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ABSTRACT

Attribute grammars have been used in defining
programming languages and constructing compilers.
Since these are concerned with the syntax and static
semantics of the source code of the language, attribute
grammars can be effectively used to define source code
metrics on it.  Most of the source code metrics are based
on measuring models of the source code.  However, there
is no formal way of specifying the mapping of the source
code onto the models.  This paper attempts to provide an
approach using an attribute grammar to demonstrate how
Halstead's metrics may be specified in an unambiguous
manner on the source code itself.

Keywords: attribute grammar, source code models,
Halstead's metrics

1.0 INTRODUCTION

Attribute grammars were first proposed by Knuth [1] and
have been used as a tool for the formal specification of
programming languages.  Since then, they have been used
in many applications including compiler construction [2],
detection of program anomalies [3], as a basis for a
language-based editor [4], and as a basis for a software
development paradigm [5].  An extended attribute
grammar has also been used to define the programming
language Pascal [6].

In the field of software metrics, however, most of the
source code metrics proposed are normally derived from
some sort of models of the source code.  For examples,
the well-known and widely investigated, McCabe's metric
[7] is derived from a flowgraph, a model of  control flow
structure of the source code, and Halstead's metrics [8]
are derived from the counts of tokens found in the source
code.  In a study by Hunter and Roper [9] in using static
analysers to evaluate the metrics, they found that two
static analysers produce two different values for the same
metrics for a given piece of source code.  Although the
static analysers are not wrong in the first place, the
problem was that there was no precise way by which the
source code was mapped onto its respective models,
except for a few examples given in the literature.

In this paper we attempt to propose an approach by which
Halstead's metrics may be specified in terms of the source
code itself, that is by using an attribute grammar
formalism.  The definition of McCabe's metric using an
attribute grammar can be found in Ghani and Hunter [10].
The advantages of using attribute grammars to specify
source code metrics are as follows:

• Attribute grammars are as powerful as Chomsky
type-0 grammars and are often considered more
readable since the context-free grammar on which
attribute grammars are based is completely visible.

• Attribute grammars combine the language syntax and
static semantics in a modular, declarative fashion,
and in a manner from which the static semantic
specifications can be readily implemented.

• Attribute grammars have the capability of using
techniques for producing efficient parsers directly
from them [11].

By exploiting these advantages, we hope we can specify
Halstead's metrics in a constructive way from which an
implementation can readily be inferred without significant
human intervention.  In particular we will try to show
how the metrics may be specified in an unambiguous
manner to aid the metrics collection.  Once the metrics are
collected, they can be used for examples:

• to predict software product size, cost based on past
experiences

• to measure software productivity
• to assess software product quality.

2.0 ATTRIBUTE GRAMMARS

An attribute grammar [1] consists of a context-free
grammar (CFG) G = (N,T,P,Z), where N is the set of non-
terminal symbols, T is the set of terminal symbols, P is
the set of productions, and Z (Z ∈  N) is the start symbol.

With each symbol in the vocabulary V (V = N ∪  T) of G,
there is an associated set of attributes A(X).  Each
attribute represents a static semantic property of the
corresponding symbol.  There are two disjoint sets in
A(X): I(X) denotes the set of inherited attributes of X and
S(X) denotes the set of synthesised attributes of X.
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Inherited attributes are those whose values defined in
terms of attributes at the parent and possibly the sibling
nodes of node X of the corresponding derivation tree.
Synthesised attributes are those whose values are defined
in terms of attributes at descendant nodes of node X of the
corresponding derivation tree.  In our notation a
synthesised attribute is preceded by an upward arrow ↑ ,
and an inherited attribute is preceded by a downward
arrow ↓ .

Each of the production p ∈  P (p : X0 → X1X2...Xn) of

the CFG is augmented with a set of semantic rules.  Each
semantic rule defines how the value of an attribute
associated with a terminal or non-terminal in the
production is derived by applying a semantic function to
values associated with other terminals or non-terminals in
the production.  The semantic rules associated with
production p define all the synthesised attributes of the
non-terminal symbol X0 (on the left-hand side of p), as

well as all the inherited attributes of symbols X1,X2,...,Xn
(on the right-hand side of p).

By examining the definition of an attribute grammar and
its usage in many applications mentioned before, it is
clear that for our purpose the context-free grammar is the
context-free means of specifying the syntax of the
language and attributes plus semantic functions to specify
the evaluation of the source code metrics.  In each
production of the grammar, the semantic functions specify
rules on attribute relationships.  These functions are used
to determine the values of certain attributes from the
values of other attributes which are already known.

3.0 HALSTEAD'S METRICS

Halstead's metrics [8] are among the well-known and
widely investigated source code metrics.  The basic
concern of the metrics is the process of mental
manipulation of selecting and arranging program tokens
to build a program.  These tokens can be either operators
or operands, and a program can be thought of as a
sequence of operators and their associated operands.
Thus Halstead derived his metrics by first mapping all the
program tokens into either operators or operands.
Halstead proposed a unified set of metrics that is based on
four quantities:

n1 number of distinct operators in a program or

procedure

n2 number of distinct operands in a program or

procedure

N1 total number of operators in a program or procedure

N2 total number of operands in a program or procedure

for example the Halstead metrics Vocabulary, Length,
and Volume are defined by

Vocabulary(n) = n1 + n2
Length (N) = N1 + N2
Volume (V) = N log2n

and other Halstead metrics are evaluated similarly.
Although these metrics are being discredited according to
some publications [12][13], research works related to
them are still ongoing [14][15].

One of the problems with these metrics is that although
examples are often given in the literature of what
constitutes an operator and what constitutes an operand,
completely general rules have not been given.  In addition
it is not always clear what constitute distinct operators
and what constitute distinct operands.  Since all Halstead's
metrics depend on counts of operands and operators, it is
important that the counting strategy be clearly defined and
consistent [12].  As an example, does the operator symbol
‘+’ occurring twice in a program, once meaning addition
of two integers and once meaning addition of two reals,
constitute a single operator or two distinct operators?
What if one of the plusses had been set addition?  The
manner in which different counting strategies used have
promoted many proposals such as in a commercially
available static analysis tool, QUALIGRAPH [16] and in
the software analyser distributed by the Purdue University
Software Metrics Research Group [17].  Clearly the
values of all Halstead's metrics will be affected by the
method used to count operators and operands.  For this
reason the values of the metrics obtained from different
tools may not be the same.

The answers to these questions are not really known, and
in our definitions of (distinct) operators and operands the
assumptions made will be clearly stated, as will our
definitions of what constitute operators and operands.

For example, we will assume the following

1) An operand is any symbol which corresponds to a
terminal node in the abstract syntax tree of a piece of
source code.  Occurrences of the same identifier to
represent different objects (variables, procedure
names, types, etc.) will be treated as distinct.  Real
numbers with the same value e.g., 3.00 and 3.0 will
be considered as the same operand, and integers will
be treated similarly.  The total number of operands in
a BLOCK is evaluated by adding the total number of
identifiers representing variables and constants in the
block to the total number of numbers in a block.  The
number of distinct operands in a block is evaluated
by adding the number of distinct identifiers
representing variables and constants in a block to the
number of distinct numbers in a block.  Note that
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many of the terminal symbols appearing in the
concrete syntax, e.g., punctuation such as commas,
brackets, etc. do not appear, and are not required, in
the abstract syntax.

2) An operator is any symbol which corresponds to a
non-terminal node of the abstract syntax tree.  This
includes operator symbols appearing in expressions,
as well as ‘pseudo’ operators such as assignment,
while statement, if statement without an else part, if
statement with an else part and so on.  In particular, a
procedure call is regarded as a pseudo operator so
that identifiers corresponding to procedure calls will
correspond to operators, not operands.  Operator
symbols which correspond to distinct operators, an
operator being identified by the types and number of
its operands, will be assumed to represent distinct
operators.  The number of operators in a BLOCK is
given by the number of operator symbols in the block
plus the number of pseudo operators in the block.
The number of distinct operators in a block is given
by the number of operator symbols which correspond
to distinct operators, plus the number of distinct
pseudo operators in the block.

4.0 SPECIFYING HALSTEAD'S METRICS
USING AN ATTRIBUTE GRAMMAR

4.1 Preliminary Requirement

Before considering the steps necessary to specify a
method of evaluating Halstead’s metrics, we introduce
data structures to represent data concerning the
occurrences of operands and operators at a particular
stage in the analysis of a program in order to evaluate
n1,n2,N1,N2 required to compute Halstead’s metrics.

There will be three data structures, one concerned with
identifiers representing variables and constants (IDS), one
concerned with numbers occurring in the program
(NUMS), and one concerned with the occurrences of
operators and pseudo-operators (OPS).  The data
structures resemble in some ways a compiler symbol
tables used in analysis of source code in order to produce
object code.

The data structure IDS is a set of records each of which
has the following fields

NAME /* the name of the identifier representing a
variable or constant*/

TYPE /* the type of the variable or constant*/
BLOCKLN /* the block level number of the current

block*/
BLOCKNO /* the block number of the current block */
OCCUR /* the number of applied occurrences of the

variable or constant*/
OCCBLOCK /* the number of occurrences in the current

block*/

NAME is the name of an identifier representing a variable
or constant declared in the block and TYPE is the
variable’s type.  As in compiler technology BLOCKLN
represents the depth of nesting of a block and BLOCKNO
its number, the first block entered in analysing the
program in a single pass from left to right being numbered
one, the second two and so on.  OCCUR is the number of
applied occurrences (so far) of the variable, and
OCCBLOCK the number of occurrences of the variable in
the current block.

In order to evaluate the total number of operands and
operators, and the number of distinct operands and
operators in each block or procedure, as well as for the
program as a whole, a number of steps have to be taken.

During analysis of the program a set of records (IDS) will
be set up to contain one record (as described above) for
each distinct variable or constant in the program.  Initially
the set will be empty and on the first occurrence of each
variable or constant (its declaration or definition) an
appropriate record will be set up with the fields as above.
At this stage the OCCUR field will be set to zero as will
the OCCBLOCK field.

Each applied occurrence of a variable or constant
encountered during analysis will cause the corresponding
record of IDS to be updated by incrementing the OCCUR
and OCCBLOCK fields of the record.  A unique record
can always be identified for updating from a knowledge
of the BLOCKLN and BLOCKNO fields.  The analysis
will assume the program has no syntax or static semantic
errors.

On entering the statement part of each block, the
OCCBLOCK field of each record in the set will be set to
zero (if it is not already zero)so that at the end of each
block the number of times each variable was applied in
that block is known.  Hence the number of variables in the
block and the number of distinct variables in the block are
known.  Once the analysis is complete IDS will contain a
record for each variable and each constant in the program
and from these records the total number of distinct
variables and constants in the program is simply the
number of records in the set, while the total number of
variable and constant (occurrences) is obtained by
aggregating the values in all the OCCUR fields.
Numbers are represented in the NUMS data structure with
elements of the form:

NAME /* the value of the number */
TYPE /* the type of the number */
OCCUR /* the number of occurrences of the

number */
OCCBLOCK /* the number of occurrences of the

number in the block */

Numbers can be dealt with in a similar way to variables
and constants except that they are not declared in any
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way, so that the first applied occurrence of a number will
cause a record for that number to be set up with the
OCCUR and OCCBLOCK fields set to one (rather than
zero).  Further occurrences of a number for which a
record exists will cause the OCCUR and OCCBLOCK
fields to be updated.  As before, the OCCBLOCK field
are set to zero on entering the block.  In the case of
numbers (unlike identifiers), one record for each number
will be sufficient and there is no need for BLOCKLN and
BLOCKNO.

At the end of each block the number of numbers and the
number of distinct numbers in the block will be available
from examination of the OCCBLOCK fields of the
records in NUMS, while at the end of the program the
corresponding values for the complete program will be
known.  Assuming that the variables and constants, and
the numbers in the program make up all the operands then
the number of distinct operands in a block or the complete
program is the sum of the number of distinct variables,
constants, and numbers in the block or the program.  The
total number of operands in a block or the complete
program is the sum of the total numbers of variables,
constants and numbers in the block or program.

Operators are similarly represented by the OPS data
structure each element of which is of the form:

NAME /* the operator symbol or pseudo operator
name */

TYPE /* the types of the operands(where
appropriate) */

BLOCKLN /* the block level number of the current
block*/

BLOCKNO /* the block number of the current block
*/

OCCUR /* the number of occurrences of the
operator */

OCCBLOCK /* the number of occurrences of the
operator in the block*/

Each conventional (as opposed to pseudo) operator has a
type associated with it (the types of its operands) and two
operators are distinct if the types (or number) of their
operands are distinct.  In addition, procedure names
associated with procedure pseudo operators will have a
BLOCKLN and BLOCKNO associated with them
reflecting the scope rules of the language.  Subject to this,
operators can be treated in the same way as numbers and
the numbers of distinct operators in a block or the
complete program can be obtained at the end of the block
or the end of the program from the elements in the OPS.
The total number of operators in a block or program may
be obtained similarly.

The steps outlined above are the principal actions used in
the attribute grammar to follow, in order to DEFINE the
metrics.  They are not parts of rules for EVALUATING
the metrics and are too informal to be used directly in

their definition.  However they are intended for use along
with the attribute grammar which we will describe to help
understand the rather formal type of definition discussed
next.  If the above rules, as described, appear in any way
to conflict with the attribute grammar definition, then the
latter should be preferred in all cases.

4.2 Definition of Halstead's Metrics

The metrics will be defined in terms of the subset of the
Pascal language.  We will use  Backus Naur Form (BNF)
for productions of the language's context-free grammar in
the attribute grammar with appropriate attributes related
to the metrics evaluation are augmented.  Non-terminals
in the grammar are enclosed in angle brackets, "< >". The
symbol "::=" is used to separate the left and right part of a
production.  Terminals are represented either by lower
case Roman characters or in the case of special characters,
the characters are enclosed in a single quotation marks.
Attributes variables are represented by upper case Roman
characters, a synthesised attribute is preceded by an
upward arrow, "↑", and an inherited attribute is preceded
by a downward arrow, "↓".  The arrow indicates the
direction of travel of attribute value.  The name of
attribute variable chosen as far as possible, will reflect the
meaning of the attribute.  The inclusion of a digit or the
alphabet U or Z at the end of each attribute variable, or
the alphabet S in front of each attribute variable of the
same name distinguishes the attribute variables of the
same set.  Where an attribute variable appears two or
more times in a production, each occurrence will have the
same value.  Rules to specify the relationships between
attributes are enclosed in square bracket, "[ ]", and are
embedded in the part of a production to which they apply.

What follows is not a complete definition but it is
sufficient to specify how a complete definition could be
obtained.  A detail explanation about functions used in the
definition can be found in Appendix I.  The work of Watt
[6] in using an extended attribute grammar to define
Pascal is acknowledged.
i. Program and block

<program> ↑ IDS ↑OPS ↑NUMS
::= <progheading> ↑BLOCKTAB ↑BLOCKLN 

 ↑BLOCKNO
     ‘;’
     <block> ↓{} ↓{} ↓{} ↓BLOCKTAB

    ↓BLOCKLN ↓BLOCKNO ↑ IDS
    ↑OPS ↑NUMS

'.'
[comments: ↑ IDS, ↑OPS and ↑NUMS
are the three sets containing, on
completion of the analysis, the full data
on all the variables, operators and
numbers in the program.  They are
synthesised in this rule.  The three sets
may be used to obtain all the Values of
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n1,n2,N1 and N2 both for the complete

program and for the main block.  As far
as this rule is concerned empty sets of
identifiers, operators and numbers are
inherited].

The corresponding production and rules for
<progheading> are fairly simple:

<progheading> ↑BLOCKTAB ↑BLOCKLN ↑BLOCKNO
::= program identifier ↑BLOCKTAB

    ↑BLOCKLN ↑BLOCKNO
[rules: ↑BLOCKLN = 0

↑BLOCKNO = 0
↑BLOCKTAB = setup_block_table ]

showing where the block level number, the block number
and the block table are initialised.

The production and rules for block are however complex
mainly due to the fact that identifiers can be
declared/defined in a number of places.

<block> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB ↓BLOCKLN
↓BLOCKNO ↑SIDS ↑SOPS ↑SNUMS ↑CBNO
::=  <constdec> ↓ IDSZ ↓BLOCKLN

            ↓BLOCKNO ↑ IDS1
     <vardec> ↓ IDS1 ↓BLOCKLN ↓BLOCKNO

      ↑ IDS2
     <prodecs> ↓ IDS2  ↓OPSZ ↓NUMSZ

        ↓BLOCKTAB ↓BLOCKLN
        ↓BLOCKNO ↓BLOCKNO ↑ IDS3
        ↑OPS3 ↑NUMS3 ↑CBNO

     <stmpart> ↓ IDS3 ↓OPS3 ↓NUMS3
        ↓BLOCKTAB ↓BLOCKLN
        ↓BLOCKNO ↑SIDS ↑SOPS
        ↑SNUMS

 [rules: ↓ IDSZ ↓OPSZ and ↓NUMSZ are ↓ IDS
↓OPS and ↓NUMS respectively with the
OCCBLOCK fields of all their elements set to zero ]

A block has five inherited attributes

− set of declarations of variables and constants for
complete program(so far) ↓ IDS

− set of operators for the complete program(so far) ↓OPS
− set of numbers for the complete program (so far)

↓NUMS

along with ↓BLOCKLN and ↓BLOCKNO.

There are also three synthesised attributes ↑SIDS ↑SOPS
↑SNUMS and ↑CBNO from the first three of which the
values for n1,n2,N1 and N2 for the block may be

computed.

The various parts of a block inherit appropriate attributes
and synthesis others.  In this way a block within the block
will itself be able to inherit appropriate attributes in order

that it may synthesise the values necessary to evaluate
Halstead’s metrics for the block itself and the complete
program.

ii. Constant declarations

The productions specify the inclusion of any new constant
identifiers declared in a particular block (program or
procedure) to the set of declaration of variables and
constants ↑ IDS1.  The addel function does this inclusion.

<constdec> ↓ IDSZ ↓BLOCKLN ↓BLOCKNO ↑ IDS1
 ::= <empty> ↓ IDSZ ↑ IDS1
[rule: ↑ IDS1 = ↓ IDSZ ]
| ’const’ <constseqs> ↓ IDSZ ↓BLOCKLN

       ↓BLOCKNO ↑ IDS1

<constseqs> ↓ IDSZ ↓BLOCKLN ↓BLOCKNO ↑ IDS1
::= <constseq> ↓ IDSZ ↓BLOCKLN ↓BLOCKNO 

           ↑ IDS1 ‘;’
| <constseqs> ↓ IDSZ ↓BLOCKLN ↓BLOCKNO

          ↑ IDSS
  <constseq> ↓ IDSS ↓BLOCKLN ↓BLOCKNO

        ↑ IDS1 ‘;’

<constseq> ↓ IDSZ ↓BLOCKLN ↓BLOCKNO  ↑ IDSU
::= identifier  ↓ IDSZ ↓BLOCKLN ↓BLOCKNO

       ↑ IDSU ↑NAME
    ‘=’ <constant> ↑TYPE
[rule:  ↑ IDSU = addel ( ↓ IDSZ, ↑NAME, ↑TYPE,  

   ↓BLOCKLN,  ↓BLOCKNO) ]

iii. Variable declarations

Any new variable declared in a block is added to set of
declarations of variables and constants.  The productions
below specify this inclusion.  Again addel function does
the inclusion.

<vardec>  ↓ IDS1 ↓BLOCKLN ↓BLOCKNO ↑ IDS2
::= <empty>  ↓ IDS1 ↑ IDS2
[rule: ↑ IDS2 =  ↓ IDS1 ]
| var <vardefns>  ↓ IDS1 ↓BLOCKLN

 ↓BLOCKNO ↑ IDS2

<vardefns>  ↓ IDS1 ↓BLOCKLN ↓BLOCKNO ↑ IDS2
::= <vardefn> ↓ IDS1 ↓BLOCKLN ↓BLOCKNO

      ↑ IDS2 ‘;’
| <vardefns>  ↓ IDS1 ↓BLOCKLN ↓BLOCKNO

      ↑ IDSS
 <vardefn>   ↓ IDSS ↓BLOCKLN ↓BLOCKNO 

    ↑ IDS2 ‘;’

<vardefn> ↓ IDS1 ↓BLOCKLN ↓BLOCKNO ↑ IDS2
::= <varlist> ↓ IDS1 ↓BLOCKLN ↓BLOCKNO

      ↓TYPE ↑ IDS2
 ':' <typedenoter> ↑TYPE

<varlist> ↓ IDS1 ↓BLOCKLN ↓BLOCKNO ↓TYPE ↑ IDS2
::= identifier ↑NAME
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[rule: ↑ IDS2 = addel(↓ IDS1, ↑NAME, ↓TYPE, 
↓BLOCKLN, ↓BLOCKNO) ]

| <varlist> ↓ IDS1 ↓BLOCKLN ↓BLOCKNO
  ↓TYPE ↑ IDSD

 ‘,’ identifier ↓ IDSD ↑NAME ↑ IDS2
 [rule: ↑ IDS2 = addel(↓ IDSD, ↑NAME, ↓TYPE,

↓BLOCKLN, ↓BLOCKNO) ]

iv. Procedure Declarations

In order to show how the final values for the metrics in a
block are obtained we should consider the productions
and rules for <prodecs>.  There are two productions to be
considered.

<prodecs> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB
↓BLOCKLN ↓BLOCKNO ↓OBN ↑SIDS ↑SOPS 
↑SNUMS ↑CBNO
::= <empty> ↓ IDS ↓OPS ↓NUMS ↓BLOCKLN

     ↓BLOCKNO ↑SIDS ↑SOPS
     ↑SNUMS ↑CBNO

   [rules: ↑SIDS = ↓ IDS
↑SOPS = ↓OPS
↑SNUMS = ↓NUMS
↑CBNO = ↓BLOCKNO ]

  | <proc> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB
 ↓BLOCKLN ↓BLOCKNO ↓OBNO
 ↑ IDS1 ↑OPS1 ↑NUMS1 ↑CBNO1 ‘;’

   <prodecs> ↓ IDS1 ↓OPS1 ↓NUMS1
     ↓BLOCKTAB ↓BLOCKLN
     ↓CBNO1 ↓OBNO ↑SIDS ↑SOPS
     ↑SNUMS ↑CBNO

Note that the current block number ↑CBNO1 is
synthesised from <proc> and inherited by <prodecs>.  In
a similar way ↓BLOCKNOS is inherited from
<procheading> in the following rule.  The block level
number is reset ‘automatically’ on returning to a level.

<proc> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB ↓BLOCKLN
             ↓BLOCKNO ↓OBNO ↑BIDS ↑BOPS ↑BNUMS
             ↑CBNO

::= <procheading> ↓OPS ↓BLOCKLNS
↓BLOCKNOS ↓BLOCKLN
↓OBNO ↑OPS1 ↑FORM

   <block> ↓FIDS ↓OPS1 ↓NUMS
↓BLOCKTABU ↓BLOCKLNS
↓BLOCKNOS ↑BIDS ↑BOPS ↑BNUMS 
↑CBNO

[rules: ↓FIDS = union_of (↓ IDS, ↑FORM)
↓BLOCKLNS = ↓BLOCKLN + 1
↓BLOCKNOS = ↓BLOCKNO + 1
↓BLOCKTABU =
update_block_table(↓BLOCKLNS,
↓BLOCKNOS, ↓BLOCKTAB,↓OBNO) ]

showing (amongst other things) where the block level
number and the block number are updated.  ↑FORM is
the set of formal parameters for the procedure.

Some more productions and rules:

<procheading> ↓OPS ↓BLOCKLNS ↓BLOCKNOS
            ↓BLOCKLN ↓OBNO ↑OPS1 ↑FORM
::=  ‘proc’ procedure_identifier ↑NAME
     <formalpar> ↓BLOCKLNS ↓BLOCKNOS

           ↑FORM
[rule: ↑OPS1 = addel(↓OPS, ↑NAME,

     ↓BLOCKLN, ↓OBNO) ]

addel is a function to update the set operators. In this case
a new pseudo operator is added to the operator set.

The productions specified next show the formation of the
set of formal parameter ↑FORM in a procedure which is
synthesised to <procheading>.

<formalpar> ↓BLOCKLNS ↓BLOCKNOS ↑FORM
::= <empty>
 [rule: ↑FORM = {} ]
| ‘(‘ <formalparlist> ↓BLOCKLNS ↓BLOCKNOS 

  ↑FORM ‘)’

<formalparlist> ↓BLOCKLNS ↓BLOCKNOS ↑FORM
::= <formalparsec> ↓BLOCKLNS ↓BLOCKNOS

 ↑FORM
| <formalparlist> ↓BLOCKLNS ↓BLOCKNOS

             ↑FORM1 ‘;’
  <formalparsec> ↓BLOCKLNS ↓BLOCKNOS

              ↑FORM2
  [rules: ↑FORM = ↑FORM1 + ↑FORM2 (where

 ‘+’ means set addition) ]

<formalparsec> ↓BLOCKLNS ↓BLOCKNOS ↑FORM
::= <valuepart> ↓BLOCKLNS ↓BLOCKNOS

          ↑FORM
| <varpart> ↓BLOCKLNS ↓BLOCKNOS ↑FORM

<valuepart> ↓BLOCKLNS ↓BLOCKNOS ↑FORM
::= <vardefn> ↓{} ↓BLOCKLNS ↓BLOCKNOS

        ↑FORM

<varpart> ↓BLOCKLNS ↓BLOCKNOS ↑FORM
::= ‘var’ <vardefn> ↓{} ↓BLOCKLNS

↓BLOCKNOS ↑FORM

v. Statements

Productions for the various statements and their
associated rules are merely involved in passing attributes
from left to right (down the syntax tree) or from right to
left (up the syntax tree).

<stmpart> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB
   ↓BLOCKLN ↓BLOCKNO ↑SIDS ↑SOPS
   ↑SNUMS
  ::= <compoundstat> ↓ IDS ↓OPS ↓NUMS

      ↓BLOCKTAB ↓BLOCKLN
      ↓BLOCKNO ↑SIDS ↑SOPS
      ↑SNUMS
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<compoundstat> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB
↓BLOCKLN ↓BLOCKNO ↑SIDS
↑SOPS ↑SNUMS

::= ‘begin’
      <stmtseq> ↓ IDS ↓OPS1 ↓NUMS

         ↓BLOCKTAB ↓BLOCKLN
         ↓BLOCKNO ↑SIDS ↑SOPS
         ↑SNUMS

     ‘end’
[rule: ↓OPS1 = updateoperator(↓OPS, csop) ]

whereas in some cases have to be passed up and down
adjacent branches of the syntax tree:

<stmtseq> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB
    ↓BLOCKLN ↓BLOCKNO ↑SIDS ↑SOPS
    ↑SNUMS
::= <statement> ↓ IDS ↓OPS ↓NUMS

            ↓BLOCKTAB ↓BLOCKLN
            ↓BLOCKNO ↑SIDS ↑SOPS
            ↑SNUMS

| <statement> ↓ IDS ↓OPS ↓NUMS
         ↓BLOCKTAB ↓BLOCKLN

                  ↓BLOCKNO ↑ IDSS ↑OPSS
     ↑NUMSS

‘;’
<stmtseq> ↓ IDSS ↓OPSS ↓NUMSS

    ↓BLOCKTAB ↓BLOCKLN
    ↓BLOCKNO ↑SIDS ↑SOPS ↑SNUMS

There are a number of different types of statement:

<statement> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB
       ↓BLOCKLN ↓BLOCKNO ↑SIDS ↑SOPS
       ↑SNUMS
::=  <empty> ↓ IDS ↓OPS ↓NUMS ↓BLOCKLN

       ↓BLOCKNO ↑SIDS ↑SOPS
       ↑SNUMS

[rules: ↑SIDS = ↓ IDS
↑SOPS = ↓OPS
↑SNUMS = ↓NUMS ]

| <compoundstat> ↓ IDS ↓OPS ↓NUMS
↓BLOCKTAB ↓BLOCKLN
↓BLOCKNO ↑SIDS ↑SOPS
↑SNUMS

| <assignstat> ↓ IDS ↓OPS ↓NUMS
         ↓BLOCKTAB ↓BLOCKLN
         ↓BLOCKNO ↑SIDS ↑SOPS
         ↑SNUMS

| <structstat> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB
        ↓BLOCKLN ↓BLOCKNO ↑SIDS
        ↑SOPS ↑SNUMS

| <procstat> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB
      ↓BLOCKLN ↓BLOCKNO ↑SIDS
      ↑SOPS ↑SNUMS

In an <assignstat> the ‘:=’ operator is recognised and
dealt with

<assignstat> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB
        ↓BLOCKLN ↓BLOCKNO ↑SIDS ↑SOPS
        ↑SNUMS

::= <varaccess> ↓ IDS ↓BLOCKTAB
             ↓BLOCKLN ↓BLOCKNO
             ↑ IDS1 ↑TYPE

     ‘:=’
     <expression> ↓ IDS1 ↓OPS1 ↓NUMS

              ↓BLOCKTAB ↓BLOCKLN
              ↓BLOCKNO ↑SIDS ↑SOPS
              ↑SNUMS ↑TYPE

      [rule: ↓OPS1 = updateoperator(↓OPS,
             assignop) ]

where updateoperator performs the following:

if a record for the assignment operator is not already in
OPS, a suitable record is created and added to the set with
the OCCUR field set to one and the OCCBLOCK field
set to one.  Otherwise (a record for the assignment
operator is already in OPS) the OCCUR and
OCCBLOCK fields of the record are incremented as
appropriate.

<structstat> that contains <condstat> in which it specifies
the if statement, and <whilestat> statements are dealt with
similarly

<structstat> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB
      ↓BLOCKLN ↓BLOCKNO ↑SIDS ↑SOPS
      ↑SNUMS
::= <condstat> ↓ IDS ↓OPS ↓NUMS

          ↓BLOCKTAB ↓BLOCKLN
          ↓BLOCKNO ↑SIDS ↑SOPS
          ↑SNUMS

| <whilestat> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB
       ↓BLOCKLN ↓BLOCKNO ↑SIDS
       ↑SOPS ↑SNUMS

 and the while statement will serve as an example

<whilestat> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB
     ↓BLOCKLN ↓BLOCKNO ↑SIDS ↑SOPS
     ↑SNUMS
::=  ‘while’
    <condition> ↓ IDS ↓WWOPS ↓NUMS

          ↓BLOCKTAB ↓BLOCKLN
          ↓BLOCKNO ↑WIDS ↑WOPS
          ↑WNUMS

    ‘do’
    <statement> ↓WIDS ↓WOPS ↓WNUMS

           ↓BLOCKTAB ↓BLOCKLN
           ↓BLOCKNO ↑SIDS ↑SOPS
           ↑SNUMS

[rule: ↓WWOPS = updateoperator (↓OPS,
 whiledoop) ]

where

<condition> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB
      ↓BLOCKLN ↓BLOCKNO ↑SIDS ↑SOPS
      ↑SNUMS
::= <expression> ↓ IDS ↓OPS ↓NUMS

             ↓BLOCKTAB ↓BLOCKLN
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             ↓BLOCKNO ↑SIDS ↑SOPS
             ↑SNUMS ↑TYPE

The <procstat> which is the procedure call statement can
be dealt with as follows:

<procstat> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB
    ↓BLOCKLN ↓BLOCKNO ↑SIDS ↑SOPS
    ↑SNUMS
::= identifier ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB

      ↓BLOCKLN ↓BLOCKNO ↑SIDS
      ↑SOPS ↑SNUMS ↑NAME

  [rules: ↑SOPS = updateoperator(↓OPS,
↑NAME, ↓BLOCKLN,

                ↓BLOCKNO,↓BLOCKTAB)
↑SIDS = ↓ IDS
↑SNUMS = ↓NUMS ]

| identifier ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB
  ↓BLOCKLN ↓BLOCKNO ↑SIDS
  ↑SOPS ↑SNUMS ↑NAME

 ‘(‘ <exprlist> ↓ IDS ↓POPS ↓NUMS
        ↓BLOCKTAB ↓BLOCKLN
        ↓BLOCKNO ↑SIDS ↑SOPS
       ↑SNUMS ‘)’

  [rule: ↓POPS = updateoperator(↓OPS, ↑NAME,
       ↓BLOCKLN, ↓BLOCKNO,

                     ↓BLOCKTAB) ]

where updateoperator in this case adds to its parameter
list the procedure name and scope information
↓BLOCKLN and ↓BLOCKNO as well as ↓BLOCKTAB
in order to differentiate different procedure calls as
distinct operators.

vi. Expressions

The productions and rules for expressions seem quite
complex but, apart from updating the number of
occurrences of the operators involved AND passing
attributes down and up the syntax tree, are fairly
straightforward.  The following productions specify some
of them.

<expression> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB
        ↓BLOCKLN ↓BLOCKNO ↑SIDS ↑SOPS
        ↑SNUMS ↑TYPE
::= <simpleexpr> ↓ IDS ↓OPS ↓NUMS

             ↓BLOCKTAB ↓BLOCKLN
             ↓BLOCKNO ↑SIDS ↑SOPS
             ↑SNUMS ↑TYPE

| <simpleexpr> ↓ IDS ↓OPS ↓NUMS
          ↓BLOCKTAB ↓BLOCKLN
         ↓BLOCKNO ↑SDS ↑SPS
         ↑SUMS ↑TYPE1

 ‘=’ <simpleexpr> ↓SDS ↓ESPS ↓SUMS
↓BLOCKTAB ↓BLOCKLN
↓BLOCKNO ↑SIDS ↑SOPS
↑SNUMS ↑TYPE2

  [rules: ↓ESPS = updateoperator(↑SPS, 'EQ',
↑TYPE1, ↑TYPE2)

↑TYPE = result_of('EQ', ↑TYPE1,

↑TYPE2) ]

<simpleexpr> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB
        ↓BLOCKLN ↓BLOCKNO ↑SIDS ↑SOPS
        ↑SNUMS ↑TYPE
::= <term> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB

  ↓BLOCKLN ↓BLOCKNO ↑SIDS
  ↑SOPS ↑SNUMS ↑TYPE

| <sign> ↑NAME
  <term> ↓ IDS ↓NOPS ↓NUMS ↓BLOCKTAB

↓BLOCKLN ↓BLOCKNO ↑SIDS
↑SOPS ↑SNUMS ↑TYPE

 [rule: ↓NOPS = updateoperator(↓OPS, ↑NAME,
         ↑TYPE) ]

| <simpleexpr> ↓ IDS ↓OPS ↓NUMS
          ↓BLOCKTAB ↓BLOCKLN
          ↓BLOCKNO ↑SDS ↑SPS
          ↑SUMS ↑TYPE1

 ‘+’ <term> ↓SDS ↓ESPS ↓SUMS ↓BLOCKTAB
    ↓BLOCKLN ↓BLOCKNO ↑SIDS
    ↑SOPS ↑SNUMS ↑TYPE2

 [rules: ↓ESPS = updateoperator(↑SPS, 'PLUS',
    ↑TYPE1, ↑TYPE2)

↑TYPE = result_of('PLUS', ↑TYPE1,
  ↑TYPE2) ]

<term> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB ↓BLOCKLN
             ↓BLOCKNO ↑SIDS ↑SOPS ↑SNUMS ↑TYPE

::= <factor> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB
     ↓BLOCKLN ↓BLOCKNO ↑SIDS
     ↑SOPS ↑SNUMS ↑TYPE

| <term> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB
↓BLOCKLN ↓BLOCKNO ↑SDS ↑SPS
↑SUMS ↑TYPE1

 ‘*’ <factor> ↓SDS ↓ESPS ↓SUMS
       ↓BLOCKTAB ↓BLOCKLN
       ↓BLOCKNO ↑SIDS ↑SOPS
       ↑SNUMS ↑TYPE2

  [rules:  ↓ESPS = updateoperator(↑SPS, 'TIMES',
      ↑TYPE1, ↑TYPE2)

↑TYPE = result_of ('TIMES', ↑TYPE1,
    ↑TYPE2) ]

in which the relational operator '=', the arithmetic
operators '+' and '*' are updated in the set of operators
using the updateoperator function.  In these cases the
types of the simple expressions are included as parameters
to the function in order to fully identify the operator
concerned.  The other relational and arithmetic operators
can be dealt with similarly.  However in the case of
monadic operator, ↑NAME which has a value either
PLUS or MINUS and the type of its term are used as the
different parameters to the function updateoperator.

We now have a look at the mechanisms for updating
occurrences of operands which occur around the terminal
nodes of the syntax tree.  We look at how occurrences of
numbers and variables are updated.

A factor may (amongst other things) be a constant or a
variable access, the rule being
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<factor> ↓ IDS ↓OPS ↓NUMS ↓BLOCKTAB
↓BLOCKLN ↓BLOCKNO ↑SIDS ↑SOPS
↑SNUMS ↑TYPE
::= <varaccess> ↓ IDS ↓BLOCKTAB

            ↓BLOCKLN ↓BLOCKNO
            ↑SIDS ↑TYPE

   [rules:   ↑SOPS = ↓OPS
   ↑SNUMS = ↓NUMS ]

 |  <constant> ↓NUMS ↓BLOCKLN ↓BLOCKNO
        ↑SNUMS ↑TYPE

[rule: ↑SIDS = ↓ IDS
↑SOPS = ↓OPS ]

A variable access <varaccess> in turn is an identifier

<varaccess> ↓ IDS ↓BLOCKTAB ↓BLOCKLN
       ↓BLOCKNO ↑SIDS ↑TYPE
::=  identifier  ↑NAME ↑TYPE
 [rule:  ↑TYPE = findtype(↑NAME, ↓ IDS,

↓BLOCKLN, ↓BLOCKNO,
↓BLOCKTAB)

↑SIDS = updateids(↓ IDS, ↑NAME,
↓BLOCKLN, ↓BLOCKNO,
↓BLOCKTAB)   ]

where updateids will increment the OCCUR and
OCCBLOCK fields of the element of ↓ IDS identified by
↓NAME, ↓BLOCKLN, ↓BLOCKNO by one.

A constant in turn, could be a positive integer or a real
number

<constant> ↓NUMS ↓BLOCKLN ↓BLOCKNO ↑SNUMS
     ↑TYPE
::=  <intreal> ↓NUMS ↓BLOCKLN ↓BLOCKNO

       ↑SNUMS ↑TYPE

and an intreal may be an integer

<intreal> ↓NUMS ↓BLOCKLN ↓BLOCKNO ↑SNUMS
↑TYPE
::=  number ↓NUMS ↓BLOCKLN ↓BLOCKNO

    ↑SNUMS ↑VALUE ↑TYPE
[rules: ↑TYPE = 'INTEGER'

↑SNUMS = updatenums (↓NUMS,
↑VALUE, ↑TYPE) ]

where updatenums will create a new element in the set
NUMS (if none already exists) with fields OCCUR and
OCCBLOCK set to one and the other fields set
appropriately or, if a record for the constant is already in
the set, then the OCCUR and OCCBLOCK fields are each
incremented by one.

5.0 EVALUATION OF THE DEFINITION

From the above definition, an evaluation tool for
Halstead's metrics can be produced using the Unix
compiler building tools Lex and YACC [18].  Lex is a
lexical analyser generator and YACC is a bottom-up
SLR(1) parser-generator.  Lex is used to write a lexical
analyser for the definition that recognizes the regular
expressions which match the specific tokens in the
grammar.  YACC is used to construct the parser that calls
the lexical analyser to produce the next token. The
construction is based on the context-free grammar
provided by the definition.  The parser recognizes a
sequence of matching tokens described by the grammar.

YACC also allows rules to evaluate the metrics in the
grammar to be transformed to actions written in the
language C.  The actions are inserted at appropriate
productions in the parser.  The actions may make use of
variables of the form $n (where n is an integer) and $$
which can be used to represent attributes of symbols in a
production.  The convention being that the variable $$ is
associated with the symbol on the left hand side of the
production and $n is associated with the n'th symbol on
the right hand side of the production.  However YACC
only allows one synthesised attribute in the production to
be represented by the variable $$.  Thus a production with
more than one attributes cannot be represented directly in
YACC.  In order to overcome this characteristic, global
variables are used to represent the attributes.  Likewise
when more than one attribute names are used to represent
attributes of the same type, a global variable is used to
represent the attributes.

If the evaluation of the four parameters on which the
Halstead's metrics are based was to be performed by a
literal implementation of the definition, a major activity
would involve passing sets of declarations, numbers and
operators around various parts of the underlying context-
free grammar.  The cost of copying the sets are
prohibitive and to avoid it, global symbol tables
representing the sets are used.  The symbol tables are not
copied as the parser moves through the grammar, but the
global versions of them are kept all the time in order that
the values of n1,n2,N1 and N2 for the complete program

may be computed.

As an example the following part of the definition to
specify the inclusion of any new constant identifier
declared in a particular block to the set of declaration of
variables and constants

<constseq> ↓ IDSZ ↓BLOCKLN ↓BLOCKNO  ↑ IDSU
::= identifier  ↓ IDSZ ↓BLOCKLN ↓BLOCKNO

       ↑ IDSU ↑NAME
    ‘=’ <constant> ↑TYPE
[rule:  ↑ IDSU = addel ( ↓ IDSZ, ↑NAME, ↑TYPE,  

   ↓BLOCKLN,  ↓BLOCKNO) ]
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in YACC becomes

constseq      : IDENTIFIER  ‘=’ constant
     {
       idset = addel(idset,$1,$3,blockln,blockno)
     }

idset is the global symbol table for the set of declaration
of variables and constant, blockln is the global variable
for the block level number and blockno is the global
variable for the block number.  $1 holds the constant
identifier name and $3 holds the type of the constant.  The
transformation of other parts of the definition to YACC
can be dealt with similarly.

6.0 CONCLUSIONS

An attribute grammar approach to specifying source code
metrics has been presented in this paper by defining, well-
known source code metrics, Halstead's metrics.  This
approach is an attempt to use the relatively mature theory
of programming languages to define source code metrics.
Halstead's metrics have been used to illustrate the
approach since they are typical and the more complex
source code metrics currently in use and have long
suffered from the lack of a precise definition.  An
important advantage of the approach is the fact that it
could lead to well-defined source code metrics, in contrast
to model-based approach which can suffer from lack of a
precise definition of how the source code maps on to the
model.

The discussion presented in this paper shows that this
approach has a role in providing more rigorous definitions
of source code metrics which can aid the evaluation of the
source code metrics.  Attribute grammars have been used
to define programming languages rigorously and used to
construct compilers.  The rigour and ease of
implementation of attribute grammars strongly suggest
their use to define source code metrics, and as a basis for
the construction of compiler like tools (or even better
compiler extension) to evaluate them.

Specific to this paper is the definition of Halstead's
metrics for a subset of Pascal language which only uses
integer and real data types.  The definition could be
extended to include other data type but with some
modification to the attribute grammar to represent the data
type.  The idea of using attribute grammars to define
source code metrics could also be extended to other
programming language paradigms, such as logical
programming languages, functional programming
languages, or object oriented programming languages, if
their grammars are defined in terms of attribute
grammars.  Some of the attributes involved in the
grammars could be associated with metrics evaluation.
However there should be some changes to the way we
used in this paper since there are some characteristic of
the languages that are unique to the type of the languages.
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APPENDIX I

Some of the functions which appear require a brief
explanation

addel(↓ IDS, ↑NAME, ↓TYPE, ↓BLOCKLN,
           ↓BLOCKNO)
addel(↓OPS, ↑NAME, ↓BLOCKLN, ↓BLOCKNO)

causes a new element of an identifier set IDS or an
operator set OPS to be formed.  In the first case the new
element of IDS is required for a constant or variable
declaration and the fields of the new element are assigned
as follows:

↑NAME - the name of the identifier representing the
  constant or variable

↓TYPE - the type of the constant or variable
↓BLOCKLN - the block level where it is declared
↓BLOCKNO - the block number in which it is declared

the OCCUR and OCCBLOCK fields of the element being
initialised to zero.

The second case corresponds to a new element of ↓OPS
being required for each procedure declaration.  In this
case there is no ↓TYPE field otherwise the fields of the
set element are initialised in the same way.

updateoperator(↓OPS, pseudo-operator)
updateoperator(↓OPS, operator, ↑TYPE) for  monadic

         operator
updateoperator(↓OPS, operator, ↑TYPE1, ↑TYPE2) for 

            dyadic
operator
updateoperator(↓OPS, ↑NAME, ↓BLOCKLN,

              ↓BLOCKNO, ↓BLOCKTAB)

updateoperator takes several forms, one for pseudo-
operators, such as statements , with two parameters; one
for conventional operators such as arithmetic and set
operators with three or four parameters; and one for
procedure calls also with four parameters.  In each case
the first parameter is the operator set which is to be
enhanced.  The occurrence of a pseudo operator requires
one more parameter, the name of the pseudo operator.
The occurrence of an arithmetic, relational or set operator
requires a further one (for a monadic operator) or two (for
a dyadic operator) parameters being the parameter type(s)
of the operands required to identify fully the operator
concerned.  In order that calls of different procedures
should be recognised as distinct operators, the procedure
name and scope information (↓BLOCKLN,
↓BLOCKNO, ↓BLOCKTAB) are required to be
parameters of the call.  The first three forms may also be
used to create a new element of ↓OPS where none exists.

updateids(↓ IDS, ↑NAME, ↓BLOCKLN, ↓BLOCKNO,
    ↓BLOCKTAB)

will increment the OCCUR and OCCBLOCK fields of
the element of ↓ IDS identified by the fields ↑NAME,
↓BLOCKLN, ↓BLOCKNO.

updatenums (↓NUMS, ↑VALUE, ↑TYPE)

is similar to updateoperator though it only takes one form
with a single type parameter.  The values of ↑VALUE
and ↑TYPE identify the appropriate element of ↓NUMS,
if one exists, to have its OCCUR and OCCBLOCK fields
incremented by one.  If no element of ↓NUMS exists with
the given ↑VALUE and ↑TYPE fields, a new element is
created with its OCCUR and OCCBLOCK fields set to
one.

findtype(↑NAME, ↓ IDS, ↓BLOCKLN, ↓BLOCKNO,
↓BLOCKTAB)

finds the type associated with an identifier corresponding
to its current scope from ↓ IDS with the aid of the block
table.

setup_block_table

delivers the initialised block table.

update_block_table(↓BLOCKLNS, ↓BLOCKNOS,
      ↓BLOCKTAB,↓OBNO)

delivers the updated block table.

form_number(↑VAL1, ↑VAL2)
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forms a real number where ↑VAL1 represents the digits
before the point and ↑VAL2 represents the digits after the
point.

result_of(OP, ↑TYPE1, ↑TYPE2)

whose value is the type of the result of applying the
dyadic operator OP

union_of

simply forms the union of the two sets given as
parameters.
List of pseudo operators:

assignop
csop
dotdotop
ifthenop
ifthenelseop
whiledoop
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