
Chin and Goh/https://doi.org/10.22452/josma.vol6no1.2      Vol 6(1), 22-37. 2024 

 

22 
 

RESEARCH ARTICLE 

 
Boosting Cancer Dataset Performance with Mutual Information-Based 

Feature Prioritization  

 
Fung Yuen Chin1* and Yong Kheng Goh2 

 
1 Department of Physical and Mathematical Science, Universiti Tunku Abdul Rahman, Kampar, 

Perak, Malaysia 

 
 2 Department of Mathematical and Actuarial Sciences, Universiti Tunku Abdul Rahman, Kajang, 

Selangor, Malaysia 

 

*Corresponding author: chinfy@utar.edu.my 
 

 
Received 25 October 2023 

Accepted 19 January 2024 

Published 30 May 2024 

 

 
 

Abstract  

 

In the field of statistical modelling, mutual information is a crucial and common 

concept, suitable for tasks such as selecting the most important features or 

classifying data into different categories. Feature selection addresses the challenge 

of high-dimensional data in building effective predictive models by identifying 

relevant attributes while mitigating the curse of dimensionality. Previous studies 

have benchmarked the effectiveness of statistical models against established 

results. To enhance this, a new benchmark method is proposed, exploiting ranking 

features via mutual information scores. Mutual information score is used to 

understand the relationship between underlying data and variables. The 

performance of the classification depends on its information content, which 

directly affects the performance of the statistical model. The technique 

simultaneously determines the optimal feature quantity to guide the feature 

selection process. The validation of these selected features is conducted through Z-

score graphs. Experimental results show that this method can identify feature 

subsets better than using the full features by using the Support Vector Machine 

classifier. These advance promises to improve cancer analysis, enabling more 

sophisticated diagnostic and prognostic methods.  
 

Keywords: Classification, Dimension reduction, Feature selection 

 

   

1. Introduction 

In the world of cancer data analysis, leveraging predictive models to generate important insights is 

critical. However, the complexity of high-dimensional data poses challenges due to the curse of 

dimensionality (Shi et al., 2022). Effective feature selection becomes an important strategy to deal with 

this complexity, aiming to identify relevant attributes while mitigating dimensionality-related issues 

(Adeboye et al., 2023). 

Previous research has established practices for evaluating the effectiveness of statistical models 

against established benchmarks (Khaire & Dhanalakshmi, 2022; Khairuddin et al., 2023). However, 

there is still room for improvement, so a new reference benchmark method is proposed. This approach 

provides a novel dimension to this work by exploiting the prioritization of features via mutual 

information scores. 

The amount of information in the data set directly affects the performance of the classification 



Chin and Goh/https://doi.org/10.22452/josma.vol6no1.2      Vol 6(1), 22-37. 2024 

 

23 
 

model (Jiang et al., 2023). Therefore, determining the reference feature quantity becomes crucial and 

becomes a guiding principle in the complex feature selection process. To verify the effectiveness of the 

selected features, Z-score plots were used to assess their importance. Empirical results highlight the 

effectiveness of this approach, revealing its ability to identify a subset of features that exceeds the 

performance achieved by including all features. This advancement will revolutionize the landscape of 

cancer data analysis, driving the development of more sophisticated diagnostic and prognostic methods.  

The increase in the dimensionality of cancer datasets creates challenges in building effective 

statistical models (Chlioui et al., 2021). The proposed method solves this problem by facilitating the 

selection of relevant attributes, thus mitigating the curse of dimensionality. Although previous research 

has established benchmarking practices for statistical models, there is still room for improvement. The 

motivation for this study is to introduce a new “benchmark” approach that surpasses existing methods 

and sets a higher standard for model performance evaluation.  

Recognizing that the quality of a dataset is closely related to its information content, this study 

attempts to exploit this connection. By strategically selecting features based on mutual information 

scores, this approach aims to improve information quality and subsequently enhance statistical model 

performance. Advances in this approach fill the need for more accurate diagnostic and prognostic 

methods in cancer analysis. By identifying subsets of features that outperform the full attributes, this 

research provides a practical tool for improving cancer analysis techniques and advancing medical 

decision-making. 

The main goal of this study is to develop a new statistical model using the Support Vector 

Machine classifier for feature selection in high-dimensional cancer datasets. The proposed method ranks 

the features using mutual information scores, to identify the most relevant features to reduce the 

dimension of the data. By determining the number of reference features required for statistical 

modelling, the proposed method, including the identification and ranking of relevant features, enhances 

the effectiveness of cancer analysis models, surpassing traditional baselines and yielding overall 

improved performance. This feature selection method ensures more efficient and effective results in the 

statistical modelling process. (Ahuja & Sharma, 2021; Jimoh et al., 2021; Okwonu et al., 2023). 

Mutual information has been widely used for feature selection in building statistical models. 

Battiti (1994) combined mutual information with a greedy selection method and proposed the mutual 

information-based feature selection (MIFS) algorithm. This method shows that mutual information can 

effectively measure relationships between features, including linear and nonlinear relationships. Peng 

et al. (2005) introduced a dimension reduction technique that enhances the relationship between features 

and labels while minimizing the redundancy between features. This proposed method called “minimum 

redundancy maximum correlation” (mRMR), focuses on selecting features that carry information about 

the class labels and do not reveal redundancy with each other. 

MIFS does not take into account the interdependencies between features, which may lead to 

suboptimal feature subsets. mRMR often has difficulty handling high-dimensional data, and due to its 

greedy search approach, it may not effectively capture the most informative features. It doesn't scale 

well to large feature sets. 

The concept of Joint Mutual Information (JMI) revolves around evaluating the collective mutual 

information shared by selected features and the categories they belong to (Yang and Moody, 1999). 

Bennassar et al. (2015) introduced the joint mutual information maximization (JMIM) and normalized 

joint mutual information (NJMIM) techniques. JMIM identifies features by gradually maximizing the 

mutual information between features and classes by considering previously selected features.  

NJMIM enhances JMIM by normalizing mutual information scores and facilitating fair 

comparisons between different datasets. These methods strategically exploit the mutual information 

shared between features and class labels to help extract relevant and unique features, thereby improving 

data analysis and classification performance. JMI can be computationally expensive when processing 
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large datasets, making it impractical for some real-world cancer datasets. It also doesn't fully account 

for functional redundancy.  

JMIM may be sensitive to the initial feature subset and may not always converge to the globally 

optimal feature set. It may miss important features or select redundant features. While NJMIM solves 

some of the problems of JMIM, it still has similar limitations in terms of initialization sensitivity and 

potential convergence issues. Its performance depends heavily on correct parameter tuning. 

Liping (2015) introduced a method called conditional dynamic mutual information (CDMI) to 

address the limitations of traditional mutual information-based feature selection algorithms. CDMI 

overcomes the inaccuracy caused by fixed evaluation by dynamically evaluating mutual information 

throughout the selection process. It improves measurement accuracy by accurately assessing feature 

importance and information content by excluding features from further consideration after feature 

selection. 

Besides mutual information-based techniques applied in building statistical models, in clinical 

medicine, multidimensional time series data are often used to analyze disease progression through data 

mining techniques such as classification and prediction. However, high data dimensionality may lead 

to inaccurate probability density distributions and increase computational complexity. This, combined 

with redundant and irrelevant features, hinders classification performance. Fang et al. (2015) proposed 

a method that combines Kozachenko-Leonenko entropy estimation for feature extraction with a 

selection algorithm based on class separability to address this issue. 

Proteomic data analysis using mass spectrometry is an effective method for early disease 

diagnosis, especially in tumour detection. However, this method is challenged by limited samples, high 

dimensionality and noise interference. To address this problem, Qin et al. (2017) introduced a feature 

selection method combining support vector machine (SVM) and shape analysis. Unlike traditional 

techniques, their method considers both feature interactions and feature-class-label relationships, 

thereby improving classification accuracy. 

Sluga and Uros (2017) introduced a feature selection technique based on quadratic mutual 

information, which depends on Cauchy-Schwarz divergence and Renyi entropy. This method uses a 

Gaussian kernel function to estimate direct quadratic mutual information and is good at capturing 

second-order nonlinear relationships. Unique advantages include seamless analysis of discrete and 

continuous data without the need for discretization and parameter-free design. Comparative evaluation 

with MIFS, MRMR and JMI highlights its efficiency and effectiveness in the fields of classification and 

regression. 

Multi-label learning is common in fields such as information retrieval and bioinformatics, aiming 

to cope with noisy, redundant and high-dimensional data sets. This situation is exacerbated by the curse 

of dimensionality. Feature selection is an effective data preprocessing technique that has attracted 

attention for its role in improving computational efficiency, prediction accuracy, and data 

understanding. Many information theory-based feature selection methods are suitable for multi-label 

classification. However, many methods rely on heuristics or adaptations of single-label methods.  

To fill up this gap, Sun et al. (2019) proposed a method based on mutual information to optimize 

fast solutions through constrained convex optimization. It contains label information, takes label 

correlations into account, and demonstrates the functionality and efficiency of different multi-label 

datasets. Due to its computational efficiency and result interpretability, feature selection plays a key role 

in dimensionality reduction in applications such as data mining and machine learning.  

Wang et al. (2019) identified the limitation of the existing methods only considering individual 

relationships between candidate features and class vectors. They introduced the concept of equivalent 

partitioning and adopted the mutual information gain maximization (MIGM) criterion to evaluate 

candidate features.  

Multi-label learning often involves high-dimensional data, leading to the "curse of 
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dimensionality". To alleviate this situation, effective preprocessing through feature selection is crucial. 

Xiong et al. (2021) introduced a method to integrate label distribution learning into multi-label feature 

selection. This explains the difference in label importance. From a computing perspective, fuzzy 

similarity-based label enhancement algorithms convert logical labels into distributions. The 

corresponding feature selection algorithm uses fuzzy mutual information to measure feature importance. 

In the field of multi-label data, the urgent focus on dimensionality has triggered great interest in 

feature selection. Existing information theory-based methods usually focus on feature correlations, 

which are determined solely by the information contribution of the features to the label set. However, 

they ignore two fundamental aspects: the rate of change of undetermined information and determined 

information. To address this issue, Hu et al. (2022) introduced a new feature correlation term, weight-

based correlation (RW). The term covers both types of rates of change and takes into account their 

positive or negative impact on the assessment of relevance. Based on this, a multi-label feature selection 

method - correlation-based weighted feature selection (RWFS) is proposed. 

CDMI can have difficulty handling noisy or incomplete data because it relies on accurate 

estimation of conditional dependencies, which can be challenging in such cases. MIGM does not 

consider feature redundancy and may select similar features, which may not significantly contribute to 

the statistical model performance. RW methods may not effectively capture the complex relationships 

between features in cancer data. It may not account for nonlinear interactions or hidden patterns. 

Chronic kidney disease (CKD) is a life-threatening disease with a global impact. Early prediction 

and accurate classification are critical for effective management. Savitha and Rajiv (2023) introduced 

correlation-based weighted composite features (CWCF) and feature significance-based weighted 

composite features (FSWCF) algorithms to generate composite features from CKD indicators. 

CWCF may not perform well when there are non-linear relationships or complex dependencies 

between features. It relies heavily on linear dependencies. FSWCF may be sensitive to the choice of 

significance measure and may perform poorly when the significance measure fails to capture the true 

importance of features in cancer data. 

In recent decades, researchers have commonly used mutual information for feature selection to 

process high-dimensional data. However, previous research has mainly focused on identifying the most 

relevant features for building statistical models. Notably, there is a gap in the literature in determining 

the optimal number of features required to build statistical models and establish reference benchmarks. 

In order to solve the limitations of existing feature selection methods and lay a solid foundation 

for the statistical model, this study has made certain improvements. The proposed method involves 

feature ranking to select the most relevant features to efficiently reduce the high-dimensional data. These 

relevant features are then used to establish the reference performance of the statistical model. The results 

show that the performance of the statistical model is better than the statistical model using the full 

features. 

 

2. Methods 

2.1 Mutual Information 

Mutual information is used in information theory and is also important in statistics, especially in the 

fields of probability theory, machine learning, and data analysis (Zhu & Zeng, 2015). Its basic function 

is to evaluate the correlation between any two variables. It quantifies the extent to which understanding 

the value of one variable can reduce the inherent uncertainty associated with another variable. In cancer 

data analysis, especially in the field of feature selection, mutual information plays an important role. 

In the fields of machine learning and statistics, mutual information is an important tool for feature 

selection in statistical models. Specifically, when there is a large amount of mutual information between 

a feature and the target variable, it indicates that the feature is important and informative enough to be 

included in the model. Mutual information plays an important role in dimensionality reduction, such as 
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feature extraction and manifold learning. In this case, it helps to reduce the dimensions or select the 

features that are most relevant to the data. 

The mutual information between two random variables X and Y is defined as: 

𝐼(𝑋; 𝑌) = ∑ 𝑝(𝑥, 𝑦)lo g
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)𝑥,𝑦                                                                     (1) 

where 𝐼(𝑋;  𝑌) is the mutual information between X and Y, 𝑝(𝑥, 𝑦) is the joint probability distribution 

of X and Y and p(x) and p(y) are the marginal probability distributions of X and Y respectively.  

 

2.2 The Reference Benchmark based on Prioritized Features 

The proposed method defines the reference benchmark using feature ranking based on mutual 

information. Mutual information can evaluate the relationships between features, regardless of their 

linearity. When the mutual information is the highest, indicates there is a strong connection between the 

two features. To establish the reference benchmark, the mutual information of all features related to the 

class label is calculated, and then the features are ranked accordingly.  

The most critical features are those that are most closely related to the class labels and represent 

them effectively. By incorporating more of these key features, a compact subset is formed that can 

robustly represent class labels. Through classifier performance evaluation, adding more features will 

improve the classification performance. This insight helps identify specific points in prioritized features 

where classification performance peaks, indicating the ideal feature quantity to achieve optimal 

classification results. 

Given that microarray data often contain high-dimensional uncorrelated features and noise, it 

becomes critical to establish a more effective benchmark by focusing on relevant features, which are 

determined through mutual information and their correlation with class labels. The emphasis on relevant 

features is intended to go beyond classification methods that use full feature sets. This strategy can 

determine the best benchmark through feature ranking. 

Additionally, it helps to build the necessary feature quantity (denoted as “k”) for optimal 

performance. The feature quantity k is the key factor for classification. Previous research has mainly 

focused on selecting features but lacks guidance on determining the k feature benchmark to enable fair 

comparison of feature selection methods and enhance their evaluation. 

 

2.3 Algorithm on Prioritized Features 

Mutual information is an important measure to evaluate the similarity between attributes and labels. A 

higher score of mutual information indicates a stronger correlation between these elements. The scores 

of all features associated with class labels in the microarray dataset are calculated by using equation (1). 

At first, the experimental data is normalised into the range [-1, 1]. Each feature and class label 

was then divided into three equal bins to classify the data set as low expression, normal expression, or 

high expression.  

This binning method has the advantage of seamlessly handling missing data since the mutual 

information calculation relies only on the frequency counts of the remapped data, rather than the original 

values. It is important to note that mutual information does not take into account the specific relationship 

between attributes and labels, which makes it suitable for both linear and nonlinear scenarios. Features 

are then ranked based on their mutual information scores, and a graph depicting feature accuracy versus 

cumulative ranking is drawn.  

The point on the graph with the highest accuracy determines the reference benchmark, indicating 

the feature quantity to use in the predictive model. Subsequently, evaluation tools such as confusion 

matrices and Receiver Operating Characteristic (ROC) curves are used to evaluate the performance of 

the selected subset of features. To prove that features are not randomly selected, a Z-score is applied to 
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a subset of compact features. Figure 1 shows the flowchart of searching the reference benchmark and 

the feature quantity. 

 

 
Figure 1: Flowchart of searching the reference benchmark and the feature quantity. 

 

Features selected by the proposed method will be used in a range of classifiers, including support 

vector machines (SVM), K-nearest neighbours (KNN) and decision trees (DT). This utilization will 

facilitate the creation of multiple statistical models, allowing for a comparative assessment of their 

predictive capabilities. In this study, the performance of statistical models was evaluated by applying 

different feature selection techniques, including regression and mRMR. The feature quantity selected 

by the proposed method, regression and mRMR will be the same across these evaluations. Subsequently, 

these results are compared with statistical models built using support vector machines (SVM), K-nearest 

neighbours (KNN) and decision trees (DT).  

 

2.3.1 Support Vector Machine 

Support vector machine (SVM) is a machine-learning method related to statistical modelling (Pisner & 

Schnyer, 2020). It operates as a supervised learning algorithm and is typically applied to tasks involving 

classification and regression. The core concept of SVM is to discover an optimal hyperplane that 

effectively partitions the data into different classes while maximizing the separation between these 

classes.  

Given the n data points in the training dataset as: 

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), (𝑥4, 𝑦4) … … (𝑥𝑛, 𝑦𝑛), }                                                      (2) 

where 𝑦𝑛 is in the range of -1 to 1, is used to indicate which classes should 𝑥𝑛 belong to. Each 𝑥𝑛 is a 

p-dimensional real vector. Next, n represents the number of samples. The equation of the hyperplane is 

defined by: 

 𝑤𝑇𝑥 + 𝑏 = 0                                                                           (3) 

where b is scalar and w is a p-dimensional vector. The separating hyperplane is perpendicular to the 

vector w. The parameter b is added to increase the margin.   
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The hyperplane tends to pass through the origin when b is absent. This causes the restriction of 

the solution. The parallel hyperplanes, 𝐻1, and 𝐻2 can be defined as:  

 𝐻1 =  𝑤𝑇𝑥 + 𝑏 = 1                                                        (4) 

𝐻2 =  𝑤𝑇𝑥 + 𝑏 = −1.                                                     (5) 

SVM problem can be formulated as: 

𝑤. 𝑥𝑖 − 𝑏 ≥ 1    𝑜𝑟   𝑤. 𝑥𝑖 − 𝑏 ≤ −1.             (6) 

By combining these two formulae, it can be written as: 

 𝑦𝑖(𝑤. 𝑥𝑖 − 𝑏) ≥ 1, 1 ≤ 𝑖 ≤ 𝑛.                                       (7) 

The optimal hyperplane separating the data for which |𝑤| should be minimized to maximize the 

separability: 

𝑀𝑖𝑛 𝜑(𝑤) =
1

2
‖𝑤‖2                                                      (8) 

subject to the constraints: 

 𝑦𝑖(𝑤𝑇 . 𝑥𝑖 + 𝑏) ≥ 1, 𝑖 = 1,2, … . . 𝑛                                (9) 

where 𝜑(𝑤) is essentially half of the squared Euclidean norm of the weight vector. 

This optimization problem can be solved by using Lagrange’s function: 

𝐿(𝑤, 𝑏, 𝛼) =  
1

2
‖𝑤‖2 − ∑ 𝛼𝑖(𝑦𝑖(𝑤𝑇 . 𝑥𝑖 + 𝑏)𝑛

𝑖=1 − 1)                        (10) 

where 𝛼𝑖 represents the Lagrange multiplier. The saddle points must be found to minimize the 

Lagrange equation in (10) for w and b and have to be maximized for non-negative 𝛼𝑖. The saddle point 

can be obtained by partial differentiation: 

 
𝜕𝐿

𝜕𝑤0
= 0, 𝑤0 = ∑ 𝛼𝑖

𝑛
𝑖=1 𝑦𝑖𝑥𝑖                                                               (11) 

 
𝜕𝐿

𝜕𝑏0
= 0, ∑ 𝛼𝑖

𝑛
𝑖=1 𝑦𝑖 = 0.                                                           (12) 

Substitute the equation (11) and equation (12) into equation (10). Now changing the primal 

form to dual form which only consists 𝜶 as the parameters. 

𝐿(𝛼) =  ∑ 𝛼𝑖 − ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
𝑇𝑥𝑗

𝑛
𝑖=1                                          (13) 

subject to the constraints: 

∑ 𝛼𝑖𝑦𝑖 = 0,𝑛
𝑖=1               𝛼𝑖 ≥ 0,           𝑖 = 1,2,3 … 𝑛.                             (14) 

With this, an optimal hyperplane can be found and used for separating different classes in a 

dataset. 

 

2.3.2 K-nearest neighbours 

K-Nearest Neighbors (KNN) is an effective machine-learning algorithm for classification and regression 

tasks (Zhang, 2016). It follows the principle, where the prediction of a new data point relies on the 

characteristics of its nearest neighbors in the training data set. KNN determines the class of a new data 

point by evaluating the class labels of its k nearest neighbours. The class with the most neighbours 

becomes the predicted class for the new data point. In a regression task, KNN computes the average of 

the target variable values of the k nearest neighbours and assigns that average as the prediction for a 

new data point. 
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The value of k determines the number of neighbours considered when making predictions. Higher 

k improves model stability but may smooth out fine-grained patterns in the data. In contrast, lower k can 

capture local variations but may be sensitive to noise. In order to identify the closest data point to a 

specific query point, the distance between the query point and all other data points will be calculated. 

These distance measures play a crucial role in establishing decision boundaries, which in turn divide 

query points into different regions. The distance functions in KNN are given as: 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √∑ (𝑦𝑖 − 𝑥𝑖)2𝑛
𝑖=1                                                      (15) 

where 𝑥𝑖and 𝑦𝑖 are the data points. 

 

2.3.3 Decision trees 

A decision tree is a tree-like model used for classification and regression tasks in machine learning and 

statistics (Somvanshi et al., 2016). Decisions in a decision tree are selected by a series of conditions 

applied to the input data. Each node in the tree represents a decision or evaluation related to a specific 

characteristic or attribute. 

The decision-making process can be evaluated using a series of "if-else" statements. At each 

internal node, the condition is evaluated, and depending on whether it is true or not, the tree continues 

to the next relevant node, finally reaching the leaf node where the final decision or prediction is made. 

The configuration of a decision tree and the criteria for specifying each node depends on the specific 

algorithm used, such as Classification and Regression Trees (CART). These algorithms employ various 

statistical measures such as Gini impurity or information gain to determine the most informative 

conditions for splitting the data at each node and constructing a valid decision tree. 

 

2.4 Z-Score 

Given the relatively small sample sizes in microarray data analysis, feature selection may be affected 

by chance. In critical applications such as cancer diagnosis and treatment, algorithms that reliably select 

relevant features are needed. This study uses Z-score analysis to evaluate the robustness of the algorithm 

in feature selection (Li et al., 2001; Jirapech-Umpai & Aitken, 2005). Z-scores quantify the importance 

of selected features. High Z-score values indicate non-random feature selection.  

Furthermore, an algorithm is considered more robust if it selects features with higher Z-score 

values among the selected features. The Z-score of the feature is defined as  

𝑍 =
𝑓𝑖−𝐸(𝑓𝑖)

𝜎
                                                                           (16)  

where 𝑓𝑖 was the frequency of the feature selected, and 𝜎 was the standard deviation of 𝑓𝑖. Let N be the 

total feature quantity and 𝐸(𝑓𝑖) was the expected number of times feature i was selected and 𝑓𝐶̅ be the 

average number of selected features, then the probability of feature i was selected as 
𝑓�̅�

𝑁
 and  

𝐸(𝑓𝑖) = 𝑃(𝑓𝑖)𝐾                                                                     (17) 

𝜎 = √𝑃(𝑓𝑖)(1 − 𝑃(𝑓𝑖))𝐾                                          (18) 

where K is the number of replicates. 

 

2.5 Assessment method 

The accuracy of the prioritized features measured using the SVM was defined as follows:  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 −
𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
.                         (19) 
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The value of the accuracy ranges from 0-100%. The receiver operating characteristic curve (ROC) 

illustrates the trade-off between a true positive rate and a false positive rate at different thresholds. It 

provides insights into the model's ability to differentiate between positive and negative cases at different 

decision boundaries. The area under curve (AUC) measures the overall ability of a model to distinguish 

between different classes or categories. Higher AUC values indicate better discrimination and model 

performance. 

 

3. Results and Discussion 

3.1 Dataset 

This study used publicly available microarray data from two reputable sources: the UCI Machine 

Learning Repository and the National Center for Biotechnology Information (NCBI). These datasets 

are shown in Table 1 and consist of two binary classification datasets and one multi-class classification 

dataset. These datasets were chosen because of their high dimensionality, small sample size, and 

widespread use in published studies, which makes them well-suited for applying our proposed algorithm 

to establish a reference benchmark. 

 

Table 1. Summary of the downloaded dataset. 

Dataset No. of attribute No. of sample Type of classification 

Prostate cancer 2135 102 Binary 

Lung cancer 1626 181 Binary 

Skin cancer 22215 15 3 classes 

 

The process begins by randomly dividing the full data set into two subsets: training and test sets, 

with a ratio of 7:3. This ratio is a common choice and widely used in machine learning. The training set 

includes the full features, represented by 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} and the N-dimensional class C. These 

training samples serve as input to the algorithm. The next step involves normalizing the training set so 

that its values fall in the range [-1, 1]. To achieve this, each feature is partitioned into three equal bins.  

Additionally, labels are ordered based on the number of labels they represent. The algorithm 

computes the joint probability mass function for each feature and label. To determine the best 

benchmark for all datasets, the feature ranking method outlined in Section 3 is adopted. The whole 

process is repeated 50 times and the average score of mutual information of each feature is calculated. 

Repeating this process 50 times can be used as a strategic approach to enhance the robustness and 

reliability of performance or feature importance estimates. This repetition helps mitigate the effects of 

random variation, thereby improving the stability of machine learning. 

 

3.2 Reference Benchmark 

To establish a reference benchmark for the data, the algorithm outlined in Section 3 will be employed. 

Figures 2-4 show the performance of prioritized features in prostate cancer, lung cancer, and skin cancer 

datasets. From the outcome of the algorithm, the highest accuracy will serve as the reference benchmark 

for the dataset. This reference benchmark aligns with the feature quantity needed to attain it. 

Importantly, the optimality is often not achieved using the full feature set as a benchmark.  

Full-featured benchmarks will always produce lower accuracy levels compared to the proposed 

reference benchmarks. Including all features simultaneously introduces redundancy and noise into the 

model, causing unpredictable fluctuations in the accuracy of the statistical model. As a result, the overall 

accuracy of the statistical model decreases. These findings provide clear insights into how to determine 

the reference benchmarks and the feature quantity required to reach peak performance levels. 
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Figure. 2. The performance of the prioritized features for prostate cancer data set. 

 

 
Figure 3. The performance of the prioritized features for lung cancer data set. 

 
Figure 4. The performance of the prioritized features for the skin cancer dataset. 
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Table 2 shows the comparison between the benchmark accuracy achieved when using the full 

feature set and the reference benchmark obtained by the proposed method explained in Section 2.3. It 

also indicates the feature quantity required to reach this reference benchmark. After removing redundant 

and noisy features, the prediction model performance is improved. This allows the model to focus on 

relevant information, reduce overfitting, improve generalization capabilities, and enhance overall 

stability. Therefore, this process helps in making consistent and reliable predictions across different data 

sets. The results consistently show that the proposed algorithm consistently outperforms the benchmark 

accuracy achieved using all features. 

 

Table 2. The benchmark uses full features and the reference benchmark with the feature quantity. 

Dataset Benchmark Full features 
Reference 

benchmark 
No. of features 

Dimension to 

reduce 

Prostate cancer 91.33% 2135 94% 330 84.54% 

Lung cancer 100% 1626 100% 9 99.45% 

Skin cancer 66.67% 22215 86.67% 2 99.99% 

 

Furthermore, it significantly reduces the feature quantity required to achieve a reference 

benchmark compared to full features. These selected features are obtained by the proposed algorithm 

and ranked according to their relevance, ensuring that they contain the most relevant information. This 

highlights a significant reduction in data dimensionality, equivalent to a 90% reduction in the original 

size. Therefore, the reduction in the feature quantity obtained by the proposed algorithm is expected to 

enhance the predictive power of the model as it reduces the complexity associated with a large number 

of dependent variables.  

 

3.3 Performance of the Statistical Model  

The feature quantity obtained by the algorithm is crucial for feature selection. There is a need to ensure 

that any feature selection method does not exceed a predetermined feature quantity while maintaining 

the same level of accuracy. Therefore, a new recommendation is introduced specifying the maximum 

feature quantity allowed during feature selection. This approach differs from previous research 

practices, which used all features to establish a benchmark, resulting in uncertainty about the ideal 

feature quantity for a predictive model. This new approach has an advantage in solving this problem. 

Table 3 provides the results of 10-fold cross-validation with the average accuracy (Acc) when 

using different classifiers such as support vector machine (SVM), K-nearest neighbour (KNN), and 

decision tree (DT). These results show that the proposed method performs better than mRMR and 

regression methods when selecting the same feature quantity. In this study, mRMR is only applied to 

binary datasets. 

 

Table 3: The 10-fold cross-validation and average accuracy using SVM, KNN and DT. 

Dataset Method SVM-CV SVM-Acc KNN-CV KNN-Acc DT-CV DT-Acc 

Prostate cancer 

Proposed 

Regression 

mRMR 

93.24 

91.67 

91.67 

94 

92.67 

86.45 

90.99 

88.61 

89.58 

89.03 

86.67 

84.52 

80.85 

80.28 

84.23 

83.87 

82 

78.06 

Lung cancer 

Proposed 

Regression 

mRMR 

99.21 

97.64 

98.74 

100 

98.15 

97.78 

98.43 

98.43 

98.11 

100 

98.52 

98.15 

95.59 

94.80 

95.59 

97.78 

96.67 

94.07 

Skin cancer 
Proposed 

Regression 

83.33 

60 

100 

86.67 

86.67 

70 

85 

75 

75.00 

56.67 

66.67 

6.67 
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3.4 Evaluation of the Statistical Model  

Table 4 provides the confusion matrices and AUC for the three datasets. The AUC for the three datasets 

are above 0.9.  

 

Table 4. The output of the confusion matrix and the ROC curve. 

Dataset TP TN FP FN Prediction speed Training time AUC 

Prostate cancer 33 31 6 2 34 obs/sec 13.087 sec 0.94 

Lung cancer 105 21 1 0 130 obs/sec 9.5591 sec 1 

Skin 5 2 3 2 0.04 obs/sec 962.58 sec 0.97 

 

3.5 Z Score of the Selected Features 

Various feature selection methods face the same challenge: determining whether the selected features 

are consistent or contribute to the predictive model. To address this issue, the Z-score is used to evaluate 

the features selected by the proposed algorithm. Due to the relatively small sample size of our 

microarray data, Z-scores can be used as a reliable means of evaluating selected characteristics, ensuring 

that the selected features are not the result of chance. 

The Z-score is a metric that assigns higher values to features that are truly important to the 

predictive model (as opposed to randomly selected features). When analysing the Z-scores associated 

with features in the dataset, it helps to identify and confirm the truly important features. Features that 

are truly representative and necessary for the predictive model will produce high Z-score values. 

Therefore, the Z-score indicates that the selected features are relevant and not chosen randomly. Figure 

5-7 shows Z-scores plotted against the features of each data set. 

 

 
Figure 5.  Z-score versus the features for the prostate data set 
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Figure 6. Z-score versus the features for lung cancer data set 

 

 
Figure 7. Z-score versus the features for skin cancer data set 

 

4. Conclusion 

In this study, mutual information has been use for feature selection. Mutual information offers several 

advantages in this regard. It can evaluate the relationship between features and class labels, whether 

they are linear or non-linear, making it versatile. Furthermore, mutual information can be calculated 

without problems even when dealing with missing data. Unlike some statistical methods that rely on the 

assumption of normality, mutual information does not require such an assumption. 

Features are evaluated based on their mutual information scores, with higher scores indicating 

more information content. The results show that the reference benchmark that excludes irrelevant, 

redundant, and noisy features outperforms the benchmark that includes all features. This reference 

benchmark also determines the feature quantity required to build the predictive model. This study uses 

feature selection techniques and compares benchmarks using all features, emphasizing the evaluation 

of current methods and comprehensive benchmarks. 

The proposed method defines the reference benchmark of a dataset before selecting features to 

build a predictive model. The robustness of selected features is evaluated using Z-scores to ensure they 
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were not randomly chosen. Subsequently, the sensitivity tests on the predictive model using ROC curves 

and the area under the curve to measure model effectiveness. The proposed algorithm, based on mutual 

information scores, assists researchers in establishing a more informative benchmark, which in turn 

impacts the predictive model's performance. The proposed algorithm applies to high-dimensional data 

before constructing a statistical model. 

Future research can explore the relationships between selected features by building network 

models using mutual information. Furthermore, addressing the feature selection problem under tie 

conditions, where the contribution of features to label categories may vary, deserves further study. 

Merging two datasets to increase sample size and information content is an upcoming challenge. Feature 

selection in small sample scenarios is also a pressing issue. Finally, addressing the imbalanced class 

problem in feature selection is crucial to prevent prediction models from being biased toward specific 

classes. 
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