
Malaysian Journal of Computer Science, Vol. 9 No. 1, June 1996, pp. 1-5

1

LOGIC PROGRAMMING IN NEURAL NETWORKS

Wan Ahmad Tajuddin bin Wan Abdullah
Jabatan Fizik

Universiti Malaya
50603 Kuala Lumpur

Malaysia
Tel.: 603-7594192
Fax: 603-7594146

email: wat@cc.um.edu.my

ABSTRACT

Logic programming is carried out on a neural network.
A higher-order Hopfield neural network is used to
minimise logical inconsistency in interpretations of logic
clauses or programs. The connection strengths are
defined from the logic program; the network relaxes to
neural states corresponding to a valid (or near-valid)
interpretation. ‘Creativity’ can be thought of as the
crossing of configurational energy barriers to arrive at
alternative interpretations. The formalism allows the
incorporation of non-monotonicity; non-integral degrees
of truth in rules; and non-Horn clauses. Hebbian
learning in an environment with some underlying logical
rules governing events is equivalent to hardwiring the
network with these rules.

Keywords: Hopfield neural network, Higher-order
connections, Logic program-ming,
Combinatorial optimisation, Hebbian
learning

1.0 INTRODUCTION

Neural networks or connectionist architectures provide an
alternative computational paradigm [1], and can be seen
as a step towards the understanding of intelligence. It
departs from the traditional von Neumann serial
processing and instead is based on distributed processing
via connections between simple elements. This is
motivated by biology, and offers new and alternative ways
of computation [2].

There are various versions of the neural network, of which
the symmetric (of connections), densely-connected,
Hopfield model [3] is one. This network has been shown
to evolve in such a way as to minimise a configurational
energy function and can thus be used for solving
combinatorial optimisation problems [4]. Adequately
good solutions can be found in linear time or less. Also,
optimisation is the basis of many (if not all) intelligent
processes.

It can be shown that prepositional logic programming can
be done on the model of a single neuron [5]. Recently [6],
we have also proposed a method of doing logic
programming on a Hopfield neural network (with higher-
order connections) through the minimisation of logical
inconsistencies. Consequently, by looking at this process
backwards, we showed that [7] synaptic changes from
learning correspond to the formation of logical rules. This
paper presents a review of these ideas, and we see how the
formalism allows extensions to the Horn clause logic
usually employed and discuss the ramifications of the
learning of logical rules.

2.0 NEURAL NETWORKS

A neuron i can formally be modelled as a two-state
element Si (here we take them to be bipolar, i.e. Si ∈ {-
1,1}) whose state depends on the input from other neurons
j via connections Jij of various strengths (positive or
negative):

Si := sign(Σj Jij Sj).

If Jij is zero-diagonal and symmetric, we may write a
configurational “energy” [3]

E = - 1/2 Σi Σj Jij Si Sj
which is monotone decreasing with the evolution of S).
Thus, depending on the initial neural configurations, the
system evolves into a configuration for which E is a
minimum.

By mapping neurons to ‘switches’ indicating choices in a
combinatorial optimisation problem, we can arrive at the
combination with least cost if we equate E to the cost
function associated with the problem (plus perhaps
functions corresponding to constraints on the choices) and
thereby define the values for connection strengths, and
allow the network to relax. The global minimum provides
the solution to the problem. Difficult problems may be
solved adequately well in a linear or shorter time in this
way. The complexity which is spread over time in a
sequential machine is spread over space in the massively-
connected network.

Abdullah

2

In some cases, networks with multiconnections or higher-
order interactions between neurons [8-14] are needed.
This occurs when the cost function requires the expression
for energy to have, for example, a third order term in
neural values, - 1/3 Σi Σj Σk J

(3)
ijk Si Sj Sk, modifying the

dynamics to (if for completeness a first order term, - Σi
J(1)

i Si, is included as well)
Si := sign(Σi Σj J

(3)
ijk Sj Sk + Σi J

(2)
ij Sj + J(1)

i)
provided that J(3)

ijk is zero whenever any of its indices are
equal, and J(3)

ijk = J(3)
[ijk], where [ijk] denotes any

permutation of i, j, k. (We have included superscripts to
differentiate between connections of different orders).
Multiconnections can actually be simulated by extra
neurons: the product SjSk is given by Sl if there is an
exclusive-or network from Sj and Sk to Sl. Optimisation
using multi-connected networks have been discussed [12,
15].

We show below how logic programming can be
interpreted as a problem of optimisation and implemented
on a neural network.

3.0 LOGIC PROGRAMMING

In logic programming [16], a set of Horn clauses (logic
clauses of the form A C B1, B2, ..., BN where the arrow
may be read ‘if’ and the commas ‘and’) are given and the
aim is to find interpretations (i.e. truth value assignments)
for the atoms (A, B1, etc.) in the clauses which are
consistent with the clauses (which yields all the clauses
true). In essence logic programming can be seen as a
problem in combinatorial optimisation and it can be
carried out on a neural network by the procedure above.
This is done by using the neurons to store the truth values
of the atoms and writing a cost function which is
minimised when all the clauses are satisfied.

As a prepositional example, consider the logic program
below:

A ← B, C.
D ← B.
C ←.

whose three clauses translates as A ∨ ¬ (B ∧ C) = A ∨ ¬B
∨ ¬C, D ∨ ¬B, and C respectively. The clauses have
implied conjunction between them,

P = A ← B, C
∧ D ← B
∧ C ←.

so given a goal
← G.

we require to show that P∧¬ G is inconsistent in order to
proof the goal. Alternatively, we require to find an
interpretation for the Herbrand base of the problem which
is consistent with P (i.e. which yields P true) and examine
the truth of G in such an interpretation. If we assign the

values 1 to true and 0 to false then ¬P = 0 indicates a
consistent interpretation while ¬P = 1 reveals that at least
one of the clauses in the program is not satisfied.
Therefore, looking for a consistent interpretation is a
combinatorial (of assigning truth values to ground atoms)
minimisation of the ‘inconsistency’, the value of ¬P.

3.1 Logic Programming on Neural Networks

As was mentioned, logic programming can be seen as a
problem in combinatorial optimisation and thus it can be
carried out on a neural network. The neurons store the
truth values of the atoms and we require to write a cost
function which is minimised when all the clauses are
satisfied. This function has to represent ¬P so that
minimisation of the cost function minimises the
‘inconsistency’ as discussed above. To obtain an
arithmetic function, we represent logical ‘and’ as
multiplication, and without loss of consistency since we
are minimising the function and since the form of ¬P is a
disjunction of conjunctions, logical ‘or’ as addition.

Since in our example
¬P = (¬A ∧ B ∧ C) ∨ (¬D ∧ B) ∨ (¬C)

we write the cost function to be minimised as follows:
EP = (1/8)(1-SA)(1+SB)(1+SC) + (1/4)(1-SD)(1+SB) +

(1/2)(1-SC)
where the neurons SA, etc. represent the truth values of A,
etc., with SA = 1 if A is true, and -1 otherwise. As we
have chosen arithmetic addition to represent logical
disjunction, the value of EP depends on the number of
clauses satisfied by the interpretation - the more the
clauses unsatisfied, the bigger the value of EP. Minimum
EP corresponds to the ‘most consistent’ selection of truth
value assignments. The cost function, when programmed
onto a third order neural network, yields

J(3)
ijk = 1/16 if I, j, k = A, B, C in any order

= 0 otherwise
J(2)

ij = -1/8 if I, j = B, C in any order
= 1/8 if I, j = A, B, or A, C, in any order
= 1/4 if I, j = D, B in any order
= 0 otherwise

J(1)
i = -1/4 if i = B

= 1/4 if i = D
= 1/2 if i = C
= 0 otherwise

Notice that with respect to the cost function, the addition
of more rules or facts to the database is simply additive in
J(2)

ij, etc. Notice also that Multiconnections are needed
when there are long clauses like the first one in the
example logic program.

So far we have not mentioned variables. One way of
dealing with universal quantification is to replace all
clauses with variables with the corresponding clauses with
all possible instantiations of the variables. The number of
clauses would then multiply; however, on a neural

Logic Programming In Neural Networks

3

network we have the advantage of having as many
neurons as we want without causing performance to
deteriorate. Neurons can then represent whole (variable-
free) relations like rel1(arg1,arg2), rel1(arg1,arg3), ...,
rel2(arg1,arg2), etc.

The above example illustrates how we may do logic
programming on a neural network. The following
procedure is subscribed to:

(1) List all clauses. Clauses with variables are replaced
by all possible instantiations from the Herbrand
base.

(2) Identify a neuron to each ground atom.

(3) Initiate all connection strengths to zero.
Multiconnections of up to degree p are needed
where p is the length (no. of ground atoms) of the
longest clause. For each clause, modify the
appropriate connections in a similar way as
demonstrated in the example above.

(4) Initiate neural states to probable values where
known (e.g. when the truth of a ground atom is
given by an assertion), or to random values
otherwise.

(5) Let the neural network evolve until an energy
minimum is reached. The neural states then
provide a solution interpretation for the logic
program, and the truth of a ground atom in this
interpretation may be checked. If the goal sought
involved variables, then the set of appropriate
ground atoms are checked.

A thing to note is that the neural network would also
yield local minima as well as the global minimum,
depending on the initial configuration. One way to
escape local minima in order to find the global minimum
is to resort to simulated annealing [17, 18], where we
include “thermal” noise to allow the system to climb
over energy barriers around local minima. Other
methods of seeking global optima have been compared
elsewhere [19].

Depending on the initial configuration, the network may
arrive at alternative solutions or at near-solutions
(interpretations with logical inconsistency almost zero).
We may thus understand ‘creativity’ as the ability or ease
in escaping the energy minimum corresponding to
stereotype solutions and arriving, perhaps many barriers
away, to a minimum corresponding to a ‘novel’ solution.

This formalism for logic programming also raises some
other interesting points which we discuss in the
following section.

3.2 Generalisations to First-Order Horn Clause
Logic

The formalism above attempts to find solutions with least
inconsistency - it does not require ‘correct’ solutions.
This allows solution in the presence of incomplete
knowledge. The procedure hunts for the best solutions,
given the clauses in the logic program, and these solutions
may change as clauses are added (i.e. as connection
strengths are modified). Even when clauses in the logic
program are inconsistent with each other, the neural
network still proposes a solution, which is an
interpretation which gives the least logical inconsistency
as defined by the energy function. It can therefore deal
with non-monotonicity.

Because of the additive nature of the inconsistency cost
function, we can introduce weightings to clauses. We
have been taking a unit of logical inconsistency as
equivalent to a clause being unsatisfied, but this can be
altered and clauses be given different weightings in the
energy function, by multiplying the appropriate terms by
the respective weighting factors, to reflect their relative
‘degrees of truth’. Clauses with larger weightings tend to
be more often satisfied than clauses with smaller
weightings. This has also something to do with learning
as discussed in the next section.

Our formalism has not imposed any restrictions on the
type of clauses acceptable in the logic program. Thus
non-Horn clauses are also allowed; they only need to be
encoded properly in the energy function. The energy
function should eventually have the form of a sum of
terms each of which corresponds to a clause, and each of
which is 0 when the clause is satisfied and 1 otherwise: the
final form of the clauses should thus be disjunction (so
that their negation in the inconsistency function would
yield conjunctions) - thus some clauses may be broken up
into several clauses in the final form.

Also, by dealing with universal quantifications in the
manner we have done, higher-order logics may also be
incorporated by treatment in the same manner. Variables
representing predicates, for example, can be allowed.
These variables are then instantiated over all possible
values in the same manner as for those representing
arguments in predicates.

Of course, with the neural network formalism, one
interesting aspect to investigate is that of learning. Below,
we discuss implications for logic programming.

Abdullah

4

4.0 LEARNING

Learning in a neural network corresponds to the
modification of connection strengths which would yield a
modified behaviour supposedly better (in the sense of
correctness of response, etc.) than previously. One
principle of learning which has been suggested is that of
Hebbian learning [20] where the strength of a connection
is increased when it is in frequent usage, i.e.

∆J(2)
ij = a2 Si Sj

for a two-neuron synaptic connection, where a2 is a
constant corresponding to the learning rate. From this
basis, associative memory can be obtained [3]. We may
generalise this to interactions of any order by

∆J(n)
ij..n = an Si Sj ... Sn

where an is the respective learning rate.

We showed that [7] synaptic changes from learning
correspond to the formation of logical rules. For our
example above, assume that events corresponding to A, B,
C and D occur uniformly randomly, with the provision
that the clauses in the program are satisfied. This means
that, considering the first clause, conjunctions of all truth
value combinations of A, B and C occur except for the
combination <SA = -1, SB = 1, SC = 1> which violates
the clause and the equal frequencies of occurrences of the
other possible combinations would render, by the
expression above, a relative increase in J(3)

ABC (and
similarly in J(3)

ACB, etc.) of a3Ne/8, where Ne is the
number of occurring events. Looking at the sub-
combinations B and C, A and B, and A and C, it can
similarly be seen that the non-occurrence of the
disallowed combination results in J(2)

BC (and J(2)
CB)

changing by -a2Ne/8, J(2)
AB (and J(2)

BA) by a2Ne/8 and
J(2)

AC (and J(2)
CA) by a2Ne/8. (More details may be

found elsewhere [21]). Similar considerations also show
that J(1)

A increases by a1Ne/8 while J(1)
B and J(1)

C
decrease by the same amount. Notice that from these
changes, it may be interpreted that, by comparing with the
direct assignments to the synaptic strengths above, the
system has learnt the clause A ← B, C just from the non-
occurrence of the disallowed combination, with the
weightage Ne, provided that an = 1/(n-1)! For the second
and third clauses, similar analyses would show that the
respective clauses are learnt in the same manner.
Generalisation to other clauses and other orders is
straightforward. Thus, Hebbian learning in environments
obeying underlying logical rules as given by respective
clauses is equivalent to hardwiring the network with these
respective rules.

This also allows a way of dealing with non-monotonicity:
using Hebbian learning, we can let the rules be formed
(strengthened or weakened) on their own, from the
activity of neurons representing the relevant ground
atoms. This is alternative to “consciously” dealing with
non-monotonicity by straightforward addition or deletion
of clauses using the same procedure as for initiating the

connection strengths given the set of clauses in a logic
program: addition to or subtraction from, of appropriate
positive values, the appropriate connection strengths.

5.0 CONCLUSION

In conclusion we have shown how logic programming
may be carried out on an optimising neural network and
how clauses or rules may be learnt by a neural network
just from the observation of the occurrences of events
obeying these rules. We have written and tested a neural
network theorem prover (i.e. an interpreter of logic
programs into neural network architectures, and the
simulator for such neural network) in C, named CLOG
[22], which runs on a personal computer. CLOG is of
course a simulator which updates neurons serially, but
optimums are arrived at in typically 2 updates/neuron for
modest-sized logic programs. For the program tested, the
global optimum was obtained in 11 out of 16 trials. Of
date, rigorous testing has yet to be carried out.

We have also written and run a program which carries out
Hebbian learning in environments with underlying rules.
One interesting use of the results presented in this paper is
the extraction of underlying logical rules in data through
Hebbian learning on a neural network.

On a more esoteric note, the result concerning the learning
of implicit rules gives a modern perspective to the
associationist epistemology of Al-Ghazali and others, as
discussed elsewhere [23, 24].

ACKNOWLEDGMENT

This research was supported in part by MPKSN grant
R&D 4/41/01.

REFERENCES

[1] W. A. T. Wan Abdullah, “The Connectionist
Paradigm”, in Proceedings 1st National Computer
Science Conference, Kuala Lumpur, January
1989, pp. 95-111.

[2] W. A. T. Wan Abdullah, “Computations with
Neural Networks and Neural-Network-like
Structures”, in: J. Noye and C. Fletcher (eds.),
“Computational Techniques and Applications:
CTAC-87”, Elsevier-North Holland, Amsterdam,
1988.

Logic Programming In Neural Networks

5

[3] J. J. Hopfield, “Neural networks and physical
systems with emergent collective computational
abilities”, in Proceedings National Academy of
Science USA, Vol. 79, 1982, pp. 2554-2558.

[4] J. J. Hopfield and D. W. Tank, “‘Neural’
Computation of Decisions in Optimization
Problems”, Biol. Cybern., Vol. 52, 1985, pp. 141-
152.

[5] W. A. T. Wan Abdullah, “Biologic”, Cybernetica,
Vol. 31, 1988, pp. 245-251.

[6] W. A. T. Wan Abdullah, “Logic Programming on a
Neural Network”, Int. J. Intelligent Syst., Vol. 7,
1992, p. 513.

[7] W. A. T. Wan Abdullah, “The Logic of Neural
Networks”, Phys. Lett., Vol. 176A, 1993, p. 292.

[8] P. Baldi and S. S. Venkatesh, Phys. Rev. Lett., Vol.
58, 1987, p. 913.

[9] E. Gardner, “Multiconnected neural network
models”, J. Phys. A: Math. Gen., Vol. 20, 1987, p.
3453.

[10] L. F. Abbott and Y. Arian, Phys. Rev. A, Vol. 36,
1987, p. 5091.

[11] L. Personnaz, I. Guyon and G. Dreyfus, Europhys.
Lett., Vol. 4, 1987, p. 863.

[12] W. A. T. Wan Abdullah, “Dendritic trees and non-
quadratic combinatorial optimisation”, Malaysian
J. Sci., Vol. 9, 1987, pp. 105-109.

[13] G. A. Kohring, J Phys France, Vol. 51, 1990, p.
145.

[14] R. M. C. Almeida and J. R. Iglesias, Phys. Lett.,
Vol. 146A, 1990, p. 239.

[15] H. Mueller-Krumbhaar, Europhys. Lett., Vol. 7,
1988, p. 479.

[16] J. W. Lloyd, “Foundations of Logic
Programming”, Springer-Verlag, Berlin, 1984.

[17] S. Kirkpatrick, C.D. Gelatt and M. P. Vecchi,
“Optimization by simulated annealing”, Science,
Vol. 220, 1983, pp. 671-680.

[18] S. Geman and D. Geman, “Stochastic relaxation,
Gibbs distributions and the Bayesian restoration of
images”, IEEE Transactions Pattern Analysis &
Machine Intell., Vol. PAMI-6, 1986, pp. 721-741.

[19] W. A. T. Wan Abdullah, “Seeking Global
Minima”, J. Comput. Phys., Vol. 110, No. 2, 1994,
p. 320.

[20] D. O. Hebb and D. O., “The Organisation of
Behaviour”, Wiley, New York, 1949.

[21] W. A. T. Wan Abdullah, “Neural Network Logic”,
in: O. Benhar, C. Bosio, P. del Giudice and E.
Tabet (eds.), Neural Networks: From Biology to
High Energy Physics, ETS Editrice, Pisa, 1991, pp.
135-142.

[22] W. A. T. Wan Abdullah, “Pengaturcaraan Logik
Menggunakan Rangkaian Neuron”, Pros. Seminar
Sains Komputer, Serdang, Jun 1994, pp. 140-145.

[23] W. A. T. Wan Abdullah, “A Connectionist
Epistemology”, Cybernetica, Vol. 34, 1991, p. 75.

[24] W. A. T. Wan Abdullah, “Neural Networks, Logic
Programming and Al-Ghazali's Epistemology”, in
Proceedings AMR-IT 1991, Leicester, U. K., 1991.

BIOGRAPHY

Wan Ahmad Tajuddin bin Wan Abdullah received his
Ph.D in High Energy Physics from Imperial College,
University of London, in 1985. He is currently an
Associate Professor in the Department of Physics,
Universiti Malaya, with interests in bioinformatics and
bioorganisation. He is a member of Institut Fizik
Malaysia, International Neural Network Society and
Artificial Intelligence Society.

