
Malaysian Journal of Computer Science, Vol. 9 No. 2, December 1996, pp. 1-13

1

TOWARDS AUTOMATIC MODELLING OF REQUIREMENTS

Farid Meziane
Institute of Software Technology,

Universiti Malaysia Sarawak,
94300 Kota Samarahan,

Sarawak, Malaysia.
Tel: 082 670000 ext: 384

Fax: 082 672301
email: farid@fit.unimas.my

Sunil Vadera
Department of Maths and Computer Science

University of Salford.
Salford, M5 4WT,
United Kingdom

Tel: ++ 161745 5000 ext. 3622
Fax:++ 161 745 5559

email: S.Vadera@mcs.salford.ac.uk

ABSTRACT

The first phases of the FORSEN system that helps the
analyst to use an informal specification as the basis of
producing a formal specification and concerns the
modelisation of the requirements into entity relationship
models (ERM) is described. The modelisation is done from
the logical form expressions obtained from the analysis of
the natural language text. The ERM models are then used
as a basis for the production of formal specification in the
Vienna Development Method (VDM).

Keywords: Requirements Engineering, Requirements
Modelisation, Software Engineering, Natural
Language Processing

1.0 INTRODUCTION

Requirements engineering is a very important stage in the
software development life cycle. Having been ignored
during the earlier years of the software revolution,
requirements and specifications have attracted a lot of
attention during the last decade. In the earlier years, the
tools developed aimed to aid the control and management
of requirements documents. Examples of such systems
include the PSL/PSA system [1], the structured analysis
language (SA) [2] and the SREM project [3,4]. Later, more
formal and rigorous approaches were developed. These are
known as formal methods or formal specification
languages, which include VDM [5], Z [6] and RAISE [7].

One of the main aspects of requirements documents is
informality. At an early stage of the requirements analysis,
a document written in natural language will always exist
and will be the starting point of the requirements analysis
process. Many authors have stated that informality will
always exist in the requirements analysis phase [8,9].
Adding to this statement, analysts find the use of formal
methods very difficult because it requires a strong
mathematical background. These two facts (existence of
informality, and the difficulty to use formal methods) have
encouraged some authors to investigate the possibility of
developing tools to help analysts in the process of
translating informal requirements to formal specifications
[9,10,11, 12,13], or semi-formal specifications into formal

specifications [14,15]. Some authors have used the later
techniques of knowledge base systems to develop tools for
the requirements and specifications phases. These include
systems such as ARIES [16,17], the Requirements
Apprentice (RA) [18,19,20], and the SPECIFIER [21].

The work presented in this paper is the earlier stages of the
FORSEN system developed by Meziane and Vadera
[13,22] which aims at producing formal specifications from
informal (English) ones. These stages are mainly
concerned with the analysis of natural language
requirements documents. Their aim is to detect ambiguities
and incompleteness present in the informal requirements.
The result of the natural language analysis is the production
of a unique interpretation for each English sentence. This
interpretation is represented using the Logical Form
Language. Once the logical form expressions are produced,
the next step aims at producing an entity relationship model
(ERM) for the proposed requirements. In the present paper,
we start first by giving an overview of the logical form
language in section 2. Section 3 summarises the different
ambiguities that can be detected when using the logical
form language. Section 4 shows how the entity
relationships models are derived from the logical forms
produced. Finally, in section 5 we show how the degrees of
the relationships are identified. We conclude our work by
applying our approach to a practical example that was
developed independently of this work.

2.0 AN OVERVIEW OF THE LOGICAL FORM
LANGUAGE

The Logical Form Language (LFL) is a Meaning
Representation Language (MRL) [23] where the meanings
of sentences are represented as logical forms. The LFL is
used by the Modular Logic Grammars (MLG) formalism.
For more details on the formalism, the reader is encouraged
to consult McCord’s works [24,25,26,27,28]. The main
predicates in the LFL are word senses. Each predicate
takes a fixed number of arguments. The arguments might
be variables, constants or other logical forms. The
formation rules for logical forms are as follows:
• If P is a predicate of LFL taking n arguments, and each

of x1,...,xn is either a constant or a logical form or a
variable then P(x1,...,xn) is a logical form.

Meziane and Vadera

2

• If P and Q are logical forms then P & Q is a logical
form.

The predicates and arguments are obtained from the
different parts of the sentence. Each syntactic group has a
representation in LFL. The semantic interpreter will
combine these syntactic groups to produce the complete
interpretation of the sentence. In the next subsections, we
will show how the different syntactic groups are
represented in LFL.

2.1 Interpretation of Noun Phrases

In the LFL, a noun is generally represented as a 1-place
predicate where the name of the predicate is obtained from
the singular form of the noun. Examples:

stock is represented by stock(X)
company is represented by company(X)

where X is a variable and stock and company are predicates.
In general, we adopt the Prolog convention that variables
begin with a capital letter. There are two exceptions to the
representation of nouns by 1-place predicates. Some nouns,
called relational nouns, take two arguments. Example:

father is represented by father(X,Y)

which is interpreted as X is the father of Y. Depending on
the context, some ordinary nouns may behave as relational
nouns and therefore take two arguments as in the sentence:

“The company maintains a description for each item of
stock.”

The noun item is related to the noun stock and is
represented by item(X,stock). The other exception is the
representation of proper nouns which correspond to
constants in LFL.

In LFL, noun phrases do not have isolated meanings of
their own but only contribute to the meaning of the
sentence in which they appear. The head noun of a noun
phrase is usually modified by premodifiers and
postmodifiers. In the following subsections we analyse the
classes of noun modifiers.

2.2 Determiners

Determiners are part of a large class of modifiers called
focalizers. Focalizers are words that need a focus to
determine the meaning of a sentence. In most cases,
determiners’ senses, as predicates in LFL, have two
arguments which are filled by logical forms. The first
argument is called the base of the determiner and the
second is called the focus. In general a determiner is
represented by:

 determiner(Base,Focus)

Typically, the base comes from the remainder of the noun
phrase in which the determiner appears, and the focus
comes from some of the sisters of the noun phrase. An
example of a sentence involving determiners and its logical
forms is:

“The company maintains a system.”
 the(company(X),ex(system(Y), maintain(X,Y)))

We can read this logical form as follows. The quantifier
the has two arguments: the base company(X) which comes
from the noun phrase “The company” and the focus:
ex(system(Y), maintain(X,Y)) which comes from the verb
phrase “maintains a system” (a sister of the previous noun
phrase in the tree structure of Fig. 1). This denotes that
there is a system Y that is maintained by the company X.
The pair (Base,Focus) is called the scope of the
determiner.

2.3 Adjectives

When interpreting adjectives, we distinguish between two
categories: extensional adjectives and intentional
adjectives. Intentional adjectives occur in a composed noun
where it is not possible to dissociate the adjective from the
other parts of the composed noun. Intentional adjectives
take logical forms as arguments.

For example:
S

NP VP

DET N V NP

DET N

The company maintains a system

Fig. 1: A tree structure

“The pilot uses a moving map display.”
is represented by:

the(pilot(X), the(moving(map(display(Y))),use(X,Y)))

which means that the moving map display is a single entity.
Whereas if the sentence is interpreted as:

the(pilot(X), the(map(display(Y)) & moving(Y),
 use (X ,Y)))

it means that map display is an entity which is modified by
the adjective moving. Extensional adjectives can be
dissociated from the other parts of the composed noun and
therefore behave as nouns in having one argument. For
example:

Towards Automatic Modelling of Requirements

3

“A complex aircraft uses a radar.”
is represented by:

ex(aircraft(X) & complex(X), ex(radar(Y),use(X,Y)))

2.4 Interpretation of Verb Phrases

Depending on their category, verbs may be represented by
predicates having nil, one, two or three arguments. The
predicate's name is obtained from the infinitive form of the
verb which is defined in the lexicon. Examples:

• “It snows.”
snow

• “The program crashed.”
the(program(X), crash(X))

• “The student writes a program.”
 the(student(X),ex(program(Y), write(X,Y)))

• “The police gave a reward to John.”
 the(police(X),the(reward(Y), give(X,Y,john)))

One particular property of verbs is the voice. Verbs can
have an active or a passive voice. For example the passive
version of the last sentence is:

“The reward was given to John by the police.”

This sentence has exactly the same meaning as when the
verb is in the active voice. Therefore it should have the
same interpretation. MLGs have this ability and produce
exactly the same logical form for both sentences.

2.5 Interpretation of Prepositional Phrases

The interpretation of prepositions is very difficult in the
English language. In general, every preposition in a
sentence can modify a noun phrase or a verb phrase.
Hence, giving at least two different interpretations to the
sentence. In the following subsections we analyse the
different interpretation of different strings that are
associated with prepositional phrases.

2.5.1 Interpretation of a String of the Form P-NP

Considering the general form PP → P-NP, a prepositional
sense is a 2-place predicate. The first argument
corresponds to the noun phrase associated with the
preposition and the second corresponds to the phrase
modified by the prepositional phrase. As mentioned earlier,
a prepositional phrase may modify a verb or a noun phrase.
An example where a prepositional phrase modifies a noun
phrase is:

“The pilot uses an aircraft with a sophisticated system.”
which is represented by:

the(pilot(X), ex(aircraft(Y),
 ex(system(Z)&sophisticated(Z)&with(Y,Z), use(X,Y))))

When a prepositional phrase modifies a verb, the second
argument of the preposition predicate will be a logical
form. For example the sentence:

“The pilot detects the obstacles with a radar.”
is represented by:

the(pilot(X), the(obstacle(Y), ex(radar(Z),
 with(Z,detect(X,Y)))))

2.5.2 Interpretation of Intransitive Prepositions

For this category of prepositional phrases, the following
interpretations are adopted:

1. If the preposition plays the role of an adverb, then it is
treated like an adverb as in the following example:

“John went downstairs.”
downstairs(go(john))

The preposition takes a single argument that represents the
rest of the sentence. In the above logical form, go is used
since it is the infinitive of the verb went.

2. If the preposition is a particle of a verb, then it is reacted
as part of the verb as in:

“John puts the clothes on.”
the(cloth(X), put_on(john,X))

2.5.3 Interpretation of a String of the Form P-P-NP

Syntactically, this string can be parsed in two different
ways. In the case where there is a preposition which has a
prepositional phrase as a complement, the prepositions are
combined as if they form a single one as in:

“The challenger ran out of time.”
the(challenger(X),out_of(time,run(X)))

out of is a constituent that acts as a unit and cannot be
separated. The previous sentence can be reformulated as:

“Out of time ran the challenger.”
but we cannot split the two prepositions.

When an intransitive preposition is followed by a normal
prepositional phrase, the first preposition is considered as a
particle of the verb it modifies. For example:

“The man raced away in a red car.”
the(man(X), ex(car(Y) &red(Y), in(Y, race_away(X))))

Here the two prepositions can be split and we can say:

“In a red car the man raced away.”

Meziane and Vadera

4

2.5.4 Interpretation of a String of the Form P-NP-P-
NP

Three different cases can be identified in the syntax
analysis of such a string. In the first case where the whole
prepositional phrase can behave as a single constituent, the
prepositions successively modify the verb phrase.
Example:

“The flight is planned from Blackpool to Doncaster.”
from(blackpool,to(doncaster,the(flight(X),be(X,plan(X)))))

In the second case, only the noun phrase of the first
prepositional phrase behaves as a single constituent.
Therefore the noun phrase is used as a complement of the
first preposition. The following example illustrates this:

“John went to the house in the woods.”
the(wood(X),the(house(Y) & in(Y,X),to (Y,go(john))))

The third case is interpreted as two independent
prepositional phrases modifying a verb phrase. Example:

“John went to the park with Mary.”
the(park(X),to(X,with(mary,go(john))))

2.6 Interpretation of Adverbs

All adverbs take logical forms as arguments. Some adverbs
take a single argument as in this example:

“John sold the car yesterday.”
which is interpreted as:

yesterday(the(car(X), sell(john,X)))

Other adverbs take two arguments. This category of
adverbs is part of the focalizer class. The adverbs have the
same interpretation as determiners and need a base and a
focus to determine their scope. They have the structure:

adverb(base,focus)

This case of adverbs is used by McCord to determine which
part of the sentence is stressed. This aspect of McCord's
work [27] is not relevant for the current research.

2.7 Interpretation of Conjunctions

A sentence can contain an infinite number of co-ordinating
conjunctions. This makes the analysis of such sentences
very difficult. An attempt to treat conjunctions by Dahl and
McCord [29] has resulted in a system that analyses only
very simple sentences containing a maximum of two
conjuncts. For example the analysis of:

“Each man ate an apple and a pear.”
can result in the following logical form:

each(man(X),ex(apple(Y),eat(X,Y))&ex(pear(Z),eat(X,Z)))

The embedding of co-ordinating conjunctions in a sentence
makes the production of logical forms very difficult and its
interpretation becomes ambiguous.

However, subordinating conjunctions are much easier to
treat. In general, they involve only two clauses that are
related by one conjunction as in the example:

“Each item of stock is assigned a unique identifier when it
is introduced.”
This is interpreted as:

all(item(X,stock), ex(identifier(Y)&unique(Y),
when(be(X,introduce(X)), be(X,assign(X,Y))))))

As we have hinted, handling co-ordinating conjunctions
adequately in general remains a difficult research problem
[29]. Hence we resolve co-ordinating conjunctions
manually by splitting the conjuncts into simple sentences.

2.8 Interpretation of Pronouns

Pronouns are another class of words which are difficult to
deal with in general [30]. An example of how some
pronoun references are resolved is shown in the following:

“Bill owns a cat. He likes it.”
This results in the following logical form:

ex(cat(X), own(bill,X) & like(bill,X))

Our current implementation also omits the resolution of
pronoun references.

3.0 USING LFL TO DETECT AMBIGUITIES

The main disadvantage in using natural language to write
specifications is the potential for ambiguities. In any
specification document written in natural language, it is
essential to remove any ambiguity before proceeding to any
further analysis. This leads to two major problems. The
first problem is the detection of the ambiguities that are
present and the second is the resolution of these
ambiguities.

It is claimed [9] that humans are bad at detecting
ambiguities, but are very good at resolving them. In this
section we show how ambiguities and incompleteness can
be detected when using the logical form language. These
ambiguities and incompleteness are categorised as:

• Lexicographic ambiguities.
• Grammatical ambiguities.
• Textual cohesion

We consider each of these in the following subsections.

Towards Automatic Modelling of Requirements

5

3.1 Lexicographic Ambiguities

Many words in English have different meanings. The
resolution of these ambiguities requires the selection of the
exact definition for each word. The logical form language
uses semantic types to resolve these ambiguities. These
types can be used as a set of some general classes as
defined by McCord[28], and Allen[31]. Another category
of lexicographic ambiguities is when a word belongs to
more then one syntactic category. For example “flies” may
be the plural of the noun “fly” or the present, singular third
person of the verb “to fly”. These ambiguities are easily
identified when the syntactic category of the word is
identified. For example, in the sentence:

“The pilot flies over the town.”

Once the category of the word “flies” is identified as a
verb, the ambiguity is resolved. When using LFL most of
the lexicographic ambiguities can be resolved using this
approach.

3.2 Grammatical Ambiguities

A grammatical ambiguity occurs when there is more than
one possible parsing for a sentence or part of a sentence.
The different parsings will lead to different interpretations
and different meanings. The sentence:

“The pilot draws the tracks of the route on the map.”

has three different parsings which lead to the following
interpretations.

“ The pilot draws (the tracks of the route) on the map.”
That is, the information is drawn on the map.

“The pilot draws (the tracks of the route on the map).”
That is, the tracks are already on the map and the drawing is
done somewhere else.

 “The pilot draws the tracks of (the route on the map).”
That is, the route is given on the map and its tracks are
drawn somewhere else.

The location where the drawing takes place is different
according to which interpretation we choose. Finding the
proper place to attach the preposition phrase needs prior
knowledge of the event. In general, a natural language
understanding system, cannot decide which interpretation is
meant. It can, however, highlight the ambiguity and
produce all possible interpretations and it is the role of the
analyst to choose the desired interpretation.

Ambiguities may also occur within parts of a sentence. This
ambiguity occurs mainly in noun phrases. For example the
sentence:

“A complex aircraft uses a moving map display.”

will have two different parsings, according to whether
moving is interpreted as an adjective modifying the noun
map display or as part of the noun moving map display.

This ambiguity may occur also in the interpretation of
nominalisations -- where the ing form of a verb plays the
role of a noun -- such as in the following sentence:

“The shooting of the hunters is disgraceful.”
If the shooting of the hunters is interpreted as a subject then
the shooting is done by the hunters, but if it is interpreted as
an object then the hunters have been shot.

3.3 Textual Cohesion

When writing texts, many techniques are used to ensure
that the different parts of the text are connected correctly
and to ensure a smooth transition from one idea to another.
These techniques are called textual cohesion . The
connected sentences will define the context in which they
have to be interpreted. Therefore, it will be difficult to take
a sentence out of context and try to interpret it. Each
sentence is linked to the others.

Unfortunately, textual cohesion is a source of ambiguities
and incompleteness. In most specifications, the authors
attempt to avoid the use of ambiguous textual cohesion.
However, it is hard to find a realistic specification without
ambiguities or incompleteness. A complete account of
these problems can be found in Meziane’s thesis [22].
These problems are very difficult to address and resolve if
any ambiguity occurs. Our approach can help detect some
lexical cohesion ambiguities such as synonyms, subtypes,
or use of the same word in different sentences. After
analysing the informal requirements and resolving
ambiguities, the next step in our approach is to produce an
entity relationship model.

4.0 IDENTIFYING THE ENTITY RELATION-
SHIP MODELS

The first task in identifying an ERM is to obtain the list of
entities in the specification and the relationships between
the entities. There is no clear definition of what constitutes
an entity. In SSADM [32], for example an entity is defined
as something of importance to the system about which
information can be held. The same definition is also used
by Bowers [33], who further suggests that entities can be:

• Objects: Person, car.
• Events: Birth, scoring a goal.
• Activities : Production, playing.
• Associations: Marriage (X is married with Y).

Grammatically speaking, the above list gives types which
define entities that are related. They all belong to the same
grammar category of nouns. Several authors have reported
that nouns denote entities [32,34].

Meziane and Vadera

6

Entities have relationships with other entities. In a bank
system, for example, there is a relationship between the
entities “Customer” and “Account”. These two entities are
related by an ownership relation which will probably be
described in the various documents by the verb “have”.
We, therefore, believe that relations are described by verbs.
This view is also supported by others [32,34].

We base our identification process on the view that entities
are denoted by nouns and relationships by verbs. For
example, in the following sentences:

1. “The pilot chooses the waypoints from the air.”
2. “A complex aircraft uses a radar.”

The nouns suggest the entities:
{pilot, waypoint, complex aircraft, radar,air }

and the verbs the relations:
{choose, use}

However, as we mentioned in the previous section, noise
exists in specifications and this can lead to the presence of
irrelevant entities and relations in such lists. For example,
in the following sentences:

1. “An example route is planned for a flight from
Blackpool to Doncaster.”

2. “The pilot may have unnecessarily flown through a
storm.”

In the first sentence, the verb planned does not describe any
process but just a statement. In the second sentence, the
entity storm may be not important to the specification of a
flight database.

Bearing in mind that we aim to develop an interactive tool,
this deficiency can be circumvented by requiring the
analyst to remove those nouns and verbs that are not
important when they are detected. We, therefore, expect
that an analyst should filter such a list of entities and
relations before proceeding.

We can, of course, obtain a list of nouns and verbs by
simply scanning the text. However, this approach has
several deficiencies and does not help one to:

1. Find the relationships between entities. For example, in
the sentence:

 “A company maintains a description for each item of
stock.”

 Although we can list the nouns as company, description ,
and stock , we do not obtain any relationships between
these entities.

2. Identify the degree of the relationships between the
identified entities.

3. Extract compound nouns without ambiguity. For
example, consider the two sentences:

• “A computer-assisted flight planning system is used by
a complex aircraft.”

• “A pilot planning a risky flight needs special
training.”

In the first sentence, planning is a part of the compound
noun computer-assisted flight planning system whose form
must be preserved. In the second sentence, planning is part
of the participial verb phrase “planning a risky flight” and
is not part of a compound noun.

The following subsections show how the use of logical
form helps us to overcome these problems.

4.1 Identifying Entities

The nouns form the basic list of entities. Below, we see
how entities can be extracted from sentences that contain
simple and compound nouns.

4.1.1 Simple Nouns

Simple nouns are extracted from noun phrases containing
just one noun. The sentence:

“The aircraft may hit an obstacle.”

contains two noun phrases: The aircraft and an obstacle.
Each noun phrase is composed of a unique noun and each
noun is extracted as an entity with its associated quantifier.
Relational nouns are also extracted in a similar fashion. For
example the sentence:

“The system of an aircraft comprises the plan of the
pilot.”
results in the entities:

{ system, aircraft, plan, pilot }.
Proper nouns identify particular objects and therefore do
not normally constitute entities. Hence in a sentence like:

“An example route is planned for a flight from Blackpool
to Doncaster.”
Blackpool and Doncaster do not constitute entities.

4.1.2 Compound Nouns

Compound nouns are nouns which are composed of two or
more nouns or a combination of nouns and adjectives. For
example, the following sentences:

1. “A complex aircraft uses a computer-assisted flight
planning.”

2. “The flight planning software package calculates the
route tracks.”

will have respectively the following logical forms:

1. ex(aircraft(X) & complex(X),
ex(computer-assisted(flight(planning(Y))),use(X,Y)))

2 the(flight(planning(software(package(X)))),
the(route(track(Y)), calculate(X,Y)))

Towards Automatic Modelling of Requirements

7

In the first sentence, the noun phrase, a computer-assisted
flight planning is composed of four nouns. In the second,
the noun phrase the flight planning software package is
composed of four nouns. As we can see from the above
logical forms we can easily extract the entities. The entities
identified are: computer-assisted flight planning and flight
planning software package.

Identifying entities by using just the head noun may, of
course, lead to confusion. For example, in a specification
of an aircraft system (see the case study in appendix A),
both the description of a simple aircraft and a complex
aircraft may occur.

4.2 Identifying Relations

As we have mentioned in section 4, a natural way of
identifying relationships is to use verbs and relational
nouns.

4.2.1 Identifying Relationships within Relational
Nouns

Relational nouns always define relationships between
nouns. The sentences:

1. “The company maintains a description for each item
of stock. “

2. “The system of a simple aircraft comprises the plan of
the pilot”

will produce respectively the following logical forms:

1. all(item(X,stock) ,the(company(Y),ex(description(Z),
for(X,maintain(Y,Z)))))

2. ex(aircraft(X) & simple(X), the(system(Y,X),
the(pilot(Z), the(plan(T,Z), (comprise(Y,T)))))

The logical forms show clearly the relations defined by
relational nouns. In the first sentence there is a relation
between item and stock and this is shown by item(X,stock).
In the second, there are two relations. The first relation is
between simple aircraft and system and the second relation
is between plan and pilot. These two relations are
respectively shown by system(Y,Z) and plan(T,Z). The
direction of the relation is from the second entity to the first
and we use of to name the relationship. The relations
extracted for the above examples are shown in Fig. 2.

Pilot

Plan

Simple Aircraft

System

Stock

Item

Of Of Of

Fig. 2: Relationships extracted

4.2.2 Identifying Relationships within Verb Phrases

Verbs generally refer to actions, events and processes [35].
In the case of transitive verbs, the verb defines a relation
between two entities. Let us consider the sentences:

1. “The pilot chooses the waypoints from the air.”
2. “The system of a simple aircraft is considered to

comprise the plan of the pilot.”

In the first sentence, the verb chooses relates the entities
pilot and waypoints. This information is readily available
from the logical form of the first sentence:

the(pilot(X), the(waypoint(Y), the(air(Z),
from(Z,choose(X,Y)))))

where choose relates the variables X and Y which are
defined in the logical form to be of type pilot and waypoint .

The second sentence has two verbs, making it a little more
complex to analyse. The logical form produced for this
example is:
ex(aircraft(X) & simple(X),the(system(Y,X), the(pilot(Z),

the(plan(T,Z), be(Y,consider(Y,comprise(Y,T))))))

The verb comprise introduces the main action (which is
represented in natural language as an infinite complement
of the verb consider), and is therefore extracted as the
relationship between the system of a simple aircraft and the
plan of the pilot. The verb consider plays a subsidiary role
and does not relate any entities. Again this information is
ready to extract from the logical form. In cases where the
logical form contains more then one verb, the inner verb
phrase identifies the relationships between the entities. The
relations extracted for the above sentences are given in Fig.
3.

Pilot

Waypoint

System

Plan

Choose Comprise

Fig. 3: Verb relation extracted

The next step is to identify the degree of the relationships.
The next subsection shows how the degree of a relation can
sometimes be determined from the logical form of a
sentence containing the relationship.

5.0 QUANTIFICATION AND THE DETERMI-
NATION OF THE DEGREE

Early attempts at natural language analysis assumed that
quantifiers occurred explicitly in the text. Thus, it was
assumed that the presence of a universal quantifier was
always indicated by words like “every” and “all” and the

Meziane and Vadera

8

presence of an existential quantifier was indicated by words
like “some” [36]. However, many sentences are implicitly
quantified by articles.

In this section we first examine how such implicit
quantifiers can be identified and then show how quantified
LFL statements can sometimes aid the identification of the
degree.

5.1 Identifying Implicit Quantifiers

Most studies of quantification identify quantifiers from the
articles present in the sentences [31,36]. Initial studies of
quantification regarded both definite and indefinite articles
as existential quantifiers, with some additional information
in the case of definite articles [36]. More recent studies
have shown various problems with this assumption and
have shown how the indefinite article and the definite
article can also lead to a universal quantifier. Below, we
show the problems of identifying quantifiers from the
articles “the” and “a” and our approach to these problems.

5.1.1 The Definite Article “the”

Russell [37] gives the following example to illustrate the
meaning of the definite article “the”.

“The president of France is bald.”

Russell argues that this should be interpreted as:
∃ X. president_of_france(X) Λ
 ¬(∃ Y. president_of_france(Y) Λ X ≠ Y) Λ bald(X)

 The “additional information” given for the interpretation of the
definite article is given in the statement that Y is the one
and only president of France.

 McCord [28] recognises that this interpretation is inadequate in

general but suggests that in some applications it is correct
to translate “the” into the unique existence. However, he
does not give any guidance as to when the usual existential
quantifier should be used instead of the unique existential
quantifier. In the case of obtaining the meaning of
sentences in a requirements document, we cannot assume
that one of these holds throughout the application. For
instance, consider the sentences:

1. “The students passed the exams.”
2. “The student passed the exams.”

The first sentence does not suggest the unique existential
quantifier, while the second does not suggest the normal
existential quantifier. As we will see later, obtaining
appropriate quantifiers is an important prerequisite for our
approach to identifying the degree of relationships between
entities. Hence, we have attempted to improve upon
McCord's approach to this problem [28]. In our approach,
we do not simply translate ``the" into the unique existence -
- instead we use the singularity or plurality of the noun to
determine if it should be translated to the unique existence

or normal existence. That is, if the quantified noun is
singular, we adopt the unique existence, otherwise we
interpret it as a normal existential quantifier. Again this
information is available from the LF of the sentence.

We concede that there remain sentences for which these
approaches remain inadequate. For instance, the following
examples given by Hess [36] are not covered:

1. “The unicorn is a mythical creature.”
2. “The lion is a dangerous animal.”

In the first sentence we do not presuppose the existence of
unicorns, but the sentence nevertheless makes perfect sense.
This kind of sentences are unlikely to appear in
requirements documents because specification of systems
are normally about concepts and objects that exist. The
second sentence shows that depending on the context, “the"
could be interpreted as a universal quantifier, or a unique
existential quantifier.

5.1.2 The Indefinite Article “a”

The use of the indefinite article as a quantifier is always a
source of ambiguity [31]. The indefinite article can
sometimes be translated to the existential quantifier and
sometimes to a universal quantifier. In this subsection, we
investigate when the indefinite article is interpreted as an
existential quantifier and when it is interpreted as a
universal quantifier. According to Hess [36] the most
important way to determine the quantification of a sentence
is through the choice of the verb. For example, consider the
following sentences:

1. “A text editor makes modifications to a text file”.
2. “A text editor is making modifications to a text file”.
3. “A text editor made modifications to a text file”.
4. “A text editor has made modifications to a text file”.

The present tense is used in example (1) to say that a text
editor makes modifications to a text file in general. The
main use of the present tense is to express habitual actions.
In examples (2) to (4) we say that there is, or was, a case of
a text editor making modifications to a text file. Therefore,
Hess suggested that because the present tense is used in the
first sentence, text editor must be universally quantified.
Likewise, because of the tenses used in the other sentences,
text editor must be existentially quantified in the remaining
sentences.

In some cases the future is preferred over the present tense
for general statements as in the following example:

“A man who loves a woman will stroke her”

Dynamic verbs, such as to stroke, seem to call for the future
tense, whereas static verbs such as to respect seem to go
better with the present tense. Hence, Hess formulated the
following rules:

Towards Automatic Modelling of Requirements

9

Rule 1: The subject of a sentence is existentially quantified
if the VP is:
1. in the past tense.
2. in the progressive aspect, or
3. in the perfective aspect.

Rule 2: Otherwise the subject is universally quantified, in
particular, if it is:
1. in the present tense or
2. in the future tense.

Once we have determined the quantification of the subject
of the sentence, we have to do the same thing to the other
components of the sentence. Let us consider the following
examples:

1. “A man who loves a woman is happy.”
2. “A man that loves a woman respects her.”

Intuitively, we can see that woman should be existentially
quantified in the first sentence and universally quantified in
the second sentence. To observe the difference, let us
consider the logical forms of these sentences:

1. all(man(X),ex(woman(Y)&love(X,Y),happy(X)))
2. all(man(X),all(woman(Y)&love(X,Y),respect(X,Y)))

The main verb of the first sentence is happy and does not
refer to the noun phrase woman. In the second sentence the
main verb respects refers to the noun phrase woman. This
is the reason why the noun phrase woman should be
existentially quantified in the first sentence and universally
quantified in the second. Hence, Hess suggested a third
rule which is:

Rule 3: In a restrictive noun phrase those arguments that
are referred to by the main verb are universally quantified
and those that are not referred to by the main verb are
existentially quantified.

This rule now enables the correct interpretation of the
above sentences. However, it does not hold for non-
restrictive noun phrases. In particular, when a noun phrase
appears at the right of a verb, the kind of sentences we have
encountered suggest that the indefinite article should be
interpreted as an existential quantifier. For example, in the
sentence:

“A complex aircraft uses a radar.”

The second indefinite article is interpreted as the existential
quantifier and not as the universal quantifier. There are two
exceptions to the above rules which are analysed in the
following cases:

• As an exception to rule 2, the past tense can express a
universally quantified assertion, as in the following
example:

 “A student read books when I was young.”

 This universal quantification is possible because the main
verb (read) requires a spatial or temporal
postmodifier(when).

• As an exception to rule 1, the progressive aspect can

express universal quantification as in:

“John is always coming late”

This is only possible when the verb is modified by
expressions such as “always”, “in general”, “regularly”. To
cover these exceptions, we can suggest the following fourth
rule which takes precedence over rules 1 and 2.

Rule 4:
1. The past tense can express a universally quantified

assertion if the main verb requires a spatial or a
temporal postmodifier.

2. The progressive aspect can express a universal
quantification if the verb is modified by expressions
such as “always”, “in general” and “regularly”.

 5.2 Obtaining the Degree from the Quantifiers

 In the last subsection we saw how we could obtain
quantified logical forms. In this subsection we show how
the quantifiers associated with each entity can be used to
determine the degree of a relationship between the entities.
It is not always possible to determine the degree of a
relation from the quantifiers. However, we describe how
our system gives a default degree for some cases. Of
course, the user is allowed to override the system
determined degrees.

5.3 Identifying Many-to-One Relationships

Consider the following examples and their logical forms:

1. “A complex aircraft uses the radar. “
all(aircraft(X) & complex(X), the(radar(Y), use(X,Y)))

2. “A student passed the exam.”
ex(student(X), the(exam(Y), pass(X,Y)))

3. “The students passed the exam.”
the(student(X), the(exam(Y), pass(X,Y)))

4. “The company maintains a description for each item
of stock.”
all1(item(X,stock), the(company(Y), ex(description(Z),

 for(X,maintain(Y,Z)))))

In the first example, the first entity in the relation is
quantified by the universal quantifier and the second by the
unique existential quantifier (the definite article quantifying
a singular noun). Then, by definition, we have a many-to-
one relationship from the first entity to the second. In the
second and third examples, the first entity is quantified by
the normal existential quantifier and the second by the
unique existential quantifier. Based on our current
experience, in such cases we interpret the existential
quantifier as referring to more than one occurrence of the
first entity. That is, many occurrences of the first variable

Meziane and Vadera

10

are related to only one occurrence of the second variable.
Then by definition, we have a many-to-one relation
between the entities student and exam.

In the fourth example, we consider the relation between
item and description. The entity item is quantified by the
universal quantifier and the entity description is quantified
by the existential quantifier. Based on the different
examples we have analysed, we infer a many-to-one
relation between item and description.

Notice that the degrees given by default by this approach to
the last three examples are not as strong as the one given to
the first example. The analyst, is of course, allowed to
override the degrees identified by the system.

Some one-to-many relationships can also be detected by the
system. For example, consider the following sentences and
their logical forms:

1. “The company maintains a description for each of
stock.”
all1(item(X,stock), the(company(Y), ex(description(Z),

for(X,maintain(Y,Z)))))
2. “The student passed all exams.”

the(student(X), all2(exam(Y), pass(X,Y)))

Logical form language distinguishes between its different
quantifiers by associating different predicates. For
example, LFL associates the predicate all1 for the
determiner each, all2 for the determiner all and the
predicate all for the interpretation of the indefinite article as
a universal quantifier. These different predicates are used
to determine the priorities between the quantifiers. These
differences also help in the interpretation of the sentences.
Hence, in the first sentence, the phrase each item of stock
suggests that we are talking about one stock system that
contains many items (i.e., a one-to-many relation between
the entities stock and item).

Sentences where the first entity is singular and quantified
by the definite article define one-to-many relationships.
The second sentence is a typical example. An exception to
this rule occurs when the second entity is also quantified by
``the" and is singular. In this case, we infer a one-to-one
relationship between the entities.

We have now given several cases in which we can identify
the degree of a relationship. In other cases, when it is
difficult to predict the degree of a relation, we let the user
decide it. At this stage we should have a list of entities,
relations and the degrees of the relations and therefore the
entity relationship model.

6.0 CONCLUSION

We conclude this paper by presenting the results of a
realistic case study provided by the Department of Systems

Computing of British Aerospace Ltd [38]. It concerns the
planning of a route for a flight from one point to another.
The original (English) text needs some pre-processing
because the current implementation of the natural language
processor does not handle conjunctions and pronoun
references, we resolve these two problems manually (see
[22] for a complete description). The English text (given in
appendix A) is translated into a set of logical forms after the
first stage. Given the logical forms, the system produces a
list of entities. For the current case study, the system
identifies 55 entities. In general, this list may include
“noisy” entities. Such noisy entities are detected and
removed by the analyst by using problem dependent
knowledge. The next stage is the identification of the
relations between the entities. In this case study, 52
relations are identified. These relations are binary relations.
Some degrees are identified automatically by the system.
For the present case study, the system successfully
identifies the degrees of 37 relations. The remaining
degrees are identified by the analyst. In general, during the
identification of an entity relationship model, an entity may
be related to many other entities. For example, in this case
study the entity “Complex Aircraft” is related to the
entities: “Inertial Navigation System”, “Moving Map
Display”, “Autopilot” , “Radar” ...etc. By combining these
relations, we obtain the entity relationship model given in
appendix B. For the whole set of the models produced for
the case study, the reader is referred to papers [13] and [22].
The last step of the FORSEN system translates the entity
relationship model to formal data type (in VDM [5]). This
process is based on previous work on obtaining formal
datatypes from semi-formal specifications [14,15]. In
conclusion, the results obtained by this research are very
encouraging and suggest that the use of natural language
understanding techniques can lead to a useful tool for
aiding the development of formal specifications from
informal specifications.

REFERENCES

[1] D. Teichroew and E. A. Hershey, “PSL/PSA: A
Computer-Aided Technique for Structured
Documentation and Analysis of Information
Processing System”, IEEE Transactions on Software
Engineering, Vol. 3, No. 1, 1977, pp. 41-48.

[2] D. T. Ross and JR K. E. Schoman, “Structured
Analysis for Requirements definition”, IEEE
Transaction on Software Engineering , Vol. 3, No. 1,
1977, pp. 6-15.

[3] M. W. Alford, “A Requirements Engineering
Methodology For Real-Time Processing
Requirements”. IEEE Transactions in Software
Engineering, Vol. SE-3, No 1, 1977, pp. 60-69.

[4] T. E. Bell, D. C. Bixler and M. E. Dyer, “An
Extendible Approach To Computer-Aided Software

Towards Automatic Modelling of Requirements

11

Requirements”, IEEE Transactions in Software
Engineering, Vol. SE-3, No 1, 1977, pp. 49-60.

[5] C. B. Jones, Systematic Software Development
Using VDM. Prentice Hall International, 1990.

[6] J. M. Spivey, The Z Notation a Reference Manual ,
Prentice Hall London, 1989.

[7] The RAISE Language Group. The RAISE
Specification Language. Prentice Hall International,
1992.

[8] R. Balzer, N. Goldman and D. Wile, “Informality In
Program Specification”, IEEE Transactions in
Software Engineering, Vol. SE-4, No 2, 1978, pp.
94-103.

[9] S. G. Presland, The analysis of Natural Language
Requirements Documents, Ph.D Thesis, University
of Liverpool, 1986.

[10] R. Balzer, “A 15 Year Perspective On Automatic
Programming”, IEEE Transactions in Software
Engineering, Vol. SE-1, No 11, 1985, pp. 1257-
1268.

[11] J. R. Comer, An Experimental Natural Language
Processor For Generating Data Type Specifications.
PhD thesis, Texas A & M University, 1979.

[12] A. Fantechi et al., “Assisting Requirements
Formalization By Means Of Natural Language
Translation”. Formal Methods in System Design
No. 4, 1994, pp. 243-263.

[13] S. Vadera and F. Meziane, “From English to Formal
Specifications”, The Computer Journal, Vol. 37. No.
9, 1994, pp. 753.

[14] J. Dick and J. Loubersac, “Integrating Structured
And Formal Methods: A Visual Approach To
VDM”. In Third European Software Engineering
Conference, LNCS 550, 1991, pp. 37-59.

[15] F. Polack, “Integrating Formal Notations and
System Analysis: Using Entity Relationship
Diagrams”, Software Engineering Journal, Vol. 7,
No. 5, September 1992, pp. 363-371.

[16] W. L. Johnson, K. M. Benner and D. R. Harris,
“Developing Formal Specifications From Informal
Requirements”. IEEE Expert, August 1993, pp. 82-
90.

[17] W. L. Johnson, M. S. Feather and D. R. Harris,
“Representation and Presentation of Requirements
Knowledge”. IEEE Transactions on Software
Engineering, Vol. 18, No 10, 1992, pp. 853-869

[18] H. B. Reubenstein, Automatic Acquisition of
Evolving Informal Description, PhD Thesis, MIT
Artificial Intelligence Laboratory, 1990.

[19] H. B. Reubenstein and R. C. Walters “ The
Requirements Apprentice: Automated Assistance for
Requirements Acquisition”, IEEE Transaction on
Software Engineering, Vol. 17, No. 3, 1991, pp.
226-240.

[20] H. B. Reubenstein and R. C. Walters “ The
Requirements Apprentice: An Initial Scenario”, In
Proceedings of the 5th International Workshop on
Software Specification and Design, IEEE Computer
Society Press, Washington, DC, May 1989.

[21] K. Miriyala and M. T. Harandi, “Automatic
Derivation of Formal Software Specifications from
Informal Description”, IEEE Transactions on
Software Engineering, Vol. 17, No. 10, 1991, pp.
1126-1142.

[22] F. Meziane, From English to Formal Specifications,
Ph.D Thesis, University of Salford, 1994.

[23] G. Gazdar and C. Mellish. “Natural Language
Processing In PROLOG”. An Introduction To
Computational Linguistics. Addison-Wesley
Company, 1989.

[24] McCord, “Slot Grammars”. American Journal of
Computational Linguistics, Vol. 6, No 1, 1980, pp.
31-43.

[25] M. McCord, “Using Slots and Modifiers in Logic
Grammars”. Artificial Intelligence, No 18, 1982. pp.
327-367.

[26] M. McCord, “ Modular Logic Grammars”, in
Proceedings of the 23rd Annual Meeting of the
Association for Computational Linguistics, Chicago
1985, pp. 104-117.

[27] M. McCord, “Focalizers, the Scoping Problem, and
Semantic Interpretation Rules in Logic Grammars”,
in Michael Van Canengham and David H. D.
Warren, editors, Logic Programming and its
Applications, Alex Publishing Corporation
Norwood, New Jersey, 1986, pp. 391-402.

[28] M. McCord, “Natural Language Processing in
Prolog”, in Walker Adrian, editor, Developing
Expert, Database, and Natural Language Systems,
Knowledge Systems and Prolog, Addison-Wesley
Publishing Company, 1990, pp. 391-402.

[29] V. Dahl and M. McCord, “Treating Co-ordination In
Logic Grammars”. American Journal of

Meziane and Vadera

12

Computational Linguistics, Vol. 9 No. 3, 1983, pp.
69-91.

[30] J. Hobbs. “Resolving Pronoun References”.
LINGUA, Vol. 44, No 4, 1978, pp. 311-338.

[31] J. Allen, Natural Language Understanding, The
Benjamin/Cummings Publishing Company, Inc.,
1987.

[32] C. Ashworth and M. Goodland, SSADM: A Practical
Approach, McGraw-Hill Book Company, 1990.

[33] D. S. Bowers, From Data To Data Base, Van
Nostrand Reinhold (U.K.) Co. Ltd., 1988.

[34] C. Gane and T. Sarson, Structured System Analysis,
Prentice-Hall Software Series, 1979.

[35] H. Jackson. Analysing English . Pergamon Press,
1982.

[36] M. Hess. “How Does Natural Language Quantify?”,
in Second Conference of the European Chapter of
the Association for Computational Linguistics,
February 85, pp. 8-15.

[37] B. Russel, “On Denoting”, In Mind, NS, 14, 1905,
pp. 479-493.

[38] B. Hepworth. An Introduction to Z. Technical report
BAe-WIT-RP-GEN-SWE-152, Systems Computing
Department, British Aerospace Ltd, February 1988.

APPENDICES

A. The Aircraft Specifications

In this appendix, we present the input text to the natural
language analyser. A key is associated to some sentences
to show how they are obtained from the original text. The
explanation of these keys is:

Ci All the sentences referred by Ci are the result of the
split of the same conjunct.

T The sentence is added to replace a table.
PR A pronoun reference is encountered and resolved.

The text is:

[1] An example route is planned for a flight from
blackpool to doncaster.

[2] The route is planned as a number of the discrete
tracks between the intermediate waypoints.

[3] The planned tracks will assure the safe arrival of the
aircraft over doncaster when they are flown in
correct order by the aircraft.

[4] The pilot may have unnecessarily flown through a
storm (C1).

[5] The pilot may have unnecessarily flown through a
controlled airspace (C1).

[6] The aircraft may hit an obstacle (C2).

[7] The aircraft may hit another aircraft (C2).

[8] The pilot of a simple aircraft without a sophisticated
electronic navigation system would be cleared to
undertake a risky flight.

[9] The pilot chooses the visible waypoints from the air.

[10] The pilot draws the tracks of the route on the map.

[11] The pilot steers a heading giving the required tracks
along the ground.

[12] The pilot scans the ground for the visible features
(PR).

[13] The pilot verifies the visible features against the
map.

[14] The system of a simple aircraft can be considered to
comprise the map of the pilot (C3).

[15] The system of a simple aircraft can be considered to
comprise the plan of the pilot (C3).

[16] The system of a simple aircraft can be considered to
comprise a heading indicator (C3).

[17] The system of a simple aircraft can be considered to
comprise the visual sense of the pilot (C3).

[18] The system of a simple aircraft contrasts with the
system of a complex aircraft.

[19] A complex aircraft uses a whole range of the
electronic equipment to support the navigation.

[20] A complex aircraft uses a computer-assisted flight
planning (C4).

[21] A complex aircraft uses an inertial navigation
system (C4).

[22] A complex aircraft uses a radar (C4).

[23] A complex aircraft uses a moving map display (C4).

Towards Automatic Modelling of Requirements

13

[24] A complex aircraft uses a route display (C4).

[25] A complex aircraft uses a waypoint display (C4).

[26] A complex aircraft uses an autopilot (C4).

[27] The pilot chooses the waypoints from blackpool to
doncaster in a complex aircraft.

[28] The pilot identifies each waypoint with a number
(C5).

[29] The pilot identifies each waypoint with a grid
reference (C5).

[30] The grid reference contains the latitude (T).

[31] The grid reference contains the longitude (T).

[32] The information is used as input to a flight planning
software package.

[33] The flight planning software package calculates the
route tracks (C6).

[34] The flight planning software package calculates the
distance between waypoints (C6).

[35] The flight planning software package calculates the
heading for the wind conditions (C6).

[36] The flight planning software package calculates the
non-violation of a controlled airspace (C6).

[37] The derived information may be listed for the pilot
to record on the map (C7).

[38] The derived information may be transferred to a
cassette tape (C7).

[39] The cassette tape is used to load the navigation
database on the aircraft.

[40] The autopilot uses the data to fly the aircraft
according to the plan of the pilot.

[41] The route is composed of waypoints (T).

B. The ER Diagram of a complex aircraft

BIOGRAPHY

Farid Meziane is a lecturer in Computer Science at the
University Malaysia Sarawak (UNIMAS), Malaysia. He
holds an engineer degree in computer science from the
National Institute of Computer Science, Algiers, Algeria
and a Ph.D in Computer Science from the University of
Salford, UK. His research interests include requirements
engineering, formal methods, natural language processing
and knowledge based systems.

Sunil Vadera is a lecturer in Computer Science at the
University of Salford, UK. He holds a Ph.D in computer
Science from the University of Manchester. He is a
member of the British Computer Society (BCS) and on the
BCS membership accreditation panel.

His research interests cover formal methods, theorem
proving, expert systems, machine learning, and case base
reasoning. His research papers have been published in
journals that include Formal A`spects of Computing, The
Computer Journal, The Software Engineering Journal, and
The Expert Systems Journal.

complex Aircraft

Inertial Navigation
System

Whole Range

Moving Map
Display

Autopilot

Data

Electrical
Equipement Waypoint Display

C.A.F.P

Radar

Route Display

use

of

use

