
Malaysian Journal of Computer Science, Vol. 9 No. 2, December 1996, pp. 14-28

14

PERCEPTIONS OF SELECTED MALAYSIAN INFORMATION SYSTEMS PRACTITIONERS TOWARDS
SOFTWARE PROTOTYPING: AN EXPLORATORY STUDY

Mohd. Hasan Selamat*
Md. Mahbubur Rahim**

Noor Maizura Mohammad Noor*

*Department of Computer Science
Universiti Pertanian Malaysia

43400 UPM, Serdang
Selangor Darul Ehsan

Malaysia
Fax: 6-03-9486646

email: hassan@cs.fsas.upm.edu.my

**Dept. of Computing and IS
Institut Teknologi Brunei
Simpang 125, Jalan Muara
Bandar Seri Begawan 3786
Negara Brunei Darussalam

Fax: 673-2-330776
Phone: 380249

ABSTRACT

Studies the perceptions of the Malaysian IS practitioners
about the use, applicability, problems, and benefits of
prototyping approach in the development of software
systems. This was accomplished by undertaking an
exploratory survey among selected information systems
practitioners. The results indicate that the adoption of
prototyping approach is relatively a new concept to the
Malaysian practitioners. It was found that prototyping
models are not generally thrown away, and prototyping
in third generation languages is common. Prototyping
approach was further applied to develop a wide variety
of applications ranging from real time to traditional
business systems. Some of these findings are contrary to
the existing literature on prototyping. Hence, despite the
survey’s restriction to small sample, the findings are
important to information systems practitioners and

academics.

Keywords: Software prototyping, Information systems
practitioners, System development life cycle

1.0 INTRODUCTION

Developed in the late 1960s and early 1970s, the traditional
systems development life cycle (SDLC) is still the most
commonly practiced approach to software development
[1]. The widespread use of the SDLC however does not
mean that it has always been seen as satisfactory [2]. In
SDLC, there exists a limit in the extent to which user
requirements can be captured and specified [3]. It is
because users are not good in understanding computer
related terms, while developers are not experts in the
problem areas that require to be automated [4]. Moreover,
requirements are generally expressed in terms of natural
languages. Such natural languages are excellent mediums
for novels and poems, where the quality of such works is

partly judged by the degree of ambiguity in the text, but
their use in requirements does not easily convey a realistic
sense of how the software system will fit the user's needs
[5]. Furthermore, natural languages are not particularly
good at encouraging questions as to whether a user need
is really needed or superfluous. Neither they are at all
good at encouraging questions as to whether user
requirements are complete [6]. As such, misunderstanding
arises between users and developers, which leads to
incomplete and often inconsistent requirements [7]. The
traditional approach further assumes that all the
requirements of the users can be identified in advance [8].
Unfortunately, users are not always able to highlight their
needs early, and they do not consider system definition
to be a front-end activity with a definite ending point [9].
As a result, software systems built with the traditional
SDLC approach often fail to meet user requirements [10,
11], and require substantial maintenance [12]. Moreover,
in the traditional approach, volumes of new documents
need to be generated, and several tasks are repeated, if
user requirements are revised. Such generation of
paperwork and sign-off documents is very time consuming
and costly, and often delays the installation of a system
[13]. These problems have created a tremendous
bottleneck in the SDLC approach [14]. As such, the
appropriateness of the SDLC approach has been criticised
[2, 15, 16, 17].

Software prototyping approach has emerged to address
some of the difficulties inherent in the traditional software
development approach [8, 18, 19, 20, 21]. Some authors
like Berrisford and Wetherby [22], Jason and Smith [23],
Lingraj and Kathawala [24] suggested that prototyping is
a revolutionary approach for developing software
systems. Even prototyping has been considered as an
alternative model that would replace the traditional life
cycle approach [25]. In prototyping, an initial and usually
simplified prototype version of the system is designed,
implemented, tested and brought into operation. Based on
the experience gained in the operation of the first

Perceptions of Selected Malaysian Information Systems Practitioners towards Software Prototyping: An Exploratory Study

15

prototype, a revised requirement is established, and a
second prototype is designed and implemented. The
cycle is repeated as often as is necessary to achieve a
satisfactory operational system [26]. The prototyping
approach is more explicitly iterative than the traditional life
cycle method. Unlike the traditional SDLC, which must
capture the correct version of a system the first time
around, prototyping encourages experimentation and
repeated design changes. Thus, prototyping calls for
more intensive involvement of users and developers alike
[27].

The goal of prototyping approach is to deliver a software
system that is functionally correct, easy to use and learn
[19]. The existing literature claims that prototyping results
in better identification and validation of information
requirements [28, 29, 30, 31], easy system implementation
and acceptance [4, 32], and reduced over-all total life-cycle
costs [18, 33]. Prototyping allows errors and omissions to
be detected earlier than the SDLC. Without prototyping,
errors may not be detected until later in the development
process [34]. Prototyping is also effective for establishing
superior user interface [18, 35]. Even, prototyping may be
the only way of eliciting requirements from a user who is
unsure of the very nature of the system he or she wants
built [1]. Several empirical studies [19, 30] conducted in
US and Europe support some of these claims. Over the
past several years, the use of prototyping has increased
dramatically [36]. A number of studies indicate a growing
use and acceptance of prototyping approach among the
western information systems practitioners. For instance,
Langle et al. [37] indicated that 33% of the US
organisations used prototyping to some extent and 61%
was reported in 1990 [17]. Prototyping was even found to
be more widely used than almost all the structured
software development tools [38]. However, little empirical
research has been conducted, to investigate how the
Malaysian Information Systems (IS) practitioners use
prototyping approach, and how successful they have
been. This study was initiated to seek the perceptions of
the Malaysian IS practitioners about the use, applicability,
problems, and benefits of the prototyping approach in the
development of software systems. This was accomplished
by undertaking an exploratory survey among selected
information systems practitioners.

This paper proceeds as follows: the next section defines
prototyping, and describes its benefits, problems,
taxonomy, and identifies the major concerns related to
prototyping. After that research questions are
highlighted, and the research approach is delineated. This
is followed by a presentation of the survey results.
Findings of the survey are discussed, and compared with
some related studies. Lastly, some conclusions are made.

2.0 SOFTWARE PROTOTYPING REVISITED

Software prototyping is concerned with the construction
of prototypes. The word 'prototype' is derived from the
Greek roots 'protos' and 'topos' meaning the 'first model'
[39]. A prototype is an operational model of the
application system [15]. It implements certain aspects of
the future system, and provides a concrete basis for
discussions between developers, users and management.
Quite often, software prototyping is a subject of debate,
due to the lack of a widely accepted definition of
prototyping [5, 18, 40]. The following definition of
prototyping as suggested by Rahim et al. [41, 42] has
been adopted by this study:

Prototyping is an approach to develop
computer-based software systems, in
which a series of working models are
constructed quickly in an iterative, and
structured fashion, and is facilitated by
active user involvement.

The fundamental assumption underlying prototyping
approach is that end-users seldom have clear and concise
understanding about their information needs, and they do
not normally know what to expect of future systems [21].
This problem is particularly acute for users who have
never used a computer system before. As a result, it is
difficult for the users to specify their requirements in
advance [8]. However, once users begin to use a
prototype, it soon becomes clear to them where the
problems lie [18]. Users understand working prototypes
better than logical graphical models, and are able to
suggest refinements, while developers can understand
where they need to make changes to meet user needs [28].
Demonstration of prototypes by developers help users to
expose their unstated assumptions and trigger some of the
inevitable requirements changes [43]. Thus, prototyping
helps developers to build the right system [44, 45].
Furthermore, by allowing the end users to interact with
prototypes, it is possible to validate their requirements
much easily. Prototyping further enables management to
check whether the software system development can be
carried out in order to avoid unnecessary use of resources
and to make sure that the wrong product is not built.
Thus, prototyping helps to reduce risk in system
development project [3, 43, 46, 47, 48].

In prototyping, users can further test their views by
interacting with working prototypes in a live environment.
Therefore, prototyping increases active user participation
in the software system building process [49]. Such
participation generates a sense of contribution and
ownership among the users, lessens their learning curve
[48]), and facilitates early acceptance of the system [4].
Maintenance is also expected to be less owing to the
accurate identification of user requirements. As such,

Selamat, Rahim and Noor

16

software prototyping is often considered as an 'insurance
policy' for success in systems development [50].

Despite these benefits, prototyping approach is not free
from weaknesses. Potential problems of prototyping
include: higher initial cost for the requirements phase of
the development cycle, poor documentation, and
unrealistic expectations from users, among others [42].
Prototyping approach has less control on project schedule
and cost, due to unknown number of iterations involved in
prototyping [21, 51]. Moreover, in the prototyping
approach developers often rush to coding, thus,
bypassing analysis and design stages [18, 52]. This leads
to an ill-controlled project drifting through endless
iterations [53].

Early efforts viewed prototyping as a single method that
can be used to supplement the traditional system
development life cycle approach [17]. More recent
research studies, however, recognise the existence of a
variety of prototyping methods. Unfortunately, there is a
little agreement about the taxonomy. In general, four
popular categories of prototyping are identified in the
computer literature: user interface prototyping, rapid throw
away prototyping, experimental prototyping, and
evolutionary prototyping. The purpose of user interface
prototyping is to establish how the interface between
users and computer systems will look like and behave.
The focus is on such matters as screen layout, dialogue
style and ergonomics [6]. This techniques has, of course,
been widely used for many years. The rapid throw away
method produces throw away (disposable) models that
simulate limited system functions, including interactions
with a database. The central aim of rapid prototyping is to
clarify requirements for the target system. It is useful at
the early stages of software development, as it focuses on
the communication problems between users and
developers. Once the prototypes are developed, they are
not delivered to the users, rather they form a basis for the
rigorous design of the proposed system. In other words,
in throw away prototyping, only the derived requirements
are kept, but the code is thrown away [50]. A throwaway
prototype implements only those requirements that are
poorly understood. Thus, after the prototype is complete,
the developer writes software specifications, incorporating
what was learned, and constructs a full-scale system
based on that specification [54]. Rapid prototyping can,
however, be used in conjunction with the traditional SDLC
approach. It augments user participation and
understanding when applied at the requirements analysis
stage. Thus, this approach does not replace the
traditional SDLC method; but only improves it. One
particular problem that may arise at some organisations is
that undocumented prototypes that are intended to be
thrown away are kept and become poorly planned bases
for large complex systems that consequently becomes
difficult to manage [50]. Moreover, when such prototypes

are retained for use as an operational system, performance
and input validation problems are most likely to occur [55].

In recent years, the availability of powerful design
environments has given rise to evolutionary prototyping,
in which a series of working models are constructed in an
iterative and structured manner in order to deliver a
complete software system [43]. Evolutionary prototyping
builds successive models that evolve into a finished
operational system. In contrast to a throw away
prototype, an evolutionary prototype is built in a quality
manner and implements only confirmed requirements.
Evolutionary prototyping works well when most of the
critical functions are well understood [54]. In general, the
use of evolutionary prototyping has been deemed more
appropriate for the development of small, specific decision
support systems (DSS) than for large transaction
processing systems [19]. Throw away and evolutionary
prototyping have almost nothing in common except the
word "prototyping". They are built differently, implement
different functions, serve different purposes, and have
different outcomes [54].

Experimental prototyping, on the other hand, involves
building a prototype of a proposed solution to a particular
problem [56]. The prototype is then evaluated by
experimental use, in order to determine the adequacy of
the proposed solution. In other words, experimental
prototyping provides an opportunity to explore design
alternatives after requirements have been defined. It is not
a tool for helping to establish requirements in the first
place [6]. This kind of prototyping enables users to
further specify their ideas about the type of computer
support required. Developers, for their part, are provided
with a basis for appraising the feasibility and suitability of
a particular application system [15].

Existing literature cautions that prototyping approach
should not be adopted without suitable tools. However,
the kind of tools needed is dependent upon the type of
the prototyping approach used [39]. An example of user
interface prototyping tool includes Smalltalk, a facility that
is suitable for prototyping exotic user interface with
windows pull-down menus with very little programming
effort [55]. Rapid throw away prototypes can be created
with simple tools, such as word processors or graphics
packages. Often Prolog is used as a tool to develop rapid
prototypes [57]. While evolutionary prototypes require
more sophisticated tools such as database management
systems, fourth generation languages or special purpose
prototyping tools [58]. Even though these tools are
extremely powerful in establishing a prototype, but the
prototypes are extremely resource intensive and they run
too slowly [55]. This inefficiency prevents using
prototypes in a large scale high volume production
environment [59]. In recent years, with the emergence of
more powerful CASE tools, prototyping can be practiced

Perceptions of Selected Malaysian Information Systems Practitioners towards Software Prototyping: An Exploratory Study

17

more effectively than before. CASE tools allow rapid
prototypes to be built quickly. If the final system is
constructed using a 3GL, CASE tools print out all the
menu, forms, reports and commands in a logically
organised document, providing chapter and section
automatically that can be used as the functional
specification document. This saves designers hours of
labor [7]. If an I-CASE is used, it enables the results of
prototype, to be used directly into the tool, for generation
of program code in a 4GL. Currently, among these three
types, tools for user interface prototyping dominate [3].

This study investigated a number of matters discussed
above by undertaking an exploratory survey. A number of
questions were asked to examine the extent the benefits,
problems and the other interesting issues related to
prototyping approach were actually experienced by the
Malaysian information systems practitioners.

3.0 RESEARCH APPROACH

This study adopted a survey approach in order to find
answers of the key questions as outlined in the earlier
section. A questionnaire consisting of two parts was
developed based on the available literature and
experiences of the authors. Part A captured background
information about the responding practitioners, while part
B collected perceptions of the practitioners on the use of
the prototyping approach. Some of the questions required
the respondents to rate features of software prototyping
on a five point Likert scale, some required ranking, while
others required 'yes'/'no' answers. The questionnaire was
reviewed by several academics. Later, the questionnaire
was pilot tested among selected IS practitioners from
industry. Based on their suggestions, one new question
was included, which asked for the opinions of the
practitioners regarding the degree of effectiveness of the
software tools. Other minor changes involved rewording
and rearranging of some of the questions. Revised
questionnaires were sent to thirty randomly selected IS
practitioners working in twenty different organisations
during January 1995 to April 1995. These organisations
were located in Kuala Lumpur and Selangor areas. These
two areas were chosen because of the researcher’s easy
access to these areas. Besides, most of the major
businesses including public offices are located in these
two areas. Moreover, there is no reason why
organisations located in these two areas would be
different from those chosen from other areas of Malaysia.
Similar assumptions were made by Carey and McCloed
[38] while conducting the use of system development
practices within Texas based organisations.

It must be emphasised that the surveyed sample
constitutes thirty randomly selected IS personnel, not the
number of organisations. Thus, it is hoped that the

responses received from them would follow a normal
distribution.

4.0 RESEARCH QUESTIONS

Most of the literature on prototyping are conceptual, and
there exists a lack of empirical studies to provide a
comprehensive evaluation of prototyping approach based
on the field experience. In largely unexamined fields of
study such as prototyping, it is advisable to start with
qualitative field studies to gain an understanding. As
such, this study has employed a survey approach which
should be viewed in the light of the exploratory nature of
empirical research. Furthermore, no prior survey on the
use of prototyping approach was conducted among the
Malaysian IS practitioners. Thus, a survey was
undertaken in order to examine how prototyping was
being viewed by the Malaysian IS practitioners. More
specifically, this research attempted to seek the
perceptions of the IS practitioners on the following key
issues related to software prototyping:

+ To what extent practitioners use prototyping ?
+ What kinds of prototyping approaches are being

adopted ?
+ What types of applications are developed using

prototyping ?
+ Which categories of software tools are used in

prototyping ?
+ What kinds of documentation are performed in

prototyping ?
+ Is prototyping used within the phases of the

traditional approach ?
+ What are the reasons for adopting prototyping ?
+ What problems are generally encountered in

prototyping ?
+ What benefits of prototyping are borne out in

practice ?

5.0 RESULTS

Twenty organisations participated in the survey. The size
of the organisations measured in terms of the number of
employees, varied widely from less than 100 to over 1000.
However, a dominant proportion of the organisations
(70%) was large, as they had over 500 employees. Eight
out of twenty organisations (40%) had large information
systems department as they employed more than fifty IS
personnel. Most of the surveyed organisations (70%)
were in well established business for over a decade. The
characteristics of the participating organisations are
shown in Table 1.

Selamat, Rahim and Noor

18

Thirty information systems practitioners from twenty
organisations participated in the survey. They
represented a considerable spectrum of IS job categories.
Essential characteristics of these practitioners are
illustrated in Table 2. The practitioners were in
responsible positions, and were familiar with the
development methodologies used within their respective
organisations. A majority of the practitioners (64%) were
analysts, 17% were IS managers, while the remaining
(19%) included EDP officers and executives of other
category. Of the thirty respondents, 63% had a bachelor
degree, 13% had a Master's degree, while the remaining
23% had a postgraduate degree in computing or
information technology. Nearly two-thirds of the
practitioners (60%) had over five years of experience in
systems development, 27% had two to five years
experience, while only limited 13% of the practitioners
were relatively new in the field of information systems as
they had less than two years of working experience.

Out of thirty, twenty two practitioners (73%) from thirteen
organisations were found to use software prototyping
approach. The experience of these practitioners in terms
of applications developed through prototyping is reflected
in Fig. 1. It can be observed that the adoption of
prototyping is relatively new, because a considerable
proportion of the practitioners applied prototyping
approach in less than six projects. However, nine out of
thirty participants (30%) developed over five applications

using prototyping approach.

Malaysian information systems practitioners generally
practiced more than one kind of prototyping. This is
shown in Fig. 2. Throw away prototyping was found to be
widely used, as half of the practitioners who adopted
prototyping approach indicated its use. However, despite
the popularity of rapid throw away prototyping, a
considerable portion of the practitioners (41%) performed
evolutionary prototyping. User interface and experimental
prototyping were also found to be used, but to a lesser
extent.

Table 1: Organisational characteristics

Total Employee in Organisation Number Percent

Less than 100 5 25
101- 500 1 5

501- 1000 1 5
More than 1000 13 65

Total 20 100

Number of IS Employee

 1 -10 5 25
 11-50 7 35

 51 - 100 4 20
Over 100 4 20

Business Experience of
Organisations

 Between 1 to 5 years 4 20
 Between 5 to 10 years 2 10

 More than 10 years 14 70

Perceptions of Selected Malaysian Information Systems Practitioners towards Software Prototyping: An Exploratory Study

19

Table 2: Practitioner's profile

Job Title Number Percent

IS Manager,
Director,

Head of Application
5 17

EDP Officer 1 3

Systems Analyst,
Analyst Programmers

19 64

Research Officer 3 10
Asst. Manager

Computer Designer
1
1

3
3

Total 30 100

Academic Background

Master 4 13
Post-graduate Diploma 7 23

Bachelor 19 63

Years of IS Experience

Less than 2 years 4 13
Between 2 to 5 years 8 27

More than 5 years 18 60

None
27%

1 in
progress

10%
1 only
13%

Bet 2 to 5
20%

Over 5
30%

Fig. 1: Applications developed with prototyping

Selamat, Rahim and Noor

20

27

50

41

27

0

10

20

30

40

50

60

70

80

90

100

User
Interface

Throwaway Evolutionary Experimental

(%)

Fig. 2: Types of prototyping used by the practitioners

Prototyping approach was adopted within different
phases of the traditional SDLC approach. This is
illustrated in Table 3. Prototyping was used in
requirements analysis phase to clarify requirements. It
was also used within design phase to produce better
interface. Some practitioners also developed prototypes
to experiment between alternative designs. The use of
prototyping was found to be the least in coding and
testing phases. The cumulative percent in percent column
in Table 3 is more than 100%. It is because often a
practitioner used prototyping in more than different
phases of SDLC.

Table 3: Use of prototyping in SDLC

SDLC Phases Number Percent

Analysis 11 50
Design 17 77
Coding 4 18
Testing 3 14

Prototyping approach was adopted to develop a wide
variety of applications. Table 4 indicates that prototyping
was primarily used in the areas of traditional business
applications and executive information systems.
Conversely, the use of prototyping was limited to decision
support systems and expert systems. Interestingly,
prototyping was used to develop real time applications.
Business applications were primarily well structured in
nature, thus, user interface prototypes were used to
design user interface and experimental prototypes were
used to chose between alternative designs. Executive
information systems and DSS that are either semi or ill-

structured, were developed primarily through evolutionary
prototyping. Prototyping was further used to develop
applications of varying size. However, most of the
applications developed with prototyping was medium in
size. Interestingly, some large applications were also
found to be developed using prototyping approach.

This study found that practitioners used a wide range of
software tools to construct prototypes. However, the
adoption of third and fourth generation languages, and
database packages were most frequently cited. Graphics
software were used by limited practitioners. Surprisingly,
sophisticated software packages like CASE tools were
rarely used. None of the practitioners used applications
generators. This is shown in Table 5.

Documentation is an essential aspect of systems
development. It is recognized as an important written
material for computer operations and maintenance.
Existing literature reports that in prototyping, developers
have the tendency to rush to coding. Thus,
documentation is often ignored [52]. As such,
undocumented prototypes are produced. A question was
asked to inquire whether the practitioners documented
prototypes as they would do if the systems were built with
the traditional SDLC approach. The results are shown in
Fig. 3, which indicates that a considerable proportion of
those practitioners who adopted prototyping approach
(41%) ignored documentation during prototyping. Only a
limited number of the practitioners (4%) placed more
efforts on prototype documentation as compared to the
SDLC approach.

Perceptions of Selected Malaysian Information Systems Practitioners towards Software Prototyping: An Exploratory Study

21

Table 4: Characteristics of applications built with prototyping

Application Types Number Percentage

Expert systems 1 4
Traditional business applications 14 64

Decision support systems 4 18
Compilers 3 14

Executive information systems 8 36
Real time applications 5 23

Type of Problem

Well-structured 16 73
Semi-structured 14 64

Ill-structured 8 36

Size of Application
Small 6 27

Medium 14 64
Large 10 45

Table 5: Use of software tools in prototyping

Prototyping
Tools

Number Percentage
(%)

3GLs 14 64
4GLs 10 45

Database software 7 32
Graphics software 2 9

Applications generators 0 0
CASE 1 4
Others 1 4

The types of documents that were prepared while
performing prototyping are listed in Table 6. The most
prevalent forms of documentation were system flow charts
and program flow charts. The use of data dictionary, data
flow diagram and structure charts was found to be limited.
This finding is not surprising given that most of the
practitioners practiced rapid prototyping and user
interface prototyping. It can be expected that the use of
data dictionary, structured diagrams like data flow
diagram, structure charts and action charts would increase
with the gradual rise in the adoption of evolutionary
prototyping.

The responding practitioners were provided with a list of
reasons that motivated them to adopt prototyping
approach, and were asked to identify the top three. The
responses were aggregated using a simple weighting
scheme, and are presented in the descending order as
shown in Table 7. The top three reasons include: better
identification of user requirements, reduction of
development time, and active participation of end-users in
the system development process.

Other considerations such as enhancing the image of the
IS people and improving relationship with end-users, and
the reduction of maintenance tasks were rated less
important in adopting prototyping. The results further
indicate that practitioners recognised the importance of
the role played by the end-users in the development of
information systems. As such, during prototyping,
developers encouraged active involvement of the users in
the development process. They considered that such user
participation would assist them to identify and collect user
requirements. Thus, uncertainty in determining user
requirements could be reduced. These findings support
that participating information systems practitioners fully
understood the fundamental concept of prototyping.
Survey results further reveal that Malaysian practitioners
adopted prototyping for shortening application
development time. The existing literature on prototyping,
however, does not always consider this as an important
reason.

Selamat, Rahim and Noor

22

No
document

41%

Less than
SDLC
45%

Same as
SDLC

9%

More than
SDLC

5%

Fig. 3: Documentation in prototyping

Table 6: Types of documents used in prototyping

Types of Documents Number Percentage

System flow chart 10 45
Program flow chart 7 32

Data dictionary 4 18
Data flow diagram 4 18

Structure chart 4 18
Action chart 4 18

Narrative description 3 14
Others 0 0

Table 7: Reasons for adopting prototyping

Reasons for using Rank Weighted

 Software prototyping 1 2 3 Average
To improve the capability of identifying
user requirements

11 6 4 112

To reduce application development time 5 4 2 58

To encourage user participation
in system development

2 5 5 57

To reduce application maintenance 3 2 7 56

To improve the image of IS people to
end users

1 3 4 37

To improve relationship with end users 0 2 0 10

Perceptions of Selected Malaysian Information Systems Practitioners towards Software Prototyping: An Exploratory Study

23

The responding practitioners were further provided with a
list of problems that were encountered while developing
software systems using prototyping approach. They were
asked to rank the top three problems. The responses were
aggregated using a simple weighting scheme, and are
presented in the descending order in Table 8. The
difficulty to control prototype iterations and estimate
project schedule were identified as the most pressing
problems. Another important problem was that software
prototyping did not reduce project completion time,
instead, in most cases, systems developed with
prototyping were found to consume more time than
anticipated. This frustrated the end-users and developers
alike.

The existing literature on prototyping claims that several
benefits can be gained using prototyping approach. A
question, was thus, asked that required practitioners to
rate a series of possible benefits of prototyping on a five
point Likert scale, where 1 stands for very unsatisfactory,
and five means very satisfactory. The responses from
twenty two practitioners who practiced prototyping
approach were compiled and are shown in Table 9. This
table supports that adoption of software prototyping
approach, indeed, helped developers to better capture
requirements of the end-users.

Table 8: Problems in prototyping

Problems encountered Rank Weighted
by the practitioners 1 2 3 Average

Prototype iterations tend to continue
infinitely

4 8 2 30

Difficult to estimate project schedule 6 2 4 26

Systems developed using
prototyping consumes more time than
anticipated

5 4 2 25

Prototypes created unrealistic user
expectations

5 2 6 25

Users did not participate actively 1 4 3 14

Developers did not like to be
criticised

1 2 3 10

Difficult to estimate budget 0 0 2 2

Table 9: Benefits of prototyping

Benefits Mean
Rating

Better identification of user requirements 4.1

Easy acceptance of the system by users 4.0

Higher job satisfaction of practitioners 3.8

Higher user satisfaction 3.6

Less maintenance is required 3.6

Selamat, Rahim and Noor

24

6.0 DISCUSSIONS

This study has found that a large proportion (73%) of the
information systems practitioners from selected Malaysian
organisations are using software prototyping approach.
This indicates that prototyping approach has gained
acceptance by the Malaysian IS community. However, the
adoption of prototyping is relatively new, because around
half of the practitioners (43%) have developed between
two to five projects using prototyping approach.

An interesting observation is that all the four types of
prototyping approaches as cited in the computer literature
were found to be practiced by the Malaysian IS
practitioners. Among them, rapid throw away prototyping
was more widely used compared to other varieties.
Practitioners applied rapid prototyping primarily to
identify user requirements and to examine design
alternatives while developing traditional business
applications, which were well-structured in nature.
Evolutionary prototyping was used to develop decision
support and executive information systems. This is line
with the observations of Kendall and Kendall [60] who
suggested that less structured problems involving
decision support systems are well suited to prototyping,
and warned that traditional business applications are not
good candidates for prototyping. However, the
Malaysian IS practitioners also used prototyping for
development of traditional commercial applications. This
is not consistent with current opinions on prototyping
[39].

On the other hand, user interface and experimental
prototyping were used to a limited extent. The findings of
this study are in agreement with those of Doke [17] and
Guimaraes [50], both of them reported that US firms
practiced illustrated (throw away) prototyping most
frequently compared to other varieties of prototyping.
However, a recent survey among forty US firms by Martin
and Carey [19] found that evolutionary prototyping
became more popular compared to rapid throw away
prototyping. It is due to the emergence of suitable tools
and growing awareness and favorable attitude towards
evolutionary prototyping. With the rising awareness,
continuous advancement of powerful tools, and user
pressure, more and more Malaysian information systems
practitioners are likely to adopt evolutionary prototyping
in the near future. Thus, a time will arrive when a majority
of the software applications will be built not by the
traditional systems development life cycle approach, but
by the prototyping approach.

Another striking observation is that the Malaysian IS
practitioners applied prototyping approach even to
develop real time applications. This is against the
suggestions of Rakos [7] who cited that real time and
scientific systems fare less well when prototyping

approach is used. Malaysian practitioners further used
prototyping to develop small, medium as well as large
sizes applications. This is in agreement with Utz [61] who
suggested that any software system more than several
thousand lines of code should be prototyped, but against
the advice of Alavi [28] and Laudon and Laudon [27] who
advocated that prototyping is most effective for smaller
applications, it cannot be applied easily to massive,
mainframe based systems with complex processing
instructions and calculations.

Guimaraes and Saraph [30] proposed that the benefits
arising from the adoption of prototyping approach can be
categorised into three different categories such as:
managerial benefits (MB), end-user benefits (EUB) and
technical benefits (TB). The survey results as shown in
Table 9 suggest that both EUB and MB dominate.
Technical benefits like: identifying optimum structure for
metadata, validating database domains, testing or
validating alternate systems designs to improve system
performance were less perceived. Table 9 further supports
that prototyping approach helped better identification of
system specifications, and improved user-developers
communication. As a result, software systems built with
the prototyping approach met user requirements. This
facilitated early acceptance of the system by the users,
and raised satisfaction of the users with the system.
Moreover, developers themselves were satisfied by
developing a system that fulfilled user requirements.
Thus, the Malaysian IS practitioners were able to
develop the right system, albeit late. Moreover,
practitioners adopted prototyping approach not for
increasing efficiency. This is in line with the suggestions
of Carey and Currey [62] who advised to use prototyping
to define requirements more accurately rather than more
quickly.

Another managerial benefit of prototyping is the impact of
prototyping on systems maintenance. Table 9 indicates
that software systems built with the prototyping approach
needed less maintenance. This is not surprising because,
in a typical system built with the traditional approach, up
to fifty percent of maintenance that occurs in the first nine
months or so immediately after delivery, result from mis-
specification. The use of prototyping helped to produce
better, more acceptable specifications, thus reduced
maintenance.

Despite the reported benefits, the Malaysian information
systems practitioners also encountered several problems
while developing software systems through prototyping
approach. The problems are shown in ranking order in
Table 8. Difficulty in controlling the number of iterations
in prototyping has been identified as the most pressing
problem. It is not surprising, because several other
authors like Mayhew et al [51], Rakos [7], and Rahim [63]
argued that if developers allow any number of iterations to

Perceptions of Selected Malaysian Information Systems Practitioners towards Software Prototyping: An Exploratory Study

25

the prototype, the requirements could go forever. The
solution to this problem is that like the traditional
approach, a specific time period could be set during which
developers would seek feedback from users to evaluate
how well the prototype is performing [60]. Alternatively, it
is possible to set a limit to the number of prototypes. This
has been supported by Rakos [7] and Connel and Shafer
[64], who suggested that prototypes could be built in less
than five versions, with three being the most common.

Software prototyping was used along with software
development tools. Developers employed third and fourth
generation languages, database packages and to a lesser
degree, computer-aided software engineering (CASE)
tools. Surprisingly, procedural third generation languages
were found to be the most widely used tools, with more
than half of the participants reported its use. Many of
them stated that COBOL was used in evolutionary
prototyping. The reason is that COBOL is still very
popular among practitioners, and is regularly used to build
applications. Thus, the use of COBOL helped the
practitioners to avoid the conversion problems from
prototypes (programmed in 4GLs) to operational systems
that were running in COBOL. Additionally, fourth
generation languages and database software were
identified as the second and third most popular tools to
develop prototypes. 4GLs were chosen because they
have the power to handle complex screen logic, can
perform special purpose calculations, and can invoke
special routines (Rakos, 1990). Those who programmed
prototypes in 4GLs used them primarily for throw-away
purposes. The use of 4GLs in throw away makes
development life cycle fast. But they are often inefficient
in terms of machine utilisation. However, a few
practitioners reported that they used the same 4GL to
produce operational systems based on prototypes.

Mildly surprising was the comparatively low reported use
of CASE tools: only one practitioner used a CASE tool to
prototype a system. Perhaps, the benefits of CASE tools
are not yet cost-effective. This finding did not support
the suggestion of Rakos [7] who advocated that both
disposable and evolutionary prototyping can be
performed using CASE tools. Interestingly, functional
languages like Prolog or Lisp or object oriented
programming like C++ was not cited as a tool to construct
prototypes.

7.0 CONCLUSIONS

This study reports the perceptions of thirty IS

practitioners on prototyping. Out of thirty, twenty two
practitioners (73%) from thirteen organisations were found
to use software prototyping approach to some extent. The
adoption of prototyping is relatively new, because a

considerable proportion of the practitioners applied
prototyping approach in less than six projects. Malaysian
information systems practitioners generally practiced more
than one kind of prototyping. However, throw away
prototyping was found to be widely used, as half of the
practitioners who adopted prototyping approach indicated
its use. Despite the popularity of rapid throw away
prototyping, a considerable portion of the practitioners
(41%) also performed evolutionary prototyping. User
interface and experimental prototyping were found to be
used, but to a lesser extent. Prototyping approach was
adopted within different phases of the traditional SDLC
approach. Prototyping was used in requirements analysis
phase to clarify requirements. It was also used within
design phase to produce better interface. Some
practitioners also developed prototypes to experiment
between alternative designs. The use of prototyping was
found to be the least in coding and testing phases.
Prototyping was primarily used in the areas of traditional
business applications and executive information systems.
Conversely, the use of prototyping was limited to decision
support systems and expert systems. Interestingly,
prototyping was used to develop real time applications.

This research has supported many of the findings of the
prior studies. However, some of the findings of this study
are somewhat contrary to prior understanding of the use
of prototyping in industry and hence warrant further

investigation. The results of this survey are important to
information systems managers who are considering or are
already using prototyping in their systems development
programs. They can use the results of this paper to
compare against the systems developed in their own
environment. The results are also important to researchers
who need background information on the prototyping
phenomenon or who are searching for research
opportunities in this area.

Lastly, the small number of respondents selected from
only two geographical areas may hamper generalisation of
the results. Nevertheless, the results are valuable and
warrant exploration. They can serve as a basis for further
in-depth survey. Such in-depth survey should collect
data from a larger number of respondents covering a wide
range of industries located throughout the country. This
would produce more reliable findings. Another limitation
of this study is the omission of an important question
regarding the percentage of applications that practitioners
develop during a certain time interval (e.g. one year).
Thus, research questionnaire should be revised to identify
the actual percentage of applications that are produced
through prototyping in relation to SDLC approach.

Selamat, Rahim and Noor

26

REFERENCES

[1] E. Yourdon, Decline & Fall of the American
Programmer, Yourdon Press, PTR Prentice Hall,
1992, pp. 92-105.

[2] C. Avgerou and T. Cornford , Developing
Information Systems: Concepts, Issues and
Practice, Macmillan Press, 1993, pp. 119-137.

[3] E. Wallmuler, Software Quality Assurance, Prentice
Hall, U.K., 1994.

[4] D. Appleton, “Data Driven Prototyping”,
Datamation, November 1983, pp. 259-268.

[5] W. Morrison, “Communicating with Users during
Systems Development”, Information and Software
Technology, Vol. 30, No. 5, 1988, pp. 295-298.

[6] C. P. Allen, Effective Structured Techniques: From
Strategy to CASE, Prentice Hall, 1991.

[7] J. J. Rakos, Software Project Management for
Small to Medium sized Projects, Prentice Hall,
Englewood Cliffs, New Jersey, USA., 1990.

[8] B. H. Boar, Application Prototyping: A
Requirements Strategy for the 80's', John Wiley
and Sons, Inc., USA, 1984.

[9] L. Scharer, "Pinpointing Requirements",
Datamation, April, 1981, pp. 149-151.

[10] B. W. Boehm, Software Engineering Economics,
Prentice-Hall, 1981.

[11] B. W. Boehm, T. E. Gray, and T. Seewaldt,
“Prototyping Vs: Specifying: A Multi-Project
Experiment”, IEEE Transactions of Software
Engineering, Vol. 10, No. 3, 1984, pp. 290-302.

[12] D. C. Ince and P. Mayhew, “Software Prototyping -
Techniques and Management”, In Proceedings of
the Second IEE/BCS Conference: Software
Engineering 88, London, UK, July 1988, pp. 1-2.

[13] K. C. Laudon, C. G. Traver and J. P. Laudon,
Information Technology Concepts and Issues,
Boyd & Fraser Company, USA, 1995.

[14] W. C. Andrews, “Prototyping Information
Systems”, Journal of Systems Management,
September 1983, pp. 16-18.

[15] R. Budde, K. Kautz, K. Kuhlenkamp, and H.
Zullighoven, Prototyping - An Approach to
Evolutionary Systems Development, Springer-
Verlag, New York, 1990.

[16] D. C. Ince, and S. Hekmatpour, “Software
Prototyping: Progress and Pitfalls”, Information
and Software Technology, Vol. 29, No. 1, 1987, pp.
8-14.

[17] E. R. Doke, “An Industry Survey of Emerging
Prototyping Methodologies”, Information and
Management, Vol. 18, 1990, pp. 169-176.

[18] J. M. Carey, “Prototyping: Alternative System
Development Methodology”, Information and
Software Technology, Vol. 32, No. 2, March 1990,
pp. 119-124.

[19] M. P. Martin and J. M. Carey, “Converting
Prototypes to Operational Systems: Evidence from
Preliminary Industrial Survey”, Information and
Software Technology, Vol. 33, No. 5, June 1991,
pp. 351-356.

[20] K. Kautz, “Communication Support for Prototyping
Projects”, Information and Software Technology,
Vol. 35, No. 11/12, December 1993, pp. 647-651.

[21] M. C. Er, “Prototyping, Participative
Phenomenological Approaches to Information
Systems Development”, Journal of Systems
Management, August 1987, pp. 12-15.

[22] T. Berrisford and J. C. Wetherby, "Heuristic
Development: A Redesign of Systems Design",
MIS Quarterly, Vol. 3, March 1979, pp. 11-19.

[23] M. A. Jason, and L. D. Smith, "Prototyping for
System Development: A Critical Appraisal", MIS
Quarterly, December 1985, pp. 305-316.

[24] B. P. Lingraj, and Y. Kathawala, "Prototyping:
Models and Issues", In Proceedings of Decision
Sciences Institute, Vol. 1, 1988, pp. 416-17.

[25] P. Loucopoulos, and V. Karakostas, System
Requirements Engineering, McGraw-Hill Book
Company, 1995.

[26] J. N. G. Brittan, "Design for a Changing
Environment", The Computer Journal, Vol. 23, No.
1, January 1980, pp. 13-19.

[27] K. C. Laudon, and J. P. Laudon, Business
Information Systems, The Dryden Press, USA,
1991.

Perceptions of Selected Malaysian Information Systems Practitioners towards Software Prototyping: An Exploratory Study

27

[28] M. Alavi, “An Assessment of the Prototyping
Approach to Information Systems Development”,
Communications of the ACM, Vol. 27, No. 6, 1984,
pp. 556-563.

[29] M. Alavi, and J. C. Wetherbe, “Mixing Prototyping
and Data Modelling for Information System
Design”, IEEE Software, May 1991, pp. 86-91.

[30] T. Guimaraes and J. V. Saraph, “The Role of
Prototyping in Executive Decision Systems”,
Information and Management, Vol. 21, 1991, pp.
257-267

[31] G. Tate and J. Verner, "Case Study of Risk
Management, Incremental Development, and
Evolutionary Prototyping", Information and
Software Technology, Vol. 32, No. 3, 1990, pp. 207-
214.

[32] P.A. Dearnley and P. J. Mayhew, "In Favour of
System Prototypes and Their Integration within the
System Life Cycle", The Computer Journal, Vol.
26, No. 1, 1983, pp. 36-42.

[33] F. W. Nickols, "Prototyping: Systems Development
in Record Time", Journal of Systems Management,
September 1993, pp. 26-30.

[34] R. M. Stair, Principles of Information Systems : A
Managerial Approach, Boyd & Fraser Publishing
Company, USA, 1996.

[35] I. Graham, "Structured Prototyping for
Requirements Specification in Expert Systems and
Conventional IT Projects", Computing & Control
Engineering Journal, March 1991, pp. 82-89.

[36] M. P. Martin, Analysis and Design of Business
Information Systems, Prentice Hall, USA, 1995.

[37] G. B. Langle, R. L. Leitheiser and J. D. Naumann, “A
Survey of Applications Systems: Prototyping in
Industry”, Information and Management, Vol. 7,
1984, pp. 273-284.

[38] J. M. Carey and R. McLeod, “Use of System
Development Methodology and Tools”, Journal of
Systems Management, March, 1988, pp. 30-35.

[39] R. P. Cerveny and E. J. Garrity, “Why Software
Prototyping Works”, Datamation, August, 1987,
pp. 97-103.

[40] B. C. Hardgrave and R. L. Wilson, “An
Investigation of Guidelines for Selecting a

Prototyping Strategy”, Journal of Systems
Management, April 1994, pp. 28-35.

[41] M. M. Rahim, M. H. Selamat and A. T. Othman,
“Model of Structured Prototyping: A Case Study”,
In Proceedings of the Third Conference on IT and
its Applications, Leicester, U.K., April 2-3, 1994,
pp. 25-46.

 [42] M. H. Selamat, M. M. Rahim and A. T. Othman,
“Software Prototyping: Clarifying Common
Misconceptions”, Accepted in Jurnal Teknologi
Maklumat, 1995.

[43] L. Luqi and W. Royce, “Status Report: Computer-
Aided Prototyping”, IEEE Software, November
1991, pp. 77-81.

[44] G. Tate, "Prototyping: Helping to Build the Right
Software", Information and Software Technology,
Vol. 32, No. 4, 1990, pp. 237-244.

[45] M. M. Rahim, M. H. Selamat, and A. T. Othman,
“Surmounting Hurdles of Prototyping Adoption:
An Action Strategy Framework”, In Proceedings of
the South Asia Regional Computer Conference,
Karachi, Pakistan, November 1994, pp. 350-361.

[46] M. J. Earl, “Prototype Systems for Accounting,
Information and Control”, Accounting,
Organisations and Society, Vol. 3, No. 2, 1978, pp.
161-170.

[47] R. Harrison, “Prototyping and the Systems
Development Life Cycle”, Journal of Systems
Management, August 1985, pp. 22-25.

[48] S. Belardo and K. R. Karwan, “The Development of
a Disaster Management Support System through
Prototyping”, Information and Management, Vol.
10, pp. 93-102.

[49] M. H. Selamat, M. M. Rahim and A. T. Othman,
"End-User Involvement in Software Prototyping",
Jurnal Teknologi, 1994, pp. 7-14.

[50] T. Guimaraes, “Prototyping Orchestrating for
Success”, Datamation, December 1987, pp. 101-
106.

[51] Mayhew, P J, P. A. Dearnley, "Controlling
Software Prototyping: A Change Classification
Method", Information and Software Technology,
Vol. 31, 1989, pp. 59-65.

Selamat, Rahim and Noor

28

[52] R. Vonk, Prototyping The Effective Use of CASE
Technology, Prentice Hall International Ltd, U.K,
1990.

[53] Bart O'brien, Demands & Decisions: Briefings on
Issues in Information Technology Strategy,
Prentice Hall, U.K. 1992

[54] A. M. Davis, "Operational Prototyping: A New
Development Approach", IEEE Software,
September 1992, pp. 70-78.

[55] D. Bell, I. Morrey, and J. Pugh, Software
Engineering, A Programming Approach, Prentice
Hall, 1992.

[56] P. J. Mayhew, and P. A. Dearnley, "An Alternate
Prototyping Classification”, The Computer
Journal, Vol. 30, No. 6, 1987, pp. 481-484.

[57] M. M. Rahim, Introducing Control and Structure
in Software Prototyping, M.S. Thesis, Department
of Computer Science, Universiti Pertanian
Malaysia, Serdang, Selangor D.E., Malaysia, 1992.

[58] S. J. Andriole (1992) Rapid Application
Prototyping: The Storyboard Approach to User
requirements Analysis, QED Technical Publishing
Group, USA, 1992.

[59] Mensching, J. R. and Adams, D.A. (1991)
Managing an Information System, Prentice-Hall
International, Inc., New Jersey, USA., pp. 38-381.

[60] E. K. Kendall and J. E. Kendall, Systems Analysis
and Design, Prentice Hall, New Jersey, USA, 1992.

[61] W. J. Utz, Software Technology Transitions,
Prentice Hall, U.K., 1992.

[62] J. M. Carey and J. D. Currey, "The Prototyping
Conundrum", Datamation, June 1989, pp. 25-33.

[63] M. M. Rahim, M. H. Selamat and A. T. Othman,
“Application of the User Satisfaction Approach to
Control Software Prototyping: An Experience”,
Accepted in the Singapore National Academy of
Science Journal, 1995.

[64] J. Connell, and L. Shafer, Structured Rapid
Prototyping: An Evolutionary Approach to
Software Development, Yourdon Press, U.S.A,
1989.

BIOGRAPHY

Mohd. Hasan Selamat, is a Senior Lecturer at the
Department of Computer Science, Universiti Pertanian
Malaysia. His research interest includes CASE, end-user
computing and software prototyping. He has published
several dozens of research papers in international and
Malaysian journals and proceedings of international
conferences. He is also the recipient of the best paper
award in IT conference in UK.

Md. Mahbubur Rahim, Tel.: 673-2-330427 (Extn:145 or 152),
Fax: 673-2-330776, received M.S. in Computer Science from
Universiti Pertanian Malaysia in 1992. Currently, he is a
Lecturer at Department of Computing and Information
Systems, Institut Teknologi Brunei. His research interest
includes CASE, and software prototyping. His research
papers have appeared in several international journals
including Information and Software Technology,
International Journal of Information Management, Asia-
Pacific Journal of Information Management. He is also the
recipient of the best paper award in IT conference in UK.
Currently, he is a member of the Australian Computer
Society.

Noor Maizura Mohammad, is a tutor at the Department of
Computer Science, Universiti Pertanian Malaysia. She
graduated from the same university in 1994. Her research
interest includes system development methods, CASE,
end-user computing, and software prototyping.

