
Crawling Ajax-Based Web Applications: Evolution And State-Of-The-Art. pp 35-47

35

Malaysian Journal of Computer Science. Vol. 31(1), 2018

CRAWLING AJAX-BASED WEB APPLICATIONS: EVOLUTION AND STATE-OF-THE-ART

Shah Khalid
1
, Shah Khusro

2
, Irfan Ullah

3

1School of Computer Science and Communication Engineering, Jiangsu University, China

2,3Department of Computer Science, University of Peshawar, 25120, Pakistan

Email: shahkhalid@ujs.edu.cn1, khusro@uop.edu.pk2, cs.irfan@uop.edu.pk3

DOI: https://doi.org/10.22452/mjcs.vol31no1.3

ABSTRACT

The innovation of AJAX resulted in more responsive, interactive and faster web applications due to the clever

amalgamation of JavaScript, HTML, and Cascading Style Sheets (CSS). However, from the user’s perspective,

this achievement places many challenges before web search engines. One major challenge is due to the

complexities in crawling such web applications because multiple states are associated with one uniform

resource locator (URL) that cause a mismatch with search model of web search engines, where a web document

is uniquely identified by a single unique URL with a single state. Crawling AJAX-based web applications means

giving strength and capability to web search engines so that information produced in these highly-interactive

web applications is downloaded and indexed. The need here is to investigate the technicalities of AJAX that

shatter the metaphor of a web page which the current web search engine utilize during crawling in order to

improve the capabilities of web search engines. Although some academic tools have been developed, they

produce some false positives which greatly affect the performance of web search engine. We aim to investigate

AJAX and AJAX-based web applications as well as the state-of-the-art in crawling these applications along with

some prominent issues, challenges and recommendations.

Keywords: AJAX, Crawling, Document Object Model (DOM), Information Retrieval .

1.0 INTTRODUCTION

The World Wide Web is a giant source of information in which a continuous change occurs in the way of
information storage, retrieval and display. [1]. Simple HTML pages are now being replaced with AJAX-
embedded web pages making information retrieval (IR) challenging because of complexities in executing
JavaScript, constructing the navigation model and analysis of Document Object Model (DOM)[2]. AJAX,
which is short for Asynchronous JavaScript and XML (Extensible Markup Language), is one of the prominent
new techniques that are being used to develop rich and more interactive web applications such as Facebook,
YouTube and Google Maps. Unlike a new programming, scripting language or technology, AJAX is a new way
to think, design and develop web applications [3, 4]. As content is dynamically and asynchronously produced in
AJAX-based web applications, web crawlers are unable to detect AJAX event and execute calls just like humans
do using a web browser. Furthermore, a lot of applications on the Web are AJAX-based and are least searchable.
A methodology is needed to present content produced by these applications to crawlers for indexing purposes
just like in traditional Web IR.

A lot of research has already explored the technical aspects of AJAX, challenges and the benefits it provides to
web application developers. However, these articles are limited in evaluating and comparing the relative
performance of AJAX web crawlers. In this review article, we critically and analytically review the available
literature in order to report the state-of-the-art in crawling AJAX-based web applications along with some
prominent issues and challenges. We also briefly discuss the nature of AJAX-based web applications and their
differences from traditional web applications. We also cover the similarities and differences between traditional
web crawlers and existing AJAX crawlers as well as highlight the limitation in AJAX crawlers. For this
purpose, we searched the major Computer Science digital libraries and other related databases to collect relevant
articles that best describe this new technology. We carefully reviewed and analyzed all the selected articles and
reported the state-of-the-art accordingly. We hope that this research paper will open new research avenues for
researchers interested in this domain. Rest of the paper is organized as follows: Section 2 presents the journey

mailto:shahkhalid@ujs.edu.cn
mailto:cs.irfan@uop.edu.pk3
https://doi.org/10.22452/mjcs.vol31no1.3

Crawling Ajax-Based Web Applications: Evolution And State-Of-The-Art. pp 35-47

36

Malaysian Journal of Computer Science. Vol. 31(1), 2018

from conventional web applications to AJAX-based web applications focusing on the philosophy behind AJAX,
the underlying differences of AJAX-based web applications from traditional web applications and some merits
and demerits of AJAX-based web applications. Section 2 also contributes an evaluation framework for
comparing traditional web application model with AJAX-based web application model. Section 3 presents
crawling traditional as well as AJAX-based web applications along with its importance, the behavior of these
applications towards crawlers and an evaluation framework for comparing different AJAX crawlers.

2.0 FROM WEB APPLICATIONS TO AJAX-BASED WEB APPLICATIONS

In the beginning of the Web in 1990s, web pages were static and updating a portion of the page required
reloading the whole page from the server, resulting in an increase in refresh ratio as well as greater consumption
of the bandwidth. This was a great impediment, and researchers started thinking of making web applications
faster and more productive just like desktop applications. To overcome these problems, AJAX was introduced in
2005 and standardized by World Wide Web Consortium (W3C) in 2006 [4]. Because of its rich interactivity
with client-side, AJAX attracted developers and researchers in a very short time interval and resulted in an
explosion of questions about how to use AJAX in web applications [4]. Based on studies presented in [4, 5], we
can plot the historical timeline of AJAX as shown in Fig. 1. Most of the modern web applications have started
using AJAX as it provides very fast asynchronous communication with the client-side. Today, many popular
companies are using AJAX e.g., Google, Yahoo and Microsoft in their applications.

1991 1995 2005

HTML JS AJAX

World Wide Web SOAP

HTML
XML

JavaScripts

Java

HTTP

Flash
RSS

AJAX
OWL

SWRL

SPARQL

ATOM

Semantic Web

Fig. 1: History of AJAX

AJAX is neither a new programming nor new scripting language, rather, it is a new way of thinking to use
existing technologies in producing web applications that are better, faster and more interactive [3, 4]. AJAX
uses the existing technologies, languages, levels and protocols in a new way to gain rich interaction with client-
side that is very analogous to desktop applications [4, 6]. These well known, mature, stable and widely used
tested technologies work together in different levels for creating a new and more powerful web application
development model in order to overcome the problems of request-wait and response-wait patterns. These
technologies include markup languages including HTML, XHTML and XML. Presentation languages including
CSS and DOM for display and update. Client-side scripting languages such as JavaScript, XMLHttpRequest
object for asynchronous communication with server. XML, XSLT and JSON for data exchange and JSP, JSF,
Perl, Ruby, PHP and ASP for server-side scripting. DOM is a tree data structure that is assembled at the client-
side following the hierarchal construction of corresponding web page [7].

AJAX is not tied to a specific markup, scripting, data exchange format or a specific server-side scripting
language, rather, an AJAX application can be developed using any combination of tools, e.g., instead of
JavaScript, one can use VB Script, and instead of XML one can use JSON and so on. This way of re-using
available technologies makes AJAX distinctive on the Web. AJAX allows web applications to make
asynchronous connections with the web server i.e., in AJAX-based web applications, clients do not have to wait
for a server response after sending request. This enables AJAX-based web applications to give users a more
responsive experience. AJAX makes it possible for a part of a web page to be updated, deleted and created
independently.

Crawling Ajax-Based Web Applications: Evolution And State-Of-The-Art. pp 35-47

37

Malaysian Journal of Computer Science. Vol. 31(1), 2018

2.1 AJAX-Based Web Applications Model

AJAX-based web applications also called Rich Internet Applications (RIAs)[8] are a new breed of highly
interactive and highly dynamic web applications [9]. The client-side part of AJAX-based web application is
composed of three layers. These layers include user interface, JavaScript code and AJAX engine. On the user
interface, the HTML, CSS and DOM work together. HTML and CSS provide format and structural attributes to
the interface being processed as a request to the server for output, and DOM offers means for dynamically
accessing and updating content, structure, style, and other elements of the web page. The second layer where
JavaScript code resides and records all events generated by users through EventListener in order to provide
input to the user interface for presentation to users and increase web application interactivity and responsiveness
[10]. The third layer, which comprises of AJAX engine, acts as a middle layer between server and client. AJAX
engine makes the asynchronous communications between server and client using XHR object i.e. EventListener
sends data to XHR object [11]. XMLHttpRequest is the core of AJAX which enables AJAX engine to receive
new data from the server without reloading the whole page [12]. The XHR object asynchronously requests the
server through HTTP or HTTPS protocol. The server processes the request accordingly and sends the result
back to XHR object in order to update DOM. Some of the processing is performed on server-side whereas some
data verification and processing is carried out on the client-side. Only that data is requested through XHR object
which is needed from the server [11]. While in traditional web application modal, the whole page is requested
from the server because there is no processing related to the application logic on client-side. AJAX-based web
applications offer several advantages over classical web applications but we should not over estimate it because
in AJAX-based web application, the data is JavaScript-driven, created on the fly which is not SEO-friendly [13].

Fig.2: AJAX interaction with server: (a) Traditional Web Model vs. (b) AJAX Web Model [11]

AJAX allows web applications to make asynchronous connection with the server where users need not wait for
a response from the server but are able to utilize resources and work in the same page during request (as shown
in Fig. 2). At the client-side, a user generates an event that calls the desired JavaScript function, which creates
and configures an XMLHttpRequest object. This object calls the server in an asynchronous way which
processes the request and returns results in the form of XML document. In response, the XMLHttpRequest
object calls the call-back function, checks out that the server has printed the results and keeps these in variables
[12]. The DOM is updated accordingly with the new response and AJAX process ends.

2.2 Traditional vs. AJAX-based Web Application– An Evaluation Framework

In traditional web application, (1) the user sets up an HTTP request to the web server on the user interface. (2)
In response, the web server processes the request upon receiving data, crunching numbers and communicating
with different legacy systems, and responds back to the user with an HTML page [14]. This is not a fruitful
approach because user is waiting for response and thus resources are wasted. This start-stop-start-stop nature of
traditional approach has some shortcomings including: (1) overall execution is performed by server, (2) repeated
transmission of similar data, and (3) slow retrieval due to requesting whole page. In contrast, AJAX abolished

Crawling Ajax-Based Web Applications: Evolution And State-Of-The-Art. pp 35-47

38

Malaysian Journal of Computer Science. Vol. 31(1), 2018

this start-stop nature of client-server interaction using an intermediate AJAX engine between client and server.
This intermediate layer allows client-server communication to be carried out asynchronously in background for
giving immediate answer to the client-side [4, 15]. Thus AJAX updates only specific components and allows
direct interaction with the browser resulting in more interactive, responsive and faster user interfaces which
ultimately reduces the overload on server side and the waiting time [16]. Table 1 presents an evaluation
framework for comparing traditional web applications with AJAX-based web applications using several
evaluation criteria.

Table 1: A comparison of traditional Web Application with AJAX-based Web Applications

 Models

Properties
AJAX-based Web Application Traditional Web Application

Full Page Refresh No Yes
Stateful No Yes

Start-Stop-Start-Stop No Yes
Response Fast Slow
Connection Asynchronously Synchronously
Servers Converting data to HTML Need no conversion
Development Complex Easy
Network Performance High Low
Visibility to Search Engine Low High
Traffic to & from the Server Low High
Rich Assets Interaction-Based Text-Based
Development Time Max Min
Security Poor-fixed Well-fixed
Over Load on Server Low High

3.0 CRAWLING AJAX-BASED WEB APPLICATIONS

This section investigates crawling of conventional as well as AJAX-based web applications, importance of
crawling AJAX-based web applications, AJAX-based web crawlers and behavior of AJAX-based web
applications towards crawlers. An evaluation framework for comparing different crawlers used for crawling of
AJAX-based web applications is also contributed.

3.1 Crawling Conventional Web Applications

Crawlers are the heart of web search engines [17] . They are programs designed specifically for searching the
Web and downloading web pages that are subsequently indexed and searched against user search queries [18].
In addition to web search engines, [19] crawlers are also used in mining the Web, comparison shopping engines
and other applications by processing large number of pages [20]. After reaching a particular website, the crawler
first requests robot.txt file to know whether it is allowed by the site owner to download web pages and other
content. The information such as which portions of the site are allowed to visit and how many times the crawler
can visit the site is also present in robot.txt file [21]. It is important for a site to have robot.txt file, otherwise, the
crawler assumes that indexing any content of the site is allowed. After reading robot.txt, the crawler recursively
explores the website as (i) fetch a page (ii) parse it to extract all linked URLs (iii) for all URLs not seen before,
repeat steps (i) and (ii) [14]. In other words, crawling is the process of traversing the Web automatically by
retrieving a web page and then recursively retrieving all web pages [22]. Examples of well know crawlers
include Googlebot from Google, and MSNBot (from MSN). Web crawling has been the focus many research
articles including [17, 23-28], which are worth reading.

In spite of their simplicity, web crawlers have problems and challenges regarding the engineering of web
applications such as scalability of the Web and technological advancements [18, 20]. Some of these challenges
include1: how many pages they can crawl without becoming bogged down? How speedily they can crawl pages

1 http://www.semclubhouse.com/advances-in-crawling-the-web

Crawling Ajax-Based Web Applications: Evolution And State-Of-The-Art. pp 35-47

39

Malaysian Journal of Computer Science. Vol. 31(1), 2018

without overwhelming the sites that they visit? How many resources do they have to utilize for crawling and
repeating the process? Most importantly, crawling dynamic resources such as AJAX-based content
systematically and efficiently is a big challenge. Therefore, web crawlers should have a module capable for
addressing these challenges to cope with advancement in technologies and information structure.

3.2 Crawling AJAX-based Web Applications

Although the introduction of AJAX-based web applications to the Web results in increased interactivity and
responsiveness, it creates some problems for traditional web crawlers in crawling them. To the best of our
knowledge, there is no tool developed so far to address the asynchronous communication of AJAX-based web
application with the server, in which one URL have several page states. This is noticeably a main problem that
must be covered because much of the applications on the Web are AJAX-based. An up-to-date crawler only
goes out and collects pages from the Web, it neither ranks nor crawls AJAX content but only provides extracted
URLs to search engine for indexing and ranking [29].

Traditionally, it is difficult for search engine to process AJAX content because AJAX content is produced
dynamically and asynchronously by browser actions and thus not visible to crawlers. Search engines like
Google either ignore AJAX-based web applications or produce false negatives [30]. Because there is no module
in current crawlers to understand and detect AJAX events and execute AJAX calls just like human do using a
web browser, the result is the non-availability of crawlers that can crawl AJAX-based web applications both
systematically and efficiently.

3.2.1 AJAX Web Crawlers

In last 18 years AJAX-based web applications crawlers made significant progress in the domain of web search
engines [26, 29-33]. In this way, several papers have been published (described in current state-of-the-art). For
example, [34, 35] focus on crawling strategies, [29, 30] focus on searching and crawling AJAX-based web
applications, [36] focus on making AJAX-based web applications accessible to search engine. This facilitated
Information Retrieval, however the research is still not sufficient in reporting crawling AJAX-based web
applications and we are trying to address the fundamental problem of crawling [15].

3.2.3 Importance of Crawling Ajax-based Web Applications

Much of the information on the Web is AJAX-based and can play an imperative role in the effectiveness of the
Web. Consider comments on YouTube and social blogs etc., which are AJAX-based and can be loaded from the
server without refreshing the complete page and the altering of URL. YouTube2 is a website that includes both
user view and AJAX parts. Fig. 3 shows a typical YouTube page consisting of both user view and AJAX part,
which can better explore the benefits of crawling AJAX- part of this web application along with other content.

In the first page by default, comments are displayed below the video in comment box. The comments are
uploaded seamlessly from the server when requested without changing the URL [29]. The available web search
engine cannot index such content [30], because they cannot understand the logic on the client-side i.e. for each
click, the desired JavaScript function is triggered. AJAX call is made to the server, which seamlessly uploads
the content to the same area, leaving the rest of the page untouched. For instance, consider the particular
President Obama’s speech called “message for America’s students” which is addressed with information
(President Obama’s message for America’s students) included in the title. By using traditional search, one can
only find this speech by entering the title information in the search query. An interested user may not know all
information needed for finding this video; they may either know the country name or other information which is
not available to the search engine. This can only be possible if AJAX content becomes useful for search engine.
Thus, by crawling AJAX content, one can easily find out this speech by entering any of the relevant
information. Furthermore, crawling provides basis for indexing which is important for searching. Also, more
and more of the applications on the Web are becoming AJAX-based because these modern applications are user
friendly and provide an enhanced experience to end user [31]. Therefore, crawling AJAX-based Web
applications is indispensable.

2 http://www.youtube.com

Crawling Ajax-Based Web Applications: Evolution And State-Of-The-Art. pp 35-47

40

Malaysian Journal of Computer Science. Vol. 31(1), 2018

3.2.3 The Behavior of AJAX-based Web Applications towards Crawlers

Today, most of the Web is occupied with AJAX-based web applications and it has been realized that AJAX-
based web applications are faster, richer and more responsive. However, these features are costly because AJAX
makes crawlers unable to see the content that is created dynamically.

Fig. 3: YouTube: Loading AJAX-based comments

Since AJAX-based web application can present all states of the application seamlessly without changing the
URL [36], it halts the rule that one URL is for representing and accessing a single unique web page. Resolutely,
it means that in AJAX-based web applications different page states may be associated with one single URL
which can be seen by the user but not by the crawler.

Fig. 4: States of AJAX-based application under the same URL

Crawling Ajax-Based Web Applications: Evolution And State-Of-The-Art. pp 35-47

41

Malaysian Journal of Computer Science. Vol. 31(1), 2018

To explain diagrammatically that AJAX-based web applications are not crawlers friendly, we present the bumpy
DOM of cricket website3 as shown in Fig. 4 and Fig. 5 which clearly show that one URL has several page states
which cause a mismatch with up-to-date search model of search engines. Currently no crawler exists that can
handle and save complex client-side code (JavaScript etc.) that is existing in AJAX-based web applications for
asynchronous communication due to some challenges caused by how AJAX crawling deals with JavaScript
execution, construction of navigation model and analysis of DOM. Consequently, the desired state cannot be
crawled, indexed and searched resourcefully because the application logic that dynamically loads content is not
understood to web search engines [16].

Fig. 5: The states of DOM (DOM1; DOM2) having same URL4 after granular JavaScript functions execution

3.2.4 Comparison of AJAX Crawlers

We are presenting here a simple evaluation for comparing different AJAX crawlers developed so for. The
experimental results obtained while crawling AJAX-based web applications using WSPINX as a traditional
crawler are shown in Fig. 6, whereas statistics resulted when crawling AJAX-based web applications using
AJAX crawlers are summarized in Fig. 7.

0

10

20

30

40

50

60

70

80

90

C 1 C 2 C 3

No of Pages/States

Total Crawling Time

Crawling Time Per Page

Fig. 6: Results of static crawler

From the evaluation, it is clear that WSPINX takes less time in crawling. However, it is a static crawler and can
only crawl static hyperlinks while the rest can crawl dynamic states under the same URL but take more time.
Therefore, it can be concluded that static crawler is much better in performance than AJAX crawlers. In case of
static web pages however, it is imperative to optimize the technique in order to make search engine able to index
useful information of the today rich Internet applications (RIAs). According to literature review that we have
carried out, we found no crawler to efficiently and systematically crawl RIAs. As we have discussed and

3 http://www.espncricinfo.com/,
4 http://www.espncricinfo.com

Crawling Ajax-Based Web Applications: Evolution And State-Of-The-Art. pp 35-47

42

Malaysian Journal of Computer Science. Vol. 31(1), 2018

examined some academic tools [2, 7, 29-31, 34, 36-38] developed so far for crawling AJAX-based web
applications , we deemed them unsatisfactory and unable to fulfill the desired requirements of web search
engines. Consequently, crawling AJAX-based web applications is very limited in practice.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 5 11 15 16

Crawljax

Hypercube-based crawling

CAT

Fig. 7: Number of states discovered by various tools

4.0 THE STATE-OF-THE-ART IN CRAWLING AJAX-BASED WEB APPLICATIONS

With the advancements in technologies, the Web has become a huge repository of informational resources
where static content has been replaced by dynamic as well as AJAX-embedded web pages, which is a barrier to
information retrieval in crawling and indexing [39] as existing web crawlers are unable to crawl AJAX-based
web applications [34]. Currently, search engines are limited in fully understanding the application logic of
AJAX-based web applications that load content dynamically because all states of the page are identified by a
single URL which is incompatible with the current model of web search engines such as Google, and Yahoo
[38].

Although several approaches have been proposed in the literature in order to systematically and efficiently crawl
AJAX-based web applications, these approaches are limited as the crawling engines are usually “protocol-
driven” (i.e., make a socket connection on the target host). Once the connection is established between client
and server, client sends HTTP requests and tries to interpret responses. All parsed resources are then collected
and saved for future access [37]. This approach, however, does not work when the crawler comes across an
AJAX embedded page because all target resources embedded in the DOM context are the part of JavaScript
code which can’t be crawled by traditional crawling engine. To understand and trigger this DOM-based activity,
an “event-driven” crawling in [37] has been proposed for AJAX-based web applications. An event driven
crawling is carried out in three steps: analyzing and interpreting client-side JavaScript; handling DOM; and
dispatching DOM model content extraction [40]. It uses modern browsers as underlying platform for
accomplishing AJAX crawling with automated information extraction using tools (namely Watir and Crowbar)
to extract page data after encountering changes in DOM. This way, it changes the way requests are made and
meets some of the requirements of AJAX search crawler using both “protocol-driven” and “event-driven”
approaches. However, no automatic state traversal algorithm exists to traverse the web application in detecting
all possible events and their desired JavaScript functions like humans do using a web browser [38]. This
problem is addressed in [29] by devising AJAXSearch. The architecture of AJAXSearch is shown in Fig. 8,
which is an AJAX-aware search engine designed for indexing AJAX-based web applications.

T
im

e

Crawling Ajax-Based Web Applications: Evolution And State-Of-The-Art. pp 35-47

43

Malaysian Journal of Computer Science. Vol. 31(1), 2018

AJAX

Website

AJAX

Models
INDEX

Result

Result

Result

Query

Result

Crawling Indexing Searching

Result

aggregation

Fig.8: Architecture of AJAXSearch

In AJAXSearch, the crawler goes through the application data for obtaining transition graph that can be used in
indexing later by the search engine. Using states and transitions, the crawler creates an application model which
is read by the indexer in order to build an inverted index of all AJAX-specific information. The query process is
used to handle querying the indexed file for returning application states. The AJAXSearch identifies events in
web page and starts crawling using standard breadth-first search. For introducing new states, the approach
compares the content of each state and come across DOM with the already-discovered states. During the
crawling process, the result of each state is maintained in special application model annotated with latest
information. The other components of the architecture also get information from the application model for their
desired use. This way, AJAXSearch has resolved several challenges regarding crawling AJAX-based
applications. The issue of completeness and closeness of the application model were resolved by setting a
maximum depth limit to avoid numerous event invocations. Identical states are identified by comparing the
content of new DOM with the existing state where AJAXSearch chooses a new state only when the transition
generates a new DOM. For maintaining contextual information, all JavaScript variables are maintained as part
of the state during crawling. For personalized content, it uses minimum intervention from user to access the
content in an enterprise-only crawling or user-specific crawling [29]. However, the problem of handling
duplicate JavaScript function invocations and accessing previous states is problematic.

To avoid duplicate JavaScript function invocations, Matter [30] extends AJAXSearch using the concept of “Hot
Node” which also handles access state problem. A hot node is one that fetches content from the server, and a
call from such a node to the server is called a hot call. He contributed the modeling of AJAX sites as transition
graphs containing all application entities including states, events and transitions based on user events for
exploring states. For AJAX crawling, the approach takes into account the events in a web page where crawling
starts by triggering all events in a web page using breadth-first crawling algorithm for building AJAX model.
Some of challenges solved using this approach include the challenges of infinite state expansion, infinite loops,
identical states, irrelevant events, and handling number of AJAX calls. For improving crawling efficiency, this
approach uses heuristics that helps in constructing the JavaScript invocation graph so that irrelevant AJAX
invocations to the server are avoided. Here, each node in the graph represents a JavaScript function and its
dependences. By the use of caching, the AJAXCrawl has resolved the problem of state access. However,
caching AJAX states is not so easy because, for such purposes, it is important to save the DOM and maintain
JavaScript runtime environments. Further, the JavaScript engine i.e., Cobra has a poor and very limited support
for complicated JavaScript functions [38].

In determining and understanding the state of user interface, both dynamically and asynchronously, Mesbah et al
[36] present an auto-full-scan crawling algorithm by implementing a tool called Crawljax that automatically
analyzes and reconstructs user interface states and can identify all clickable events that change the state of the
application. From the discovered information, Crawljax infers a state flow graph for capturing states of user
interface and possible transitions between them. Finally, a multipage state version of the original AJAX
applications is produced in a methodical way. Crawljax performs crawling in two phases: inferring the state of
machine and then generating pages that can be indexed. An embedded browser is used for executing AJAX
technologies such as CSS, JavaScript, DOM and XMLHttpRequest. A robot simulates user inputs in the
embedded browser. The controller is the key module which accesses the embedded browser in finding out
changes in DOM and controlling robot actions. The module also shows responsibility for updating finite state
machine when DOM encounters relevant changes and also calls the sitemap generator and mirror site generator
process when the crawling is over. The finite state machine module maintains the state flow graph as well as
pointers to the current state.

Crawljax uses Levenshtein [41] method for DOM tree comparison to differentiate one state from the other.
Mesbah et al [reference] also developed specific language for AJAX crawling called Crawling AJAX
Specification Language (CASL) for defining all clickable elements and their order in which AJAX-based web

Crawling Ajax-Based Web Applications: Evolution And State-Of-The-Art. pp 35-47

44

Malaysian Journal of Computer Science. Vol. 31(1), 2018

application should be crawled. They also suggest that in finding shortest path between initial and desired state,
Dijkstra shortest path algorithm can be used for optimization. The proposed crawler may be used in carrying out
state-based testing and using depth-first algorithm in automatically executing all user interface elements.
However, reload and click-through functions are inefficient [38].

Benjamin et al. [34] demonstrate that the algorithms presented in [29, 36] are not efficient, and to date there is
no tool which can truly crawl rich Internet applications (RIA). They proposed another strategy for efficient
crawling of these applications called model-based crawling. The tool automatically infers an accurate model of
RIA by conceptualizing the application as finite state machine. The states that this machine represents are
distinct DOMs and transitions, and on the current DOM, they are JavaScript events such as MouseOver,
OnSubmit, Onclick etc. [31]. They also present that a useful and accurate model must fulfil three conditions: (1)
the model is complete i.e., it must represent all the transitions as well as all reachable states, (2) the model must
be built using a deterministic way, and (3) the model should be produced efficiently. The first two conditions are
easy to achieve but efficiency is obviously the most challenging one. To define an efficient strategy, a
methodology named “Model-Based Crawling” was proposed in [8].

In model-based crawling, first the behavior of the AJAX-based web applications is explained with the
assumption that the application will show such type of behavior. Based on the assumption, one can then define
the anticipated model of the AJAX-based web application called the “meta-model”. This transforms the
crawling process from the discovery activity to the activity of validating, the hypotheses do not need to be truly
valid. Second, once the model is created based on assumed hypothesis, an efficient strategy for crawling may be
defined to verify the model. Without assumption, it is impossible to create any strategy that will be efficient.
Finally, in order to reconcile the predicted model with the reality of the application that is crawled, we
immensely need to establish an approach. Whenever there is a notable difference encounters between the
application model and the hypotheses, we need to take a corrective action for adapting the crawling strategy.
The hypercube meta-model was developed in this context, based on the assumptions that the sequence of events
execution does not change the reached state and that once the event execution completes, it becomes disabled
and does not enable or disable other events [8].

In order to fulfill the requirement of efficiency, an efficient strategy is developed to crawl rich Internet
applications that follow the hypercube meta-model. The strategy will visit each state of the hypercube as soon as
possible. After visiting all states, the strategy completes the crawling by planning resourcefully to traverse with
all such transitions. As in finite state machine, there are n! different paths from the bottom state to the top state.
They also developed an algorithm that completes crawling in (n chose (n/2)*[n/2]) paths rather than n!. But for
practical use, the proposed method is very complex and complicated and their current hypercube model can
establish strategies for creating hypercube of maximum 16 dimensions [38]. Peng et.al [38] proposed graph-
based AJAXCrawl to crawl AJAX-based web applications with minimal edge visits [38]. The approach has
distinguished different AJAX events into reload events, prohibited events, state independent events and state
dependent events in order to define an approach for triggering. The proposed graph-based AJAXCrawl adopts
greedy approach [42] by looking at an event from the current state if there is an unexplored event. Otherwise,
the crawler moves to the closest state with new events. The authors have also [38] proposed two other
procedures, namely DFS and BFS and concluded experimentally that all three procedures have same
performance by testing these on AJAX-based web applications. However, to answer the importance of
information retrieval in dynamic client-side hidden AJAX content, Google also developed strategy for crawling
AJAX-based web applications.

Google proposed two methods [32] (Hijax approach, AJAX crawling scheme). Hijax modifies the way of
writing URL to explore dynamic content of a web page to search engines. The approach has several limitations
as it does not cover the domain where the AJAX content is created dynamically based on the input of the user.
According to Google AJAX crawling scheme there should be an agreement between website owner and
crawlers to acknowledge these steps [32]. In brief, according to Google, first the crawler finds the pretty URL (a
URL having #! Hash fragment) and transforms it into ugly URL, it then requests the server for the desired
content. The server returns the result in the form of HTML snapshot, which is then processed by the crawler.
However, there is no tool to automatically generate HTML snapshots, therefore the developers have to do a lot
of work for its incorporation. Currently only Google makes use of it [13].

Zhang [7] proposed another approach to address the limitations of Google AJAX crawling scheme. The
approach is based on HTML and JavaScript analysis through DOM using breadth-first search algorithm. The

Crawling Ajax-Based Web Applications: Evolution And State-Of-The-Art. pp 35-47

45

Malaysian Journal of Computer Science. Vol. 31(1), 2018

DOM-based AJAX crawling approach generates static mirror of the website using State Transition Graph (STG)
which is a directed graph DG <V, VR>, where V represents vertices i.e., states {v1, v2…} and VR represents
transitions VR= {<v,w>|v,w ∈ V} between vertices v & w. The approach is simple, however there is no way to
identify clickable and duplicate JavaScript functions and caring infinite loop at each level resultantly not
focusing on efficiency of crawling and takes more time. It is can be concluded from the discussion that while
several approaches have been proposed in literature in order to handle the issues regarding crawling AJAX-
based web applications, we are still miles away from an ideal web crawler that handles the multiple states of a
web page associated with a single URL. Further research should be conducted to explore ways to handle the
issues regarding crawling of AJAX-based web applications discussed in this research article.

5.0 CONCLUSION AND RECOMMENDATIONS

Crawling AJAX is the process of making search engines capable of crawling today’s highly-interactive AJAX-
based web applications. To date, web crawlers do not read AJAX-based web applications efficiently and
systematically because AJAX-based web applications are highly dynamic even very granular change adds
content to DOM through JavaScript functions. Crawling AJAX-based web applications is a very challenging
problem, and has not been addressed by current search engines resourcefully. In order to enable web search
engines to incorporate an AJAX crawler, it is necessary to keep in mind its high optimization. Most of web
applications are AJAX-based so it is important to study more specific AJAX-based web applications and their
technicalities for expanding AJAX crawler and taking care of search engine optimization.

There are several avenues for future work. The performance of AJAX crawler can be improved by an in-depth
insight into request time, network latency, selection of clickables (on-click, double click, mouse-over etc.).
Future work also includes improving the performance of technique by reducing the frequency with which
duplicate transitions occur in the state machine. This can be done by avoiding invoking events on nested
elements. For instance, consider the HTML tag: <td>shah</td>. Here clicking a nested tag produces the
same effect as clicking on the <td>shah</td>. It means there is no need to invoke the same event again
so to reduce the number of duplicate transition in STG.

REFERENCES

[1] R. R. Korfhage, Information Storage and Retrieval: John Wiley & Sons, 1997.

[2] G. C. P. Suganthan, "AJAX Crawler," in Data Science & Engineering (ICDSE), 2012 International

Conference on, 2012, pp. 27-30.

[3] S. Batra, "AJAX - Asynchronous Java Script and XML," ITS - Information Technology and Systems

Management, 2006.

[4] J. S. Zepeda and S. V. Chapa, "From Desktop Applications Towards Ajax Web Applications," in

Electrical and Electronics Engineering, 2007. ICEEE 2007. 4th International Conference on, 2007, pp.
193-196.

[5] S. M. Mirtaheri, M. E. Dinçktürk, S. Hooshmand, G. V. Bochmann, G.-V. Jourdan, and I. V. Onut, "A

brief history of web crawlers," arXiv preprint arXiv:1405.0749, 2014.

[6] L. Zhijie, W. Jiyi, Z. Qifei, and Z. Hong, "Research on Web Applications Using Ajax New

Technologies," in MultiMedia and Information Technology, 2008. MMIT '08. International Conference

on, 2008, pp. 139-142.

[7] X. Zhang and H. Wang, "AJAX Crawling Scheme Based on Document Object Model," in

Computational and Information Sciences (ICCIS), 2012 Fourth International Conference on, 2012, pp.
1198-1201.

[8] M. A. Shayegan, S. Aghabozorgi, R. G. Raj, “A Novel Two-Stage Spectrum-Based Approach for

Dimensionality Reduction: A Case Study on the Recognition of Handwritten Numerals,” Journal of
Applied Mathematics, vol. 2014, Article ID 654787, 14 pages, 2014. doi:10.1155/2014/654787.

Crawling Ajax-Based Web Applications: Evolution And State-Of-The-Art. pp 35-47

46

Malaysian Journal of Computer Science. Vol. 31(1), 2018

[9] N. Matthijssen and A. Zaidman, "FireDetective: understanding ajax client/server interactions," in
Software Engineering (ICSE), 2011 33rd International Conference on, 2011, pp. 998-1000.

[10] F. S. Ocariza, G. Li, K. Pattabiraman, and A. Mesbah, "Automatic fault localization for client‐side

JavaScript," Software Testing, Verification and Reliability, vol. 26, pp. 69-88, 2016.

[11] S. Z. Z. X. Z. Li, "The Web asynchronous communication mechanism research based on Ajax,"

Education Technology and Computer (ICETC), vol. 3, pp. V3-370- V3-372, 2010.

[12] Q. Tang and C. Zhao, "The application of Ajax asynchronous refresh in general used database

maintenance system," in Geoscience and Remote Sensing (IITA-GRS), 2010 Second IITA International

Conference on, 2010, pp. 108-110.
[13] bbriniotis. (2012). Google’s AJAX crawling scheme and its effects on SEO. Available:

http://www.webseoanalytics.com/blog/googles-ajax-crawling-scheme-and-its-effects-on-seo/

[14] j. j. garrett, "Ajax: A New Approach to Web Applications," February 18, 2005.

[15] S. Choudhary, Mustafa, M. Seyed, Mirtaheri, M. Ali, v. B. Gregor, J. Guy-Vincent, and O. Iosif-

Viorel, "Crawling Rich Internet Applications: The State of the Art," Research and Development, IBM

Security AppScan 2012.

[16] L. G. W. Huan-min, "Research and application of the Ajax page's dynamic access technology based on

.NET," Robotics and Applications (ISRA), 2012 IEEE Symposium on Digital Object Identifier, vol.
101- 104, 2012.

[17] P. J. Gupta, K, "Implementation of Web Crawler," Emerging Trends in Engineering and Technology

(ICETET), 2nd International Conference on Digital Object Identifier, pp. 838 - 843 2009.

[18] S. Brin and L. Page, "The anatomy of a large-scale hypertextual Web search engine," Computer

Networks and ISDN Systems, vol. 30, pp. 107-117, 1998.
[19] Monica Peshave, Kamyar Dezhgosha, "HOW SEARCH ENGINES WORKAND A WEB CRAWLER

APPLICATION," University of Illinois at Springfield One University Plaza, Springfield USA, 2005.

[20] M. Najork, "Web Crawler Architecture," in Encyclopedia of Database Systems, L. Liu and M. T. ÖZsu,

Eds., ed: Springer US, 2009, pp. 3462-3465.

[21] L. Baker. (2005). Anatomy of a Search Engine Crawler

 Available: http://www.searchenginejournal.com/anatomy-of-a-search-engine-crawler/2230/

[22] V. Shkapenyuk and T. Suel, "Design and implementation of a high-performance distributed Web

crawler," in Data Engineering, 2002. Proceedings. 18th International Conference on, 2002, pp. 357-
368.

[23] G. Salton and M. J. McGill, Introduction to Modern Information Retrieval: McGraw-Hill International,

1983.

[24] M. Shokouhi, P. Chubak, F. Oroumchian, and H. Bashiri, "DESIGNING AND IMPLEMENTATION

OF" REGIONAL CRAWLER" AS A NEW STRATEGY FOR CRAWLING THE WEB," e-Society

2004, p. 711, 2004.

[25] B. C. Boldi, M. Santini, and S. Vigna, "UbiCrawler: a scalable fully distributed web crawler,"

Software: Practice and Experience, vol. 711–726, 2004.

[26] P. Chubak and D. Rafiei, "Efficient indexing and querying over syntactically annotated trees,"

Proceedings of the VLDB Endowment, vol. 5, pp. 1316-1327, 2012.

[27] A. Heydon and M. Najork, "Mercator: A scalable, extensible Web crawler," World Wide Web, vol. 2,

pp. 219-229, 1999.

http://www.webseoanalytics.com/blog/googles-ajax-crawling-scheme-and-its-effects-on-seo/
http://www.searchenginejournal.com/anatomy-of-a-search-engine-crawler/2230/

Crawling Ajax-Based Web Applications: Evolution And State-Of-The-Art. pp 35-47

47

Malaysian Journal of Computer Science. Vol. 31(1), 2018

[28] S. Raghavan and H. Garcia-molina, "Crawling the Hidden Web," In Proc. of VLDB, pp. pages 129–

138, 2001.

[29] C. Duda, G. Frey, D. Kossmann, and C. Zhou, "AJAXSearch: crawling, indexing and searching web

2.0 applications," Proc. VLDB Endow., vol. 1, pp. 1440-1443, 2008.

[30] C. Duda, G. Frey, D. Kossmann, R. Matter, and Z. Chong, "AJAX Crawl: Making AJAX Applications

Searchable," in Data Engineering, 2009. ICDE '09. IEEE 25th International Conference on, 2009, pp.
78-89.

[31] K. Benjamin, "A Strategy for Efficient Crawling of Rich Internet Applications," PhD, University of

Ottawa, 2010.

[32] Google. AJAX Crawling. Available: http://code.google.com/intl/en/web/AJAXcrawling/index.html

[33] R. Matter, "AJAX Crawl:Making AJAX Applications Searchable," Master Thesis, July 31, 2008.

[34] K. Benjamin, G. V. Bochmann, M. E. Dincturk, G.-V. Jourdan, and I. V. Onut, "A strategy for efficient

crawling of rich internet applications," presented at the Proceedings of the 11th international
conference on Web engineering, Paphos, Cyprus, 2011.

[35] R.G. Raj, A.N. Zainab. “Relative Measure Index: A Metric to Measure the Quality of Journals”,

Scientometrics, vol. 93, no. 2, 2012, pp. 305-317. doi: 10.1007/s11192-012-0675-z.

[36] A. Mesbah, E. Bozdag, and A. van Deursen, "Crawling AJAX by Inferring User Interface State

Changes," in Web Engineering, 2008. ICWE '08. Eighth International Conference on, 2008, pp. 122-
134.

[37] S. Shah. (2007, Crawling ajax-driven web 2.0 applications. Available: http://www.net-

security.org/article.php?id=973

[38] M. Mansourvar, M.A. Ismail, R.G. Raj, S.A. Kareem, S. Aik, R. Gunalan, et al. "The applicability of

Greulich and Pyle atlas to assess skeletal age for four ethnic groups", Journal of forensic and legal

medicine. vol. 22: pp. 26–29, 2014. pmid:24485416.

[39] IRange. (2012). AJAX Projects. Available: http://www.ajaxprojects.com/ajax/news.php

[40] W3C. Document Object Model. Available: http://www.w3.org/DOM/

[41] Levenshtein, "Binary Codes Capable of Correcting Deletions, Insertions and Reversals," 1996.

[42] Y. Wang, J. Lu, and J. Chen, "Crawling Deep Web Using a New Set Covering Algorithm," presented at

the Proceedings of the 5th International Conference on Advanced Data Mining and Applications,
Beijing, China, 2009.

http://code.google.com/intl/en/web/AJAXcrawling/index.html
http://www.net-security.org/article.php?id=973
http://www.net-security.org/article.php?id=973
http://www.ajaxprojects.com/ajax/news.php
http://www.w3.org/DOM/

