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ABSTRACT 
 
Effective assignment of real-time tasks in heterogeneous multi-processor systems to achieve high performance is 
said to be an NP-hard problem. This paper addresses the problem of real-time task assignment in heterogeneous 
multiprocessor systems with the goal of maximizing the number of task assigned and decreasing the energy 
consumption. A heuristic-based Multi-objective Hybrid Max-Min Ant Colony Optimization algorithm (MO-
HMMAS) on the heterogeneous multiprocessor system is proposed to analyze the tradeoffs between resource 
utilization of all assigned tasks and cumulative energy consumption. Also, we have constructed pareto fronts to 
illustrate different task allocations, which can cause a heterogeneous multiprocessor system to consume 
significantly different amounts of energy. The proposed algorithm has been implemented and evaluated using 
randomly generated problem instances.It  was  found that the proposed algorithm outperforms the Multi-objective 
ACO (MO-ACO) in terms of number of the tasks assigned and cumulative energy consumption of all assigned tasks. 
 
Keywords: Real-time Task Assignment, Resource Objective, Energy Objective, Multi-Objective Optimization, 
Heterogeneous Processors, Ant Colony Optimization 
 
 
1.0 INTRODUCTION 
 
In general, a heterogeneous multiprocessor platform is based on the different instruction set architectures (ISAs) 
with configurable and extensible features.  This multiprocessor platform meets the computational demands for 
various applications [1]. Real time embedded systems are more complex as it includes many heterogeneous 
components. It is very difficult to implement the real time applications on the heterogeneous multiprocessor system. 
Therefore, implementation of the real-time application on the heterogeneous platform needs additional effort than 
the  homogeneous platform.  The complexity increases in such a way that every real time application is in need of 
different execution times on heterogeneous processors [2,7]. The goal of the task assignment algorithm is to assign 
each task of the application on the given number of available heterogeneous processors  for optimal assignment 
solutions. Finding such optimal assignment solutions is considered to be NP  hard in general [4]. There have been 
extensive attempts in the literature on the task allocation and scheduling. Metaheuristic algorithms can be used to 
obtain suboptimal scheduling results for this type of combinatorial optimization problems rather than describing all 
possible schedules.  
 
In this paper, Multi-Objective Hybrid Max-Min Ant Colony Optimization algorithm (MO-HMMAS) is proposed, 
which is based on Max- Min Ant System (MMAS) along with a local search as a daemon action finding a solution 
for real-time task assignment to the heterogeneous processors without exceeding the processors computing capacity 
and fulfilling the dead line constraints. The proposed MO-HMMAS algorithm considers two objectives for multi 
objective task assignment algorithm. The first objective is to achieve maximum task assignment (resource objective) 
in the heterogeneous multiprocessor. The second objective is to minimize the cumulative energy consumption 
(energy objective) for all assigned tasks. Multi-objective hybrid ant colony optimization (MO-HMMAS) on the 
heterogeneous multiprocessor system is proposed for handling two conflicting objectives, using the weighted sum 
approach. Inclusion of local search to such algorithm improves the convergence speed of solutions to the pareto 
front [3,15]. 
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2.0 RELATED WORKS 
 
There has been extensive focus in the literature on the task assignment and scheduling. In recent days, the research 
interest for task assignment and scheduling defines the multiple objectives for generating efficient solutions with 
minimum computation. Multiple objectives such as maximum utilization, the total number of task assigned, 
communication cost and energy consumption, and various other objectives are considered for optimization. Chen. 
Cheng and  Kuo [6,7] proposed a new algorithm based on ant colony optimization (ACO) metaheuristic for solving 
the real-time task assignment problem in heterogeneous processors and also included the  local search heuristic 
algorithm to improve task assignment solution. The results are compared with GA and LP based approaches. 
Prescilla et.al [11] proposed modified binary particle swarm optimization algorithm and novel binary particle swarm 
optimization to solve the independent real-time task assignment in heterogeneous multiprocessor. The resource 
objective and energy objective are not considered simultaneously. In particular, several works in [6,7, 9,10,11,20] 
have applied metaheuristics to task assignment and scheduling for multiprocessor systems. However, those works 
focused only on a single objective optimization problem and have not constructed pareto optimal solutions. 
 
In [12], Jan Madsen proposed the multi-objective genetic algorithm to solve the problem of mapping a set of task 
graphs onto a heterogeneous multiprocessor platform with the objectives of minimizing the system cost and power 
consumption, by constructing  the pareto front for both the objectives.  MyungryunYoo & Mitsuo Gen [13] 
proposed a scheduling algorithm for real-time tasks using the multi-objective hybrid genetic algorithm (mohGA) on 
the heterogeneous multiprocessor environment to minimize the total tardiness and completion time . The 
convergence of GA was improved by simulated annealing algorithm. However, energy constraints were not 
considered in [13]. Chitra et.al [5] considered the two conflicting objectives namely, makespan and reliability for 
task scheduling problem in heterogeneous systems. However, these algorithms are proposed for general tasks 
without real-time constraints. Multi-objective ACO algorithm has been proposed by Alaya  et al [16]  for the Multi-
Objective Knapsack Problem (MOKP). They have found that the multi-objective ACO variant (m-ACO4 (1, m)) 
produces globally the best solutions when compared to the existing Evolutionary Algorithms (EA) such as SPEA, 
FFGA, NSGA, NPGA, HLGA and VEGA for all the tested instances. Pareto ant colony optimization algorithm is 
developed by Doerner et al [15] for solving the portfolio selection problem with the objectives of computation time 
and the quality of approximated solution space. The experimental results are compared with pareto simulated 
annealing, and the Non-dominated sorting genetic algorithm. From the literature, it is observed that the Multi-
objective ACO algorithm is better than the existing evolutionary algorithms for searching optimal solution. In this 
paper, multi-objective hybrid max-min ant colony optimization algorithm (MO-HMMAS) is developed for the 
heterogeneous processor to obtain pareto set solutions, with the two conflicting objectives such as resource 
objective, and energy objective simultaneously. 
 
3.0 SYSTEM MODEL AND PROBLEM STATEMENT 
 
In this paper, the heterogeneous multiprocessor environment with m preemptive processors {P1, P2……Pm} based on 
CMOS technology is considered. The processors in the heterogeneous environment are operated at different speeds 
and one instruction per cycle is limited to execute in each processor at variable speed [2, 6, 7, 11].The energy 
consumption is calculated by 
 

                                                                                             (1) 
 
where Cef is the effective switching capacitance related to tasks, k is the constant, ei,j is the execution time for task Ti 
on processor Pj , si,j is the speed of Pj for task Ti and ci is the number of clock cycles to execute a task Ti. From (1), it 
is understood that, energy consumption is directly proportional to the cisij

2. This equation is significant, because the 
processors operate at different speeds [6, 7]. 
A set of N periodic tasks T= {T1,T2, … ………TN} is considered. Ti is defined as Ti  ={ wi,j, pi,j} where wi,j is the worst 
case execution time and pi,j is the period. The task assignment problem considered here is the off-line version, under 
the condition that utilization of each processor is less than or equal to 1. In this paper, the partitioned scheme is 
considered for the task assignment and Earliest Deadline First algorithm (EDF) for scheduling the tasks on each 
processor.  The proposed task assignment problem has two objectives. 
 

    The first objective aims at maximizing the number of tasks assigned (resource objective) in the 
heterogeneous multiprocessor under the condition that the cumulative utilization of any processor does not 
exceed the utilization bound of the EDF algorithm, which is considered to be NP-hard problem [4, 7, 8]. 
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    The second objective is to minimize the cumulative energy consumption for the task assignment (Energy 
objective) made by the proposed algorithm. The proposed algorithm is to analyze the tradeoffs between 
resource utilization of all assigned tasks and cumulative energy consumption simultaneously. 

 
4.0 APPLICATION MODEL 
 
The application model is defined as A (T, W), where: 

    The set of N periodic tasks T= {T1,T2, … ………TN} is considered. The tasks are assumed to be mutually 
independent and inter task communication is not considered. 

    The estimated worst case execution time (WCET) is defined as W in which wi,j corresponds to the WCET of 
task Ti on processor Pj. The utilization matrix ui,j is an nxm matrix in which m is the number of 
heterogeneous processors and n is the number of tasks and is calculated by  (2) 
     

 
                                                                     (2)
                                                  

 
where si,j is the speed of  processor Pj for a task Ti and pi is the period of task Ti   

Table 1:   Utilization Matrix of the Tasks on Three Processors 
 

 

 
 
 
 
 
 

  Table 2:   Random Assignment of Tasks to Processors 
 
 
 
 

                       Table 3:   Task assignment  solutions on heterogeneous processors 
 
 
 
 
 
 
Table 1 represents an example of an application model and represents the utilization matrix (ui,j), of the 
heterogeneous multiprocessor system consisting of processors P1,P2,P3  according to (2). Table 3 shows a solution 
for the three processor task assignment 
The objective function is expressed by  

                                                                                                                 (3) 

    subject to    
                                                                                                                           (4) 

 
where TA(s) is the total number tasks assigned, T(j, s) set of tasks assigned  to  processor j and ui,j is the   utilization 
of task Ti on Pj. The equations (3) and (4) describe the total number of EDF- schedulable tasks under the condition 
that the sum of utilization of each processor is less than or equal to 1[8]. 

The cumulative energy consumption of all assigned tasks in solution s is given by 

                                                                                                         (5) 
 

ui,j P1 P2 P3 
T1 0.14 0.13 0.15 
T2 0.13 0.14 0.12 
T3 0.15 0.14 0.16 
T4 0.11 0.13 0.12 
T5 0.18 0.15 0.16 
T6 0.16 0.15 0.14 

Task 1 2 3 4 5 6 
Processor 1 3 2 3 2 2 

Processor Tasks 
P1 T1 
P2 T3,T5,T6 
P3 T2,T4 
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where Ei,j is the energy utilized by task Ti on processor Pj and EC(s) represents the energy consumed by the schedule 
(s). For solving the task assignment problem, the objectives TA(s) is to be maximized and EC(s) is to be minimized 
simultaneously. 

5.0 MULTI-OBJECTIVE OPTIMIZATION 

A multi-objective optimization problem can be formally defined as finding all vectors x = [x1, x2, . . . , xn] which 
minimize/maximize the vector function  f (x) = [f1(x), f2(x), . . . , fm(x)]. For the proposed problem, we have m= 2, 
where f1(x) is the maximum number of the task assigned and f2(x) is the energy consumption of all assigned tasks. 
As it is not always possible to find a single solution that maximizes resource objective, and minimizes energy 
objective simultaneously [12,13,14,16]. The main objective of the proposed algorithm is to determine a static 
distributed assignment with maximizing the number of tasks assigned (resource objective) and minimizing the 
cumulative energy consumption of all assigned tasks simultaneously.  

5.1 Resource Objective 

The maximum number of tasks assigned (resource objective) in the heterogeneous multiprocessor is calculated as  

                                            f1 = max [ TA(s) ]                                                                                                            (6)      

TA(s) is calculated by using (3). 

 

5.2. Energy Objective 

The cumulative energy consumption of assigned tasks is calculated as  

                                          f2 = min [EC(s)]                                                                                                                 (7) 
where EC(s) is calculated using (5). 

The energy consumption of each task is proportional to the square of processor speed (Ei,j = ci s2
i,j), whereas its 

computing capacity consumption is inversely proportional to the processor speed (ui,j = ci/(si,j.pi)), which means that 
the energy objective conflicts with the resource objective, and no single solution can optimize both of them 
simultaneously. To achieve better compromise between both objectives, pareto-based multi-objective hybrid max-
min ant colony optimization algorithm is proposed to compute a set of tradeoff optimal solutions in terms of 
resource objective, and energy objective. The non-linear multi-objective optimization can be defined as 

                                           F = [Max f1, Min f2]                                                                                                         (8) 

5.3 Weighted-Sum Method 

In the weighted-sum approach, the resource objective and energy objective are weighted together to produce the 
weighted-sum objective function as 

                                           F = ωf1 + (1 − ω) f2                                                                                                         (9) 

where f1 is the resource objective, f2 is the energy objective and ω is the weighting coefficient in the range 0 and 1. 
Since the objectives have varying range, they are normalized in the range 0 to 1. When ω = 1, only the resource 
objective is considered and when ω = 0, only the energy objective is accounted. The trade-off between the resource 
objective and energy objective can be obtained by varying the values of ω [5,13]. In the proposed algorithm 
resource objective function ‘f1’ has to be maximized and energy objective function ‘f2’ has to be minimized. In order 
to define the overall objective function ‘F’ clearly, objective function F2 can be written as  

                                        f2 = 1-EC(s)                 f2  has to be maximized                                                                  (10) 

So, the overall objective function ‘F’ is given by 

                                      Max F = [Max f1 , Max f2]                                          (11)            
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6.0 MAX–MIN ANT SYSTEM [MMAS] 
 
Stützle and Hoos proposed the Max-Min Ant System [19].The key feature of MMAS is that the pheromone trails are 
updated with only one ant, this ant could be the iteration-best ant or global-best ant which finds the best solution. 
Moreover, the maximum and minimum values of the pheromones are limited to certain values to escape getting 
stuck at local solutions. Additionally, pheromone trails initialize to upper bound τmax to have uniform exploration in 
the whole search space [19]. MMAS can be distinguished from the Ant System (AS) [17,18] mainly in the following 
three aspects:  
 
(1) Only one single ant adds pheromone after each iteration 
(2) The range of possible pheromone trails on each solution component is limited to an interval  [τ min ,τmax ]  
(3) The initial pheromone trails are set to τ max 
 
MMAS uses either the global or iteration best solution for the pheromone trail update.  To avoid stagnation, the 
amount of pheromone is restricted to the  range [τmin, τmax] [19]. Initially, ants are put on random places. At each 
construction step, ant k applies a probabilistic action choice rule to choose a next path to visit until a complete 
solution has been built. Finally, all of the solutions are evaluated and the pheromone updating rule was applied until 
all the ants have built a complete solution. 
 
After all ants have constructed a tour, pheromones are updated by applying evaporation as in ant system as given in 
(12).  
 
                                  τ(i, j)  =   (1-ρ)τ (i, j) ∀ (i,j) ∈ N(s)                                                                                         (12) 
 
where 0 < ρ < 1 is the pheromone evaporation rate and τ(i, j) is the pheromone trail. Followed by the deposit of new 
pheromone as given in (13) 

τ(i, j)=   τ(i, j)  +   Δτ(i, j) best                                                                                           (13) 
 
where Δτ(i, j) best = 1/ f(s )best ; f(s)best as a solution cost of iteration-best sbest = sib 
 
The pheromone limits are calculated by  

τmax   =      f(s best) / ρ 
τmin        =    τmax/ (ω. In(+1))                                                                                          (14) 

where   is the sequential number of the current iteration starting  with 1, ω is a constant and  ω ≥1. Here ρ is the 
evaporation rate of pheromone trails and sbest denotes the iteration best solution. 
 
Pheromone Update Operator 
 
Initially all pheromone values are set to τmax and after each iteration pheromone limits are updated. Pheromone trails 
are evaporated by (12). The pheromones associated with the best solution are increased by (13).Then the validity of 
limits is checked by the algorithm shown below 
 

Algorithm 1: Pheromone update operator 
1. Procedure Update_Pheromone( ) 
2. { 
3. if τ(i,j) <τmin  
4. { set τ(i,j) = τmin } 
5. if τ(i,j) >τmax  
6. { set τ(i,j) = τmax  }  
7. }//end procedure 
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7.0 PROPOSED MULTI OBJECTIVE HYBRID MAX–MIN ANT SYSTEM (MO-HMMAS) FOR 
REAL TIME TASK ASSIGNMENT PROBLEM 

 
7.1 Construction Graph and Constraints  
  
For given a set of heterogeneous multiprocessor and task set, each task assigned to one processor by the artificial ant 
stochastically until each of the tasks is assigned to specific processor without exceeding its computing capacity. The 
sample construction graph is shown in the Table 4  [2,9,11]. 
 

   Table  4: Utilization Matrix with 'n' Tasks 'm' Processors 

 
 
In Table 4, Ti (1≤i≤n) represents the task Ti, Pj (1≤j≤m) represents the jth processor, and ui,j represents the  utilization 
of the ith task on the jth processor. The utilization matrix ui,j is an nxm matrix in which m is the number of 
heterogeneous processors and n is the number of tasks.  The row of utilization matrix represents the estimated 
utilization value for a specified task on each heterogeneous processor. Similarly, the column of utilization matrix 
represents the estimated utilization value of a specified processor for each task. The utilization matrix Un*m holds the 
real numbers in (0, 1) and infinity. If Uij = ∞ means, the particular task is not suitable to execute on a specified 
processor Pj. An artificial ant finds to travel across the construction graph in such a way that all of the following 
constraints are satisfied: (i) one and only one cell is visited for each of the rows (ii) the accumulative value of the 
visited cells in the same column is no greater than 1 [2,6,7,11]. An artificial ant constructs the task assignment 
solution based on the constraints given by (15) 
 

                                                                                                                                (15) 
 

                                                             
7.2 Solution Construction 
 
An artificial ant increases the pheromone value τ(i,j) at the edge between Ti and Pj which represents the possibility 
of  assigning the task Ti on processor Pj. The pheromone values of the ant are initialized as same for solution 
construction. Each ant builds a tour from a starting pair of task and processor [15]. The probability of selecting the 
next pair of task and processor is given by 
 

                                                                (16)    
 
In (16), N(s) denotes the set of eligible pairs of (Task, Processor) obtained. τ(i, j) denotes the pheromone trial of 
(Ti,Pj).   
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7.2.1 Exclusion of Heuristic Information 
 
From the literature, the existing ACO algorithms for the heterogeneous environment have included heuristic 
information (η(i,j)) [6, 7]. The heuristic information calculation degrades the performance of the ant system when 
the values of utilization matrix becomes small, thereby heuristic calculation approaches close to the worst case 
scenario making it difficult for choosing the particular cell for including it in the ant’s solution [7]. In order to avoid 
this, the heuristic information has been excluded in the proposed algorithm. The heuristic information excluded 
formula is given in (16). 
 
7.2.2 Inclusion of Two Local Searches 

The proposed MO-HMMAS algorithm included with two local search procedures for compensating the exclusion of 
heuristic information to improve the task assignment solution after the construction procedure is completed. The 
proposed local search algorithm starts with an initial task assignment solution, and then searches for better solutions 
using 1-OPT and 1-DIFF neighborhood structures [6,7].  
 
Local Search 1: Reducing Average Utilization (1-OPT) 
Remove a task from the assigned processor, and then assign it to a different processor only if the overall utilization 
is reduced (1-OPT). The algorithm for 1-OPT local search procedure shown below 
 
 

Algorithm 2: Local Search 1 (1-OPT) 
1. Procedure 1-OPT ( ) 
2. { 
3. for each ant k 
4. { 
5.     Uavg = (Σm

j=1Uj)/m 
6.         for  each task i 
7.         { 
8.            Remove a task from one processor and assign it to  the neighborhood  processor; 
9.           Unew = (Σm

j=1Uj)/m 
10.           If Unew<Uavg; new  task assignment is updated; 
11.           Elseif Unew>Uavg; old  task assignment is retained; 
12.          }//  end for 
13. }//end for 
14. }//end procedure 

 
Local Search 2: Reducing Difference in Utilization (1-Diff) 
 
Remove a task from the assigned processor, and then assign it to a different processor, only if the sum of difference 
between individual utilization and overall utilization is reduced. The algorithm for 1-Diff local search procedure 
shown below 

Algorithm 3: Local Search 2 (1-Diff) 
1. Procedure 1-DIFF ( ) 
2. { 
3. for each ant k 
4. { 
5.      Dorg= Σm

j=1(abs(Unew-Uj)) 
6.           for each task i 
7.          { 
8.           Remove a task from one processor and assign it to the  neighborhood processor; 
9.           Compute Dnew = Σm

j=1(abs(Unew-Uj)) 
10.           Unew = (Σm

j=1Uj)/m 
11.            if Dnew< Dorg; new task assignment is  updated; 
12.            Else if Dnew> Dorg ; old task assignment is retained; 
13.                }//end for 
14. }//end for 
15. }//end Procedure 
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Fig. 1 shows the steps involved in the local search algorithm for each ant. Initially, a solution is constructed 
randomly and then the local search is applied on to this solution to improve the quality of the solution. The initial 
solution is given as input to the 1-OPT and local search is performed [7]. Fitness value for the resulting solution is 
calculated and compared with the previous value. To further improve the quality of the solution, another local search 
(1-DIFF) is proposed. The local search is repeated until no further improving solution is found. 
 
Flow chart of  local search 
 

 

                           
 

Fig.1   Flowchart of local search  
 

When a solution is constructed, the artificial ants continue to update the pheromone trials by MO-HMMAS 
according to (17). The pheromone is updated as follows: 
 

                           
                                             (17)

 

 
 
F(s) is a quality function which measures the quality of the solution and is given by 
 
                                   F(s) = (ω * TA(s)) + ((1-ω) *(1-(1- EC(s)/MaxEC(s) ))                                                       (18) 
    

               
 

                                                                                                                                                                                                                              
(19)     

   

                                                                                                              (20) 

 
where MaxEC represents the maximum energy consumed by the schedule and ω is the  weighting coefficient. 
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The MO-HMMAS is implemented as shown below: 
 
Algorithm 4 : Proposed MO-HMMAS algorithm 
Input: Random problem instances  
Output: Task assignment of T (j, s) = {i |s(i) = j} be the set of tasks mapped to processor j or  
set of task assignment  or set of task assignment 
1.  Procedure: Multi-objective H-MMAS (MO-HMMAS) 
2.     { 
3.   Initialize pareto set , ω=1 
4.   For (ω=1 ; ω>=0 ; ω= ω-0.1 ) 
5.      { 
6.          Set parameters, Initialize pheromone trials 
7.                 While (termination condition not met)  do                  
8.                   {  
9.                          for  i = 1,2…  number of ants  
10.                               { 
11.                                  Construct solution Si under  the condition U<=1;                                                                      
12.                                    Apply local search algorithms to improve solution Si 
13.                                       { 
14.                                         While (Improving solutions)     do 
15.                                              { 
16.                                                 Procedure 1-OPT ( ) 
17.                                                Procedure 1-DIFF ( ) 
18.                                               }//end while 
19.                                     }//end local search 
20.                              }//end for each ant 
21.                        Calculate quality for each solution: 
22.                                F(s) = (ω * TA(s)) + ((1-ω)* (1- EC(s)/MaxEC(s) ))using (18) 
23.                        Choose the ant with the best fitness value of all ants as the gbest 

24.                                   

25.                                   if  f (sib ) > f (sgb ) then f (sgb ) = f (sib ); 
26.                         Update pheromone trails of only the gbest solution using (17) 
27.                        Procedure Update_Pheromone() 
28.                    }//end- while 
29.        Update pareto set 
30.     }// end for each value of ω 
31.  }//end – procedure 
 
The algorithm is terminated when a pre-specified number of iterations are completed. The algorithm starts with 
storing all non-dominated solutions in pareto set. The steps are repeated until their stopping criterion (Maximum 
number of iterations) is met, and then the present solutions are the pareto optimal front solutions [12, 14]. 
 
8.0 RESULTS AND DISCUSSION   
 
To analyze the performance of the proposed algorithm MO-HMMAS, experiments are performed on an Intel core i3 
CPU processor running at 2.27 GHZ with 1.87 GB RAM. The operating system is MS Windows 7, 64 bit running 
the MATLAB R2011b environment.  
 
8.1  Data Set Description 
 
The utilization matrix Un*m holds the real numbers in (0, 1).  For evaluating the performance of the proposed and 
existing algorithms, the utilization matrix is generated for considering real-time heterogeneous environment 
situations based on task heterogeneity, processor heterogeneity and consistency. The utilization matrix is generated 
as in [2,7]. The steps are given below: 
 

1. A  nx1 clock cycle matrix C (cycle vector) is generated, the number of cycles to execute task Ti  is a 
random number between [100, 1000]. 
 

2. A nx1 task frequency matrix TB (task baseline vector) is generated, the task frequency of Ti is a random 
number between [1, ΦT], here ΦT is task heterogeneity. It is either High Task heterogeneity (HT: [ΦT=100]) 
or Low Task heterogeneity (LT; [ΦT=5]).  
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3. A 1xm speed vector is generated for each TB(i), the speed to execute task Ti on Pj that is Si(j) to a random 
number between [ΦT, ΦT.Φp], here Φp is processor heterogeneity; It is either High Processor heterogeneity 
(HP: [Φp=20])  or Low Processor heterogeneity (LP: [Φp =5]). 
 

4. An nxm utilization matrix Ui,j is generated by TB(i)/ Si(j).  Consequently, the values of Ui,j are controlled 
by both task heterogeneity and processor heterogeneity : Ui,j   [1/ (ΦT.Φp),1]. 
 

5. The utilization matrix is said to be consistent (C), if each speed vector values are sorted by descending with 
processor P0 which is always the fastest and processor Pm-1 as the slowest.This implies that a particular 
processor always runs at same speed for the entire task (i.e., Processor speed doesn’t depend on task 
characteristics). But the inconsistent matrix (IC) holds unsorted speed vector values that are random state as 
they were generated. This implies that a particular processor runs at different speed for different task (i.e., 
Processor speed depends on task characteristics). The characteristics of the utilization matrix are varied, 
considering task heterogeneity, processor heterogeneity, and consistency of evaluating the algorithms for 
different real-time scenarios. Hence, eight combinations of utilization matrix characteristics are used in this 
research. The combinations are High and Low Task heterogeneity (HT or LT), High and Low Processor 
heterogeneity (HP or LP) and Consistent and Inconsistent utilization matrix (C or IC). This test data set 
contains namely Consistent, High ΦT, High ΦP; Consistent, High ΦT, Low ΦP; Consistent, Low ΦT, High 
ΦP; Consistent, Low ΦT, Low ΦP; Inconsistent, High ΦT, High ΦP; Inconsistent, High ΦT, Low ΦP; 
Inconsistent, Low ΦT, High ΦP; and Inconsistent, Low ΦT, Low ΦP.  For example,  C_P4_T100_HT_HP 
represents the Consistent system with 4 processors and 100 tasks with High Task and High Processor 
heterogeneity and IC_P5_T150_HT_HP represents the Inconsistent system with 5 processors and 150 tasks 
with High Task and High Processor heterogeneity. 
 
 

 
 

Fig.2:  Randomly assigned solution 
 

The task assignment solution in the heterogeneous multiprocessor system begins with the utilization matrix 
generation as discussed in the implementation section above. For each ant randomly generated the solution which is 
shown in Fig 2. The local search is performed to find the best solution from among the neighborhood as shown in 
the flow chart Figure 1. The solution of the ant is shuffled considering one task at a time and checked to reduce the 
average utilization so as to fill the more number of task as shown in Fig 3.a To further improve the quality of the 
solution, another local search (1-DIFF) is proposed. In 1-DIFF, the obtained solution is shuffled considering one 
task at a time and checked to obtain minimum difference for individual processor from the average utilization shown 
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in Fig 3.b.  The remaining un-utilized part of the processors is filled with unassigned tasks if any, again in a random 
manner, and again, the local search algorithm repeats until no newer tasks can be added. From Table 5, it can be 
inferred that the number of tasks assigned by 1-DIFF local search is more compared to random assignment and 1-
OPT local search. 

Table 5:  Comparison for random assignment,1-OPT and 1-DIFF local search 
 

 Random Assignment 1-OPT 1-DIFF 

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 

Utilization Per Processor (%) 
99.8 99.1 97.7 75.22 93.8 98.35 94.8 100 99.6 98.35 98.8 99.94 

Tasks per      Processor 
9 13 19 29 9 10 15 42 11 10 25 34 

Total Number of Tasks allocated  70 76 80 

Average utilization (%) 93 97 99 

 
 

 
 

Fig.3: (a) 1-OPT (b) 1-DIFF 
 
8.2 Performance Comparison of the Proposed MO-HMMAS and MO-ACO Algorithm based on Task 

Heterogeneity, Processor Heterogeneity and Consistency 
 
The utilization matrix is generated for considering real-time heterogeneous environment situations based on task 
heterogeneity, processor heterogeneity and consistency for evaluating the performance of the proposed MO-
HMMAS and MO-ACO algorithm.  
 
8.2.1 Consistency Utilization Matrix  
 
Table 6 gives the results obtained by MO-HMMAS for C_100T_4P_HT_HP instance. Various linearly distributed 
weights (ω) from 0 to 1 in steps of 0.1 are used. From Table 7, it can be inferred that the best task assigned by MO-
HMMAS is 93 whereas by MO-ACO is only 88. Also, the best normalized energy consumption obtained by MO-
HMMAS is 0.3328 for 65 tasks, whereas MO-ACO could achieve 0.339 with 61 tasks assigned. The comparison of 
MO-HMMAS and MO-ACO interms of best resource objective and energy objective for C_100T_4P_HT_HP is 
given in Table 8. The results show that the MO-HMMAS achieves 6.11% of improvement in the average resource 
objective and 2.085% of reduction in the average energy objective over the values achieved by MO-ACO for 
C_100T_4P_HT_HP. 
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Table 6:   Number of task assigned and normalized energy for various values of ω for C_100T_4P_HT_HP of 
MO-HMMAS 

 
Weight ω 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 

Tasks Assigned 
(Resource objective) 

93 90 88 85 82 80 78 73 70 67 65 

Normalized Energy 
(Energy  objective) 

0.356 0.355 0.353 0.352 0.350 0.349 0.348 0.344 0.339 0.335 0.332 

 
Table 7:  Performance comparison of the proposed MO-HMMAS algorithm with the existing MO-ACO algorithm 

in terms of best resource and energy objective for  C_100T_4P_HT_HP problem instance 
 

Objectives 
Best Resource Best energy 

MO-HMMAS MO-ACO MO-HMMAS MO-ACO 
Resource Objective 93 88 65 61 

Energy Objective 0.3564 0.365 0.3328 0.339 

 
Table 8:  Comparison of the results obtained by the proposed algorithm with the existing algorithm for 

C_100T_4P_HT_HP problem instance 
 

Objectives 
Improvement in resource objective by 

MO-HMMAS(%) 
Reduction in Energy objective by 

MO-HMMAS(%) 
Best Resource 5.68% 2.35% 

Best energy 6.55 % 1.82% 
Average 6.11% 2.085% 

 

 
  

Fig.4 : Search space by MO-HMMAS algorithm for C_100T_4P_HT_HP 
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Fig.5 : Pareto front constructed by MO-HMMAS algorithm for C_100T_4P_HT_HP 
 

 
 

Fig.6:  Comparison of pareto tradeoff solutions of MO-HMMAS and MO -ACO for C_100T_4P_HT_HP 
 
Fig 4 and 5  show search space explored by the proposed algorithm MO-HMMAS for C_100T_4P_HT_HP and 
final converging points known as pareto front. The points on the pareto front are non-dominated solutions with 
respect to each other. From Fig 6, it can be seen that the proposed MO-HMMAS has outperformed the MO-ACO 
both in terms of the task assignment and normalized energy consumption for C_100T_4P_HT_HP. 
 
8.2.2 Inconsistency Utilization Matrix 
 
Table 9  shows  the results obtained by MO-HMMAS for IC_100T_4P_LT_HP instance. The comparison of MO-
HMMAS and MO-ACO for the best resource objective and energy objective for IC_100T_4P_LT_HP is given in 
Table 11. The results show that the MO-HMMAS achieves 5.16% of improvement in the average resource objective 
and 5.335% of reduction in the average energy objective compared to MO-ACO. The better performance by MO-
HMMAS is due to the fact that MO-HMMAS based on max-min ant System along with the presence of two local 
search techniques which concentrates more on exploring the neighbors of the good solutions and finds the best value 
in terms of both resource objective and energy objective.  
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Table 9:   Number of task assigned and normalized energy for various values of ω for IC_100T_4P_LT_HP of 

MO-HMMAS 
 

Weight ω 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 
Tasks Assigned 
(Resource objective) 

100 98 95 93 90 88 85 84 82 81 79 

Normalized Energy(Energy   
objective) 

0.0309 0.0294 0.0288 0.0283 0.0276 0.0267 0.0264 0.0262 0.0261 0.0254 0.0239 
 

 
Table 10 :  Performance comparison of the proposed MO-HMMAS algorithm with the existing MO-ACO algorithm 

in terms of best resource and energy objective for IC_100T_4P_LT_HP problem instance 
 

Objectives 
Best Resource Best energy 
MO-HMMAS MO-ACO MO-HMMAS MO-ACO 

Resource Objective 100 94 79 76 

Energy Objective 0.0309 0.0315 0.0239 0.0262 

 
Table 11 :  Comparison of the results obtained by the proposed algorithm with the existing algorithm for 

IC_100T_4P_LT_HP problem instance 
 

Objectives 
Improvement in resource objective by 

MO-HMMAS(%) 
Reduction in Energy objective by MO-

HMMAS(%) 
Best Resource 6.38% 1.9% 

Best energy 3.94 % 8.77% 
Average 5.16% 5.335% 

 
 

 
 

Fig.7: Search space by MO-HMMAS algorithm for IC_100T_4P_LT_HP 
 

. 
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Fig.8: Pareto front constructed by MO-HMMAS algorithm for IC_100T_4P_LT_HP 
 

 
 

Fig.9:  Comparison of pareto tradeoff solutions of MO-HMMAS and MO -ACO for  IC_100T_4P_LT_HP 
 
Fig 7 and 8 show the search space explored by the proposed algorithm MO-HMMAS for IC_100T_4P_LT_HP and 
final converging points known as pareto front. The points on the pareto front are non-dominated solutions with 
respect to each other.  From Fig 9, it can be seen that the proposed MO-HMMAS has outperformed the MO-ACO 
both in terms of the task assignment and normalized energy consumption for IC_100T_4P_LT_HP. 
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Table 12: Comparison of the best quality of solution for proposed MO-HMMAS and MO-ACO and their ranks 
 

Problem 
instance 

Size Proposed MO-
HMMAS 

MO-ACO Improvement 
in resource 
objective by 

MO-
HMMAS(%) 

Reduction in 
Energy 

objective by 
MO-

HMMAS(%) 

Rank of the solution 

Resource 
objective 

Energy 
objective 

Resource 
objective 

Energy 
objective 

Proposed 
MO-

HMMAS 

MO-
ACO 

C_HT_HP U4*100 93 0.3564 88 0.365 5.68 2.35 1 2 

C_HT_LP U8*60 56 0.386 48 0.535 16.66 27.85 1 2 

C_LT_HP U4*80 78 0.232 70 0.345 11.42 32.75 1 2 

C_LT_LP U8*50 47 0.365 40 0.49 17.5 25.51 1 2 

IC_HT_HP U5*150 150 0.023 150 0.0654 0 64.831 1 2 

IC_HT_LP U8*60 60 0.135 60 0.169 0 20.11 1 2 

IC_LT_HP U4*100 100 0.0309 94 0.0315 6.38 1.90 1 2 

IC_LT_LP U8*60 60 0.1228 57 0.1289 5.26 4.73 1 2 

IC_LT_LP U5*20 20 0.125 20 0.2488 0 49.75 1 2 

Average   
6.98 25.53 1 2 

 
 

 
 

Fig.10:  Comparison of the total number of task assigned by the  MO-HMMAS and MO-ACO algorithm of 
consistency and inconsistency matrix 

 

 
 

Fig.11:  Comparison of normalized energy consumption by the MO-HMMAS and MO-ACO algorithm of 
consistency and inconsistency matrix 

 
Table 12 shows the  best quality of the solution for MO-HMMAS and MO-ACO and their ranks. As it can be seen 
that the quality of the solution of MO-HMMAS is higher than MO-ACO  for all problem instances. In a case of 
consistency matrix, the proposed algorithm outperforms MO-ACO due to the searching behavior of the ants 
enriched with local search algorithm. In case of inconsistency matrix, the maximum number of tasks are assigned 
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similar to MO-ACO. The inclusion of local search has its influence in energy part of the solution. MO-HMMAS 
achieves an improvement in resource objective and reduction in energy objective by 6.98% and 25.53% respectively 
over the values achieved by MO-ACO. From the experiment, the proposed MO-HMMAS has proved to be the best 
algorithm for  the task assignment optimization problem in the heterogeneous multiprocessor system. Fig 10 and  11 
show comparison of MO-HMMAS and MO-ACO algorithm of consistency and inconsistency matrix in terms of 
tasks assigned and normalized energy consumption.  
 
8.3 Performance Comparison of H-MMAS and MO-HMMAS 
 
A single objective Hybrid Max-Min Ant System H-MMAS [21] is also implemented that considers both the 
objectives separately. Table 13 shows the values of resource objective and energy objective for the best solution 
obtained by the H-MMAS and the proposed MO-HMMAS. The results show that MO-HMMAS produces the best 
quality of solutions compared to H-MMAS [21]. MO-HMMAS achieves an improvement in resource objective and 
a reduction in energy objective by 1.85% and 29.75% respectively over the values achieved by H-MMAS. 
 

Table 13:  Comparison of H-MMAS and MO-HMMAS algorithm 
 

Problem 
instance 

Size 

Proposed MO-
HMMAS 

H-MMAS [21] 
Improvement in 

resource objective 
by MO-

HMMAS(%) 

Reduction Energy 
objective by MO-

HMMAS(%) Resource 
objective 

Energy 
objective 

Resource 
objective 

Energy 
objective 

C_HT_HP U4*100 93 0.3564 90 0.394 0 9.54 

C_HT_LP U8*60 56 0.386 54 0.4937 3.70 21.81 

C_LT_HP U4*80 78 0.232 77 0.3561 1.29 34.84 

C_LT_LP U8*50 47 0.365 45 0.471 4.44 22.50 

IC_HT_HP U5*150 150 0.023 150 0.0248 0 7.25 

IC_HT_LP U8*60 60 0.135 60 0.2413 0 44.05 

IC_LT_HP U4*100 100 0.0309 98 0.0678 2.04 54.42 

IC_LT_LP U8*60 60 0.1228 57 0.1291 5.26 4.87 

IC_LT_LP U5*20 20 0.125 20 0.397 0 68.51 

Average   
1.85 29.75 

 
8.4 Performance Comparison of ACO and MO-ACO 
 
A single objective ACO [7] is also implemented  and  considers both the objectives separately. Table 14  shows  the 
values of resource objective and energy objective for the best solution obtained by the single objective ACO and the 
MO-ACO [16]. The results show that MO-ACO produces the best quality of solutions. MO-ACO achieves an 
improvement in resource objective and a reduction in energy objective by 1.79% and 20.096 % respectively over the 
values achieved by ACO.  
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Table 14:  Comparison of MO-ACO and ACO 
 

Problem 
instance 

Size MO-ACO ACO  Improvement in 
resource 

objective by 
MO-ACO(%) 

Reduction 
Energy 

objective by 
MO-ACO(%) 

Resource 
objective 

Energy 
objective 

Resource 
objective 

Energy 
objective 

C_HT_HP U4*100 88 0.365 75 0.5418 17.33 32.631 

C_HT_LP U8*60 48 0.535 48 0.561 0 4.63 
C_LT_HP U4*80 70 0.345 68 0.4553 2.94 24.22 
C_LT_LP U8*50 40  0.49 40 0.53 0 7.54 

IC_HT_HP U5*150 150 0.0654 150 0.0749 0 12.68 
IC_HT_LP U8*60 60 0.169 60 0.1955 0 13.55 
IC_LT_HP U4*100 94 0.0315 98 0.0493 -4.08 36.105 
IC_LT_LP U8*60 57 0.1289 57 0.1311 0 1.67 
IC_LT_LP U5*20 20 0.2488 20 0.4841 0 48.60 

Average  1.79 20.096 

 
8.5 Performance Comparison of the Proposed   MO-HMMAS & H-MMAS with the Existing MO-ACO 

& ACO Algorithms  
 
Fig 12 and  13 show the comparison of proposed MO-HMMAS algorithm with the existing algorithms in terms of 
resource objective and energy objective for both consistent and inconsistent systems. The better performance by  
MO-HMMAS  is  because  MO-HMMAS  concentrates  on exploring the neighbors of the good solutions using two 
local search techniques and finds the best value in terms of both resource objective and energy objective. 
 

 
 
Fig. 12:  Comparison of the total number of task assigned by the proposed algorithm with the existing algorithms for 

consistency and inconsistency matrix 
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Fig. 13:  Comparison of normalized energy consumption of assigned tasks by the proposed algorithm with the 
existing algorithms for consistency and inconsistency matrix 

 
 
9. 0 CONCLUSION 
 
In this paper, the  Multi objective Hybrid Max-Min Ant Colony Optimization Algorithm (MO-HMMAS) is 
proposed for solving the real-time task assignment problem in the heterogeneous multiprocessors. This paper 
considers the two conflicting objectives of maximizing the number of tasks assigned (resource objective) and to 
minimize the cumulative energy consumption for the task assignment (energy objective) simultaneously. The best 
values for resource objective and energy objective obtained using proposed MO-HMMAS algorithm for randomly 
generated problem instances are reported, and compared with MO-ACO. The  proposed algorithm outperforms MO-
ACO due to the searching behavior of the ants enriched with hybridization of  local search algorithm. Results 
showed that MO-HMMAS algorithm is well-suited for obtaining a good pareto optimal solutions for the task 
assignment problem in the heterogeneous multiprocessors by considering the above two objectives.  The 
performance of MO-HMMAS is improved  with the hybridization  of two local search techniques with Max–Min 
Ant System. In our future work, we will investigate the possibility of MO-HMMAS for the heterogeneous 
multiprocessor platform, explore inter-task communication on the task sets and explore other heuristic algorithms 
such as NSGA- II and NPSO to achieve better results.  
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