate purpose of the 
neural network is to enable the trained model to become versatile and come out with valuable outputs 
based on the information extracted from the previous data. As a variant of ANN, the NARNN model is 
widely used for time series prediction from historical data (Dhamodharavadhani et al., 2020).  

Historical data is known as past values or feedback delays in the NARNN model. The foundation 
supports the NARNN model as the new expected time series outcome is generated by re-feeding the 
lagged value of the time series to the model. The equation of the NARNN model below shows how 𝑝𝑝 
past values contribute to the current estimation of 𝑦𝑦(𝑡𝑡). 

𝑦𝑦(𝑡𝑡) = 𝑓𝑓�𝑦𝑦(𝑡𝑡 − 1),𝑦𝑦(𝑡𝑡 − 2),𝑦𝑦(𝑡𝑡 − 3), … ,𝑦𝑦(𝑡𝑡 − 𝑝𝑝)� + 𝜀𝜀(𝑡𝑡)      (1) 

where 𝑦𝑦 represents the time series value, and 𝑡𝑡 stands for the time period. For instance, 𝑦𝑦(𝑡𝑡) is the time 
series value at time 𝑡𝑡, also known as the present value, while 𝑦𝑦(𝑡𝑡 −  1) is the past value of the first lag. 
𝑝𝑝 denotes the number of past values or feedback delays, and 𝑓𝑓 denotes the activation function. 𝜀𝜀(𝑡𝑡) is 
the error term, which depends greatly on the learning ability of an algorithm, as noise in the data that 
cannot be accessed will be accumulated in this term. 

The NARNN model also extends the idea of the autoregressive (AR) process (Chi, 2021a). 
Similarly, the AR model also uses the 𝑝𝑝 past values, 𝑦𝑦(𝑡𝑡 − 1),𝑦𝑦(𝑡𝑡 − 2),𝑦𝑦(𝑡𝑡 − 3), . . . ,𝑦𝑦(𝑡𝑡 − 𝑝𝑝) to 
explain the current value of the time series, 𝑦𝑦(𝑡𝑡). However, the AR model is linear. According to Kumar 
and Murugan (2018), most systems in the real world are nonlinear, neural networks become a suitable 
tool to fit the systems. Saliaj and Nissi (2022) state that the NARNN model, which inherits the features 
of ANN, is said to be the AR process with nonlinear functions. Thus, NARNN is able to map the past 
observations, 𝑦𝑦(𝑡𝑡 − 1),𝑦𝑦(𝑡𝑡 − 2),𝑦𝑦(𝑡𝑡 − 3), . . . ,𝑦𝑦(𝑡𝑡 − 𝑝𝑝) to the present value, 𝑦𝑦(𝑡𝑡) in a nonlinear 
function through neurons in the hidden layers of neural network (Chi, 2021a). In short, the assimilation 
of the AR model with the artificial neural network enables the NARNN model to handle complex 
nonlinear datasets while following the AR process in utilising the series of past values to predict future 
behaviour. 

Probing into the architecture of the NARNN model, it is a feed-forward neural network with 
multilayer perceptron (MLP). The model architecture comprises at least three layers, including a default 
input and output layer, along with one or more hidden layer(s), taking a number of neurons and delays. 
The input layer is the first layer to receive input data, while the output layer is the last layer to obtain 
results or solutions. Between these two layers, the data flows through the intermediate hidden layer(s) 
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that contain a collection of neurons to detect the pattern of the data and the nonlinear relationships (Saliaj 
& Nissi, 2022). 
 

 
Figure 1. NARNN model architecture 

 
The trained feedforward algorithm can be mathematically described as Equation (2) (Chi, 2021a). Each 
neuron has weight terms for every delay and a single bias term with a nonlinear activation function. The 
formulation is equivalent to the estimated output value or response after the training. 

𝑦𝑦�(𝑡𝑡) = 𝛼𝛼0 + ∑ 𝑊𝑊𝑖𝑖𝑓𝑓�∑ 𝑊𝑊𝑖𝑖𝑖𝑖𝑦𝑦(𝑡𝑡 − 𝑗𝑗)𝑝𝑝
𝑖𝑖=1 + 𝛽𝛽𝑖𝑖�𝐼𝐼

𝑖𝑖=1         (2) 

where 𝑦𝑦�(𝑡𝑡) is the estimated value of output;  𝑦𝑦(𝑡𝑡 − 𝑗𝑗) is input past values, 𝑗𝑗 =  1, 2, . . . ,𝑝𝑝; 𝑓𝑓 is nonlinear 
activation function; 𝑊𝑊𝑖𝑖𝑖𝑖 is input-to-hidden layer weights; 𝑊𝑊𝑖𝑖 is hidden-to-output weights; 𝐼𝐼 is the total 
number of neurons in the hidden layer; 𝛽𝛽𝑖𝑖 is the biases in the 𝑖𝑖th neuron in the hidden layer, and 𝛼𝛼0 is 
the bias in the neurons in the output layer. 
 
2.2.1 Data Normalisation 

 
Data normalisation is normalising the dataset, especially the nonlinear data, into values between 0 and 
1 using the minimum-maximum approach of subtracting the minimum value from the observed value 
and dividing by the difference between the maximum and minimum values. The normalising process is 
usually done before training, whereby processed data is fed into the network. This process will render 
the computation more convenient and more straightforward to speed up the update of weights to the 
minimum error as it converges. Moreover, normalised data is easier to distinguish since the distance 
between the values is more probable (Ghazaly et al., 2020). Equation (3) is to generate the normalised 
value from the original value. 

𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑦𝑦𝑖𝑖−𝑦𝑦𝑚𝑚𝑖𝑖𝑚𝑚
𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝑦𝑦𝑚𝑚𝑖𝑖𝑚𝑚

           (5) 

After getting the output from the trained network, the denormalisation step can be done using 
Equation (4). 

𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑦𝑦𝑛𝑛𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑛𝑛𝑖𝑖𝑛𝑛) + 𝑦𝑦𝑛𝑛𝑖𝑖𝑛𝑛            (4) 

where 𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the normalised or scaled value; 𝑦𝑦𝑖𝑖 is the original or unscaled value; 𝑦𝑦𝑛𝑛𝑖𝑖𝑛𝑛 is the minimum 
value, and 𝑦𝑦𝑛𝑛𝑚𝑚𝑚𝑚 is the maximum value in the dataset. 
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2.2.2 Activation Functions 
 

The activation function is a core building block of a neural network as it plays an important role in the 
learning ability of neural networks. It controls whether to activate or deactivate a neuron by computing 
the weighted sum and adding more bias (Kaleeswaran et al., 2020). Besides, activation functions 
introduce nonlinearity into a neuron's output, thus determining the output processed by the neuron. With 
such a nonlinear nature, the neural network model can learn and handle complex tasks. 

Each activation function has mathematical functions, which will indicate how the activation 
functions transform input signals from neurons of previous layers to produce the informative output. 
Such different form of activation functions differs from the output contributed by the model.  

There are many activation functions available for the NARNN model. Different activation 
functions will significantly affect the model's overall performance. The tansig function is commonly 
used for multilayer networks. It is related to a bipolar sigmoid whose output ranges from –1 to +1. 
Tansig is said to be mathematically equivalent to hyperbolic tangent function (tanh) (Dorofki et al., 
2012). Both functions are s-shaped and zero-centered. However, it is found that tansig runs faster yet 
outputs result in lower numerical differences. Such compromise between speed and shape flexibility of 
activation function suits neural networks that prioritise speed over the exact shape of the activation 
function. Equation (5) is the mathematical formulation of tansig function.  

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡(𝑥𝑥) =
2

1 + 𝑒𝑒−2𝑚𝑚
− 1           (5) 

According to Sarkar et al. (2019), tansig functions have stronger gradients than logsig. Hence 
lowering the possibility of neuron saturation. Neuron saturation is an issue that negatively affects a 
neural network's learning ability, whereby the neurons' output sticks to the asymptotic ends of the range 
of the activation function (Rakitianskaia & Engelbrecht, 2015). Moreover, the tansig function is able to 
train faster when working along with the backpropagation algorithm.  
 
2.2.3 Number of Past Values 

 
The number of past values is also called feedback delays and is often shown as 1: 𝑝𝑝, where 𝑝𝑝 is the 
number of feedback delays (Blanchard & Samanta, 2020). Since the NARNN model uses past 
observations to predict the future value, the number of past values used for model building significantly 
affects the result. Based on the model equation of NARNN (Equation (1)), a series of past values are 
denoted as 𝑦𝑦(𝑡𝑡 −  1),𝑦𝑦(𝑡𝑡 −  2), . . . ,𝑦𝑦(𝑡𝑡 −  𝑝𝑝), where each of them is observations at the corresponding 
time 𝑡𝑡 −  1, 𝑡𝑡 −  2, . . . , 𝑡𝑡 −  𝑝𝑝 respectively. They become the input data for the NARNN model to 
predict the output value 𝑦𝑦�(𝑡𝑡), which is the estimated value at future time 𝑡𝑡. Following the research by 
Zheng et al. (2022), the range of feedback delays is within the number of values in the training set.  

With a different number of past values inserted, the complexity of the model with change 
accordingly as well. The more the number of past values, the costlier the computations (Ghazaly et al., 
2020). However, an inadequate amount of past information will cause poor forecasting results. The 
previous study by Molino-Minero-Re et al. (2014) also found that a complex NARNN model with a 
high number of past values does not necessarily perform better. Like other parameters, the number of 
past values is optimised through trial and error, and the architecture that gives the lowest error will be 
the optimal one. To investigate the most appropriate number of past values for the model, the study will 
take the number of past values ranges between 1 to 10 as the unit of experiment. 
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2.2.4 Number of Hidden Neurons 
 

In neural networks, hidden layers are located between the input and output layers. Hidden layers are 
where hidden neurons, also known as hidden nodes, carry weight terms and produce output through an 
activation function. The neurons are part of the architecture that builds up the artificial network so that 
the neural network can perform complex tasks, which include learning from historical data to bring 
insights to new data (Saliaj & Nissi, 2022). In this study, only one hidden layer exists between the input 
and output layers of the NARNN model investigated. The number of hidden neurons in the only hidden 
layer needs to be determined so that the NARNN model can be more efficient in performing its learning 
process. 

According to research by Sheela and Deepa (2013) on approaches to fix a number of hidden 
neurons in neural networks, the researchers use trial and error procedures. The lower number of hidden 
neurons will be set in the beginning, and the performance of the neural network model will be observed. 
Subsequently, more hidden neurons will be added to optimise the neural network performance further. 
An optimal number of hidden neurons coordinates well with the complexity of the neural network task. 
It is neither excessive nor results in overfitting or too few and causes an underfitting problem (Liu et 
al., 2007). When overfitting, the excessive neuron connection is unnecessary until the neural network's 
problem-solving ability does not improve anymore, but the random regularity in the training patterns is 
captured, causing the error to increase. However, too few hidden neurons to sense the signal in a 
complex dataset will result in underfitting where the model is not trained sufficiently to capture the 
variability of the data (Jabbar & Khan, 2015). In choosing the optimal number of hidden neurons, the 
MSE of each training of the NARNN model with different numbers of hidden neurons ranging from 1 
to 10 is repeatedly computed and observed. 
 
2.3 Performance Evaluation Measures 

 
The model's accuracy is determined by comparing the actual and estimated values, such as computation 
in mean absolute error (MAE) and mean square error (MSE). The smaller the difference between the 
real observed value and forecast value, the closer the error value is to zero. Therefore, the better the 
performance of the model. Lower values of these two performance evaluation indicators reflect better 
forecasting results from the model. 

MSE and MAE are computed to check the performance accuracy. MSE measures the variability 
of errors. The smaller the MSE, the better the prediction performance. The formula is shown as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑡𝑡
�(𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡)2
𝑛𝑛

𝑡𝑡=1

         (6) 

However, the MSE penalises extreme errors while forecasting and is sensitive to data 
transformations and scale change. On the other hand, MAE does not penalise extreme errors. The 
formula of MAE is written as: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑡𝑡
�|𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡|
𝑛𝑛

𝑡𝑡=1

 (7) 

where 𝑦𝑦𝑡𝑡 is the observation at time 𝑡𝑡 and 𝑦𝑦�𝑡𝑡 is the predicted values. MAE measures the average absolute 
deviation of forecasted values from original values. Like the MSE, the smallest MAE has the better 
forecast performance.  
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3. Results and Discussion 
 

The raw data of COVID-19 daily confirmed cases in Malaysia is collected from the COVID-19 data 
repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. 
The data in the repository has been aggregated since the outbreak of COVID-19 on 22 January 2020 
and is still actively updated. In this study, the sample used will be 100, 500 and 900. Therefore, data 
from 100, 500 and 900 days before 21 September 2022 are extracted for the NARNN model training, 
validation and testing procedure. On the other hand, the last 7 days of data from 22 September 2022 to 
28 September 2022 is utilised as the out-sample to evaluate the performance of multi-step prediction. 
Hence, a total of 907 days of samples were gathered for this study. The illustrations of Figure 2 show 
the time series plot of daily confirmed cases extracted in different sample sizes. 
 

 
Figure 2. Time series plot of daily confirmed cases extracted in sample sizes 100, 500 and 900 

 
Based on Figure 2, the COVID-19 trend in Malaysia can be observed the cases exhibit a steady 

increase from the end of 2020 until January 2021. Thus, a small peak is portrayed in the time series plot 
during this period. In the third quarter of 2021, the country experienced the second-highest peak of 
COVID-19 cases. The record of the maximum number of COVID-19 cases in Malaysia, on 5 March 
2022, with 33406 cases.  

The data are normalised before being fed into the neural network model to enhance the efficiency 
of time series forecasting. The scaled data in the same range of values speeds up the learning process 
and is appropriate to be fed into any training algorithm. In this study, min-max normalisation is 
implemented. The data are scaled to a range of [0,1] by subtracting the original value from a minimum 
number of confirmed cases and then dividing it by the difference between the maximum and minimum 
number of confirmed cases. The sample sizes are split into the training, validation and testing subsets 
based on the ratio 70:15:15. The information about each subset of data is tabulated in Table 1. 
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Table 1. Training, validation, and testing subsets 
Sample Size Data Subset Ratio Date Number of Data 

100 
Training 70 14 June 2022 to 22 August 2022 70 

Validation 15 23 August 2022 to 6 September 2022 15 
Testing 15 7 September 2022 to 21 September 2022 15 

500 
Training 70 10 May 2021 to 20 March 2022 350 

Validation 15 21 March 2022 to 8 July 2022 75 
Testing 15 9 July 2022 to 21 September 2022 75 

900 
Training 70 5 April 2020 to 25 December 2021 630 

Validation 15 26 December 2021 to 9 May 2022 135 
Testing 15 10 May 2022 to 21 September 2022 135 

 
The processed data are imported to the MATLAB 2022b software to be fitted and analysed in the 

NARNN model. The NARNN model is set to possess three layers and train with Levenberg Marquardt 
(LM) training algorithm. The activation function for the NARNN model is specified as tansig.  The 
number of past values and hidden neurons is being tuned and adjusted to the optimal so that the NARNN 
model developed could have the most optimal setting. Both the number of past values and hidden 
neurons are chosen in the range from 1 to 10. The model's performance is evaluated as the past value, 
and a fixed number of 10 hidden neurons are manipulated. After selecting the past value, the number of 
hidden neurons and the corresponding optimal setting are tuned. 

For each training, the number of maximum epochs is regulated at 1000 epochs, and the training 
will come to a halt when either the maximum epoch is achieved or the validation error increases 
consecutively for six iterations. 100 runs are carried out for each setting to obtain significant results. 
The outcome with the least average overall MSE is determined as the fixation of a number of past values 
and hidden neurons. The series of Table 2 shows the mean MSE obtained for each combination of 
parameters after training the COVID-19 datasets of Malaysia. In contrast, the charts of Figure 3 portray 
the combined information from the tables with bar graph representing the performance of the NARNN 
model manipulated with different numbers of past values and a line graph plotting the average MSE of 
the NARNN model with changing number of hidden neurons when the most appropriate past value is 
fixed. 
 

Table 2. Average MSE of NARNN model with different numbers of past values and hidden neurons 
ranging from 1 to 10 

Sample Size Number of past values MSE Number of hidden neurons MSE 

100 

1:1 0.0004008 1 0.0002816 
1:2 0.0004020 2 0.0003251 
1:3 0.0003258 3 0.0002666 
1:4 0.0002495 4 0.0002092 
1:5 0.0002228 5 0.0002000 
1:6 0.0002254 6 0.0001848 
1:7 0.0003027 7 0.0001778 
1:8 0.0002465 8 0.0001837 
1:9 0.0002011 9 0.0001768 
1:10 0.0001762 10 0.0001765 

500 
1:1 0.01210 1 0.02349 
1:2 0.009206 2 0.03783 
1:3 0.01013 3 0.02078 



Yu et. al/https://doi.org/10.22452/josma.vol5no2.6     Vol 5(2), 62-77. 2023 
 

71 
 

1:4 0.01163 4 0.01944 
1:5 0.008861 5 0.01383 
1:6 0.01838 6 0.01617 
1:7 0.01079 7 0.01293 
1:8 0.01246 8 0.007324 
1:9 0.01161 9 0.01160 
1:10 0.006378 10 0.01220 

900 

1:1 0.002023 1 0.004460 
1:2 0.001270 2 0.002997 
1:3 0.003962 3 0.007671 
1:4 0.001632 4 0.003804 
1:5 0.001231 5 0.001403 
1:6 0.003711 6 0.005019 
1:7 0.002122 7 0.002755 
1:8 0.001842 8 0.003631 
1:9 0.002937 9 0.003085 
1:10 0.001839 10 0.002592 

 
Based on the result, the lowest average MSE exists at the past value of 1:10 and the number of 

neurons of 10 when the sample size is 100. At sample size 500, past values of 1:10 and number of 
neurons of 8 enable the model to perform at its best. Whereas for sample size 900, the network setting 
of 1:5 past value and 5 hidden neurons gives the least MSE.  
 

 
Figure 3.  Average mean square error (MSE) of the NARNN model with different numbers of past 

values and hidden neurons ranging from 1 to 10 
 

The white noise condition needs to be ensured before the result of training is accepted. The error 
autocorrelation plot illustrates the relationships between the prediction errors over time. The x-axis of 
the plot is the lag values, whereas the y-axis is plotted with the correlation values. When most of the 
autocorrelation values at different lags fall within the confidence limits indicated by the horizontal red 
dotted line, it can be deduced that the prediction errors over time are uncorrelated, and the condition of 
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white noise is achieved. Hence, the model is adequate to be used as a prediction model (Namasudra et 
al., 2021). The only nonzero autocorrelation value that exceeds confidence limits is at zero lag. 

To obtain an adequate model appropriate for generating predicted values, the error autocorrelation 
plot is checked to see whether the white noise condition is achieved. If the model is inadequate, it is 
retrained until the desired condition is reached. The retraining process could vary the initial network 
weights and biases, improving the neural network's reliability. After the model achieves white noise, 
the performance of the neural network model is evaluated. The regression plot and time series response 
plot are produced. In regression plots, the targeted values are plotted against the output values. Data 
scattered around the 45-degree straight line of regression plots indicate a good fit for the model (Kumar 
& Murugan, 2013). On the other hand, time series response plots display the deviation between target 
and output values against time. The yellow lines indicate the intensity of errors. The results are shown 
in Figure 4 and Figure 5. 
 

 
(a) 𝑡𝑡 = 100 

 
(b) 𝑡𝑡 = 500 

 
(c) 𝑡𝑡 = 900 

Figure 4. The adequacy of the model by using R-value (a) 𝑡𝑡 = 100, (b) 𝑡𝑡 = 500, (c) 𝑡𝑡 = 900 
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(a) 𝑡𝑡 = 100 

 
(b) 𝑡𝑡 = 500 

 
(c) 𝑡𝑡 = 900 

Figure 5. Time series response plot (a) 𝑡𝑡 = 100, (b) 𝑡𝑡 = 500, (c) 𝑡𝑡 = 900 
 



Yu et. al/https://doi.org/10.22452/josma.vol5no2.6     Vol 5(2), 62-77. 2023 
 

74 
 

Observing the time series response plot in Figure 5, some yellow lines show the deviation of 
output from the targeted value, thus producing some errors and the errors will be represented in MSE 
values. When the overall training, validation and testing MSE are computed, the values are observed to 
be small. These results indicate that the model could come out with output that is quite close to the 
normalised actual value. The R-value (Figure 4) and the mean square error (MSE) of the overall training, 
validation and testing steps are tabulated in Table 3. A lower MSE indicates better performance, while 
R-value close to 1 represents good overall performance (Saba & Elsheikh, 2020). From the plots in 
Figure 4, the R-value of each dataset is more than 0.8 and is very close to the value 1.  
 

Table 3. R-value and mean square error (MSE) of overall training, validation and testing steps 

Sample Size 
MSE 

R 
Overall Training Validation Testing 

100 0.0001807 0.0001910 0.00009250 0.0002178 0.9261 
500 0.0005705 0.0006566 0.0002943 0.0004411 0.9952 
900 0.0008332 0.0003589 0.003556 0.0003303 0.9905 

 
 

 
Figure 6. Observed, expected and forecasted COVID-19 cases 

 
Table 4. MSE and MAE of 7-days-ahead forecasting by NARNN model. 

Sample Size MSE MAE 
100 315046.7549 476.0192 
500 311607.06 460.43 
900 252147.79 409.83 
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Multi-step ahead time series forecasting is conducted to forecast the number of COVID-19 
confirmed cases in 7 days after 21 September 2022, from 22 September 2022 to 28 September 2022. 
The 7-day predicted values of COVID-19 confirmed cases in Malaysia are plotted along with previous 
forecasted values by the same NARNN model in Figure 6. In each graph, the 7-days ahead predicted 
values, also known as the output as a result of a close loop, the output of the current time step is used as 
an input for the next time step. NARNN models are plotted and connected with a bold red line. The 
magenta lines, labelled as predicted values, are produced by the NARNN model as a result of the 
training, validation and testing. The observed number of cases in blue lines are input values used for the 
training, validation and testing process of the NARNN model, except that the last 7 observed values in 
bolded blue lines are out samples to compare with the forecasted values. It is observed that most of the 
output values adhere to the actual values closely, with 𝑡𝑡 = 500 and 𝑡𝑡 = 900.  

The MSE and MAE of the 7-day ahead forecast are also computed and tabulated in Table 4. Based 
on the result, it is observed that the best forecasting outcome for Malaysia datasets occurs when 900 
samples are analysed.  
 
4. Conclusion 

 
The NARNN time series model is a feedforward neural network that can deal with complex time series 
problems, such as forecasting COVID-19 cases in different countries. However, the appropriate set of 
network configurations must be determined before a neural network can produce accurate and reliable 
results. The parameters of the NARNN model include activation function, training algorithm, number 
of past values, and number of hidden neurons. In this study, the training algorithm of the NARNN model 
is fixed as Levenberg-Marquardt (LM) algorithm since it is recognised as an efficient algorithm for the 
NARNN model in previous research. The activation function, tansig with the number of past values and 
hidden neurons, will be chosen from 1 to 10. A grid search procedure is conducted to determine the 
most optimal combination of parameters for NARNN models.  

Real data of COVID-19 confirmed cases in Malaysia is collected and analysed. The raw data are 
preprocessed and extracted into different sample sizes (100, 500 and 900). Each prepared dataset is 
utilised as the input to train, validate and test the NARNN model with tansig as the activation function. 
The training, validation and testing of the built NARNN model is done until white noise is achieved by 
monitoring the autocorrelation and regression plots. From the output, it is noticed that the NARNN 
model with a tansig activation function and selected optimal past values, as well as hidden neurons, can 
provide prediction values close to actual values with low MSE and R-values near 1. In addition, the 
number of past values and hidden neurons affects the performance of the NARNN time series model, 
whereby tuning the number of past values and hidden neurons to the optimal value between 1 and 10 
based on the complexity of respective datasets enables NARNN time series model to perform at lower 
MSE and provide more accurate results. 

The data analysis proceeded with 7 days-ahead COVID-19 forecasting. Finally, the result shown 
with more data provides the best result in forecasting 7 days-ahead COVID-19 confirmed cases. As 
future work, the study can be further extended to investigate more parameters of the NARNN model in 
order to improve the forecasting performance of the NARNN model. Different activation functions can 
be applied in this context for the hidden and output layers since this study uses the same activation 
function. Besides, the number of past values and hidden neurons is tuned in the range of 1 to 10 in this 
research. The future study could work on a more comprehensive range of a number of past values and 
hidden neurons to observe the effect on NARNN time series model performance.  
 
 
 



Yu et. al/https://doi.org/10.22452/josma.vol5no2.6     Vol 5(2), 62-77. 2023 
 

76 
 

5. References  
 
Adedeji, P. A., Akinlabi, S., Ajayi, O., & Madushele, N. (2019). Non-linear Autoregressive Neural 

Network (Narnet) with SSA Filtering for a University Energy Consumption Forecast. Procedia 
Manufacturing, 33:176–183. 

Benmouiza, K. & Cheknane, A. (2013). Forecasting Hourly Global Solar Radiation Using Hybrid k-
means and Nonlinear Autoregressive Neural Network Models. Energy Conversion and 
Management, 75:561–569.  

Blanchard, T. & Samanta, B. (2020). Wind Speed Forecasting Using Neural Networks. Wind 
Engineering, 44(1):33–48. 

Chang, T.-J., Cheng, S.-J., Hsu, C.-H., Miao, J.-M., & Chen, S.-F. (2022). Prognostics For Remaining 
Useful Life Estimation in Proton Exchange Membrane Fuel Cell by Dynamic Recurrent Neural 
Networks. Energy Reports, 8:9441–9452. 

Chi, Y. N. (2021a). Modeling And Forecasting Long-Term Records Of Mean Sea Level At Grand Isle, 
Louisiana: SARIMA, NARNN, and Mixed SARIMA-NARNN Models. Journal of Applied Data 
Sciences, 2(2). 

Chi, Y. N. (2021b). Time Series Forecasting of Global Price of Soybeans Using a Hybrid SARIMA and 
NARNN Model: Time Series Forecasting of Global Price Of Soybeans. Data Science: Journal 
of Computing and Applied Informatics, 5(2):85–101. 

Dhamodharavadhani, S., Rathipriya, R., & Chatterjee, J. M. (2020). COVID-19 Mortality Rate 
Prediction for India Using Statistical Neural Network Models. Frontiers in Public Health, 8:441. 

Dorofki, M., Elshafie, A. H., Jaafar, O., Karim, O. A., & Mastura, S. (2012). Comparison of Artificial 
Neural Network Transfer Functions Abilities to Simulate Extreme Runoff Data. International 
Proceedings of Chemical, Biological and Environmental Engineering, 33:39–44. 

Ghazaly, N. M., Abdel-Fattah, M. A., & Abd El-Aziz, A. (2020). Novel Coronavirus Forecasting Model 
Using Nonlinear Autoregressive Artificial Neural Network. Journal of Advanced Science. 29. 
1831-1849. 

Gomez-Cravioto, D. A., Diaz-Ramos, R. E., Cantu-Ortiz, F. J., & Ceballos, H. G. (2021). Data Analysis 
and Forecasting of the COVID-19 Spread: A Comparison of Recurrent Neural Networks and 
Time Series Models. Cognitive Computation, pages 1–12. 

Istaiteh, O., Owais, T., Al-Madi, N., & Abu-Soud, S. (2020). Machine Learning Approaches for 
COVID-19 Forecasting. In 2020 International Conference on Intelligent Data Science 
Technologies and Applications (IDSTA), pages 50–57. IEEE. 

Jabbar, H. & Khan, R. Z. (2015). Methods to Avoid Over-Fitting and Under-Fitting in Supervised 
Machine Learning (Comparative Study). Computer Science, Communication and 
Instrumentation Devices, p. 70. 

Jeatrakul, P. & Wong, K. W. (2009). Comparing the performance of different neural networks for binary 
classification problems. In 2009 Eighth International Symposium on Natural Language 
Processing, pages 111–115. IEEE. 

JHU CSSE (2020). COVID-19 data repository by the center for systems science and engineering (csse) 
at johns hopkins university. https://github.com/CSSEGISandData/COVID-19. Retrieved on 27 
May, 2022. 

Kaleeswaran, V., Dhamodharavadhani, S., & Rathipriya, R. (2020). A Comparative Study of Activation 
Functions and Training Algorithm of Nar Neural Network for Crop Prediction. In 2020 4th 
International Conference on Electronics, Communication and Aerospace Technology (ICECA), 
pages 1073–1077. IEEE. 

Khankeh, H., Farrokhi, M., Roudini, J., Pourvakhshoori, N., Ahmadi, S., Abbasabadi- Arab, M., 
Bajerge, N. M., Farzinnia, B., Kolivand, P., Delshad, V., et al. (2021). Challenges to Manage 



Yu et. al/https://doi.org/10.22452/josma.vol5no2.6     Vol 5(2), 62-77. 2023 
 

77 
 

Pandemic of Coronavirus Disease (COVID-19) in Iran with A Special Situation: A Qualitative 
Multi-Method Study. BMC Public Health, 21(1):1–9. 

Kumar, D. A. & Murugan, S. (2018). Performance Analysis of NARX Neural Network 
Backpropagation Algorithm by Various Training Functions for Time Series Data. International 
Journal of Data Science, 3(4):308–325. 

Liu, Y., Starzyk, J. A., & Zhu, Z. (2007). Optimizing Number of Hidden Neurons in Neural Networks. 
EeC, 1(1):6. 

Liu, Z., Zuo, J., Lv, R., Liu, S., & Wang, W. (2021). Coronavirus Epidemic (COVID-19) Prediction 
and Trend Analysis Based on Time Series. In 2021 IEEE International Conference on Artificial 
Intelligence and Industrial Design (AIID), pages 35–38. IEEE.  

Molino-Minero-Re, E., Cardoso-Mohedano, J. G., Ruiz-Fern´andez, A. C., & Sanchez-Cabeza, J.-A. 
(2014). Comparison Of Artificial Neural Networks and Harmonic Analysis for Sea Level 
Forecasting (Urias Coastal Lagoon, Mazatlan, Mexico). Ciencias Marinas, 40(4):251–261. 

Namasudra, S., Dhamodharavadhani, S., & Rathipriya, R. (2021). Nonlinear Neural Network Based 
Forecasting Model for Predicting COVID-19 Cases. Neural Processing Letters, pages 1–21. 

Olney, B., Mahmud, S., & Karam, R. (2022). Efficient Nonlinear Autoregressive Neural Network 
Architecture for Real-Time Biomedical Applications. In 2022 IEEE 4th International Conference 
on Artificial Intelligence Circuits and Systems (AICAS), pages 411–414. IEEE. 

Patil, K., Deo, M., Ghosh, S., & Ravichandran, M. (2013). Predicting Sea Surface Temperatures in The 
North Indian Ocean with Nonlinear Autoregressive Neural Networks. International Journal of 
Oceanography, 2013. 

Pawlus, W., Karimi, H. R., & Robbersmyr, K. G. (2013). Data-Based Modeling of Vehicle Collisions 
By Nonlinear Autoregressive Model And Feedforward Neural Network. Information Sciences, 
235:65–79. 

Rahimi, I., Chen, F., & Gandomi, A. H. (2021). A Review on COVID-19 Forecasting Models. Neural 
Computing and Applications, pages 1–11. 

Rakitianskaia, A. & Engelbrecht, A. (2015). Measuring Saturation in Neural Networks. In 2015 IEEE 
Symposium Series on Computational Intelligence, pages 1423–1430. IEEE.  

Raturi, R. & Sargsyan, H. (2018). A Nonlinear Autoregressive Scheme for Time Series Prediction Via 
Artificial Neural Networks. Journal of Computer and Communications, 6(9):14–23. 

Saba, A. I. & Elsheikh, A. H. (2020). Forecasting The Prevalence of COVID-19 Outbreak in Egypt 
Using Nonlinear Autoregressive Artificial Neural Networks. Process Safety and Environmental 
Protection, 141:1–8. 

Saliaj, L. & Nissi, E. (2022). Artificial Neural Networks for COVID-19 Time Series Forecasting. Open 
Journal of Statistics, 12(2):277–290.  

Sarkar, R., Julai, S., Hossain, S., Chong, W. T., & Rahman, M. (2019). A Comparative Study of 
Activation Functions of NAR And NARX Neural Network for Long-Term Wind Speed 
Forecasting in Malaysia. Mathematical Problems in Engineering, 2019. 

Sheela, K. G. & Deepa, S. N. (2013). Review On Methods to Fix Number of Hidden Neurons in Neural 
Networks. Mathematical Problems in Engineering, 2013. 

Wu, Y.-C., Chen, C.-S., and Chan, Y.-J. (2020). The Outbreak of COVID-19: An Overview. Journal of 
the Chinese Medical Association, 83(3):217. 

Zheng, Y., Zhang, W., Xie, J., & Liu, Q. (2022). A Water Consumption Forecasting Model by Using a 
Nonlinear Autoregressive Network with Exogenous Inputs Based on Rough Attributes. Water, 
14(3):329. 

Zhou, L., Xia, J., Yu, L., Wang, Y., Shi, Y., Cai, S., & Nie, S. (2016). Using A Hybrid Model to Forecast 
the Prevalence of Schistosomiasis in Humans. International Journal of Environmental Research 
and Public Health, 13(4):355. 


	𝑀𝑆𝐸=1𝑛𝑡=1𝑛𝑦𝑡−𝑦𝑡2
	        (6)
	𝑀𝐴𝐸=1𝑛𝑡=1𝑛𝑦𝑡−𝑦𝑡
	(7)
	where ,𝑦-𝑡. is the observation at time 𝑡 and ,,𝑦.-𝑡. is the predicted values. MAE measures the average absolute deviation of forecasted values from original values. Like the MSE, the smallest MAE has the better forecast performance.

