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ABSTRACT

A parallel neural network compiler (NEUCOMP2) for a
shared-memory parallel machine has been implemented
by introducing parallelism in NEUCOMP.  The parallel
routine detects the program loops of the sequential
version generated by NEUCOMP, undergoing analysis of
the data dependences and transforms it into a parallel
version.  Experiments were carried out to study the
performance of the NEUCOMP2 programs for the
backpropagation network.  NEUCOMP2 was developed
and run on the Sequent Balance 8000 computer system at
Parallel Algorithm Research Centre, U.K.
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1.0 INTRODUCTION

Neural network (NN) simulation software is a computer-
aided experimentation for NN models, typically
implemented on a computer [1,2].  NN models can also
be implemented on specialised hardware.  Hardware
implementations currently come in several species such as
computer emulations.  They involve special boards or
other special hardware, integrated circuit chips, optical or
holographic devices.  Hardware implementations are
faster than software simulations.  However, they are for
special purpose NN models, expensive and require a
substantial commitment to the use of the system.
Software simulations are ideal for research in NNs as they
can be developed very quickly and cheaply.  They are
very flexible and these make it easy to experiment with
alternative network structures, activation functions and
learning algorithms.  They also allow easy collection and
analysis of data on the behaviour and performance of the
networks.  However, NNs are computationally expensive
because of the following reasons:-

(1) They contain a large number of nodes and
interconnections.  The number of interconnections
are directly proportional to the complexity of the
model that can be implemented.

(2) The learning algorithm involves many iterations in
order to converge or reach a stable solution.

To improve the speed of the software implementations,
several parallel simulator strategies have recently
appeared [3,4,5].  The reasons being that the parallel
computers can offer faster execution time than the
sequential machines.

Designing a simulation tool for general purpose NN
models has become a popular trend nowadays because of
its flexibility and efficiency [14].  A traditional simulator
is usually restricted to a specific model and its design is
time consuming.  This occurs when we develop a
different simulator for each model.  The NEUCOMP
language is a procedural high level language which is
designed for a user to write a simulation program
specifically for any NN model [6].  It contains
information regarding the list of mathematical
specifications required by the NN models as well as
standard high-level programming statements such as
'if..then..else' statements or 'while..do' statement.  The
mathematical specifications used are represented by either
a scalar, vector or matrix manipulation.  A study of the
NN compiler called NEUCOMP [7,8,9] to generate
general purpose NN simulation program have been
successfully implemented.  These simulation programs
were executed sequentially.

A further study of designing the NN compiler for a
parallel machine has been carried out.  This paper
discusses the development of an upgrade version of
NEUCOMP named NEUCOMP2.  NEUCOMP2 can
generate a parallel NN simulation program running on a
shared-memory parallel machine.  It contains an
additional stage for detecting the existence of parallelism
in the sequential program generated by NEUCOMP and
transforms it into a parallel version specifically for a
shared-memory parallel machine.  When a different
parallel machine is introduced, this routine can be
changed to suit the specification required by that machine.
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2.0 DESIGN OF PARALLEL NEURAL NET-
WORK COMPILER

Designing a parallel NN compiler basically follows the
design of a parallelising compiler [3,4].  A parallelising
compiler (sometimes referred to as a supercompiler) is a
software system that compiles programs targeted for
execution on a parallel architecture system.  This software
tool takes as input the sequential program, detects any
form of parallelism that exists and carries out the
transformation process.

Fig. 1 shows the process of generating a parallel NN
simulation program.  The step from the source program,
NEUCOMP2 program, to generate a sequential
simulation program, follows the step compiled by
NEUCOMP [6].  The next compilation phase is the
parallelising stage.  It contains routines to detect
parallelism and transform into parallel codes.  The design
of the routine is dependent on the architecture of the
parallel machine.  In this section, the design and
implementation of the parallelising routine on the
SEQUENT Balance machine at PARC1 [10] is discussed.
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Fig. 1: Process of compilation on a NEUCOMP2 program

The language for NEUCOMP2 is called the NEUCOMP2
language.  The NEUCOMP2 program has an extra
reserved word called PARALLEL which must be
included when a certain procedure is to be executed in
parallel.  In this case the most crucial part in NN
simulation is a procedure that involves training the
network.  For example, the NEUCOMP/NEUCOMP2
program is written as:-

                                                
1
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MAINPROGRAM
     ...
  CALL training;
    ...

END;

To parallelise the program, statement CALL is replaced
with PARALLEL, as shown belows:-

MAINPROGRAM
     ...
  PARALLEL training;
    ...
END;

3.0 IMPLEMENTING THE PARALLELI-SING
STAGE

The code section identified by NEUCOMP2 for parallel
execution is the loops.  These parts offer the best
opportunities amenable to parallelism [5].

The routine for parallelism will be evoked when the word
PARALLEL is included in the respective procedure.  The
routine then undergoes the following stages:-

(1) Detection of the loop iteration
(2) Creating a new procedure for loop iteration
(3) Analysing data dependencies
(4) Transformation process

The following sections discuss the development of the
above stages.

3.1 Detection of the loop iteration

The loop iterations for all matrix-vector statements are
chosen as code sections to be executed in parallel. There
are two types of loops to be generated: the 'for loop' and
'while loop'.

The matrix assignment statements are generated into two
'for loops', i.e. for (I = ... ) and for (J = ... ).  For example,
the NEUCOMP2 program code for updating the weights
using the Backpropagation algorithm [6,11,12,13] has the
following form:-

weight += alpha*dweight + beta*cweight



Sulaiman and Evans

56

where weight, dweight  and cweight are the matrix
variables and, alpha and beta are the scalars.  The
translated statements are as follows:-

for (I = ... )
for (J = ... )
 weight[I][J]+=alpha*dweight[I][J]+beta*cweight[I][J];

where I and J are the system variables (reserved words)
which are written as capital letters.

The vector assignment statements are generated into a
single 'for loop', i.e. for (I = ... ).  For example, to assign
the training pattern into the input layer, it is written as
follows:-

layer1 = pattern@;

where layer1  is an input layer and pattern  is a matrix
variable.  The symbol '@' means all its elements at the
specific row determined by reserved word ROW are
assigned to layer1.  The translated statements are as
follows:-

for (I = ... )
  layer1[I] = pattern[ROW][I];

The second type of loop statement is the 'while loop'. The
following assignment statements provided by
NEUCOMP2 will be translated into the 'while loop'
statement are:-

variable< = expression
variable> = expression

where the first symbol '<' is used in the Kohonen and
Counterpropagation algorithms [6] for finding the winner
node based on the minimum calculation of the expression.
It is written as:-

layer2< = DISTANCE(layer1,weight1);

and the second symbol '>' is used in the ART1 algorithm
[6] for finding the winner node based on the maximum
calculation of the expression.  It is written as:-

layer2> = weightf*layer1;

NEUCOMP2 translates the Kohonen algorithm into the
following code statements which contains the 'while loop'
statement.

where I, SCALAR0 and ROW are the system variables, n1
is the size of layer1  and n2 is the size of layer2 .
DISTANCE  is the built-in function.  The final result of the
above translation is that ROW or the winner node contains
the index of which layer2  is the minimum and layer2
holds that minimum value.

The translated statement for the second statement, i.e.
ART1 algorithm, is similar provided that the sign '<' is
replaced by '>' and the final result is that the ROW or
winner node contains the index of which layer2  is the
maximum and layer2  holds that maximum value.

3.2 Creating a New Procedure for Loop Iteration

Once the respective loop iteration has been detected,
NEUCOMP2 extracts that loop from its position and
places it into a newly created procedure called PROCESS
followed by an integer number starting with 0 to
distinguish it from another newly created procedure, if
any.  Its original place will then be replaced by this name
as a calling procedure.  For example, the translated code
for the statement,

layer1 = pattern@;

is written as follows:-

void training()
...
{
  for (I = ... )
    layer1[I] =     pattern[ROW][I];
  ...
}

NEUCOMP2 translates the above 'for loop' into the
following code statement:-

...
void training()
void PROCESS0()
...
{
  PROCESS0();
   ...
}

void PROCESS0()
{
  for (I = ... )
    layer1[I] = pattern[ROW][I];
  ...
}

PROCESS0 is a unique name and written in capital
letters.  If more than one loop is detected, the next new
procedure will be named as PROCESS1 and so on.

When there are more loops being considered previously
written consecutively, they are then combined into a
single procedure.  For example, calculating the activation
value for all layers in the Backpropagation algorithm is
written as follows:-

PROC training
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   ...
  layer1 = pattern@;
  layer2 = SIGMOID(weight1*layer1 + bias2);
  layer3 = SIGMOID(weight2*layer2 + bias3);
   ...
END;

where layer1 , layer2  and layer3  are the vector variables.
The translated codes are generated in the form of
sequential codes as shown below:-

   ...
void training()
   ...
{
   ...
  for (I = ... )
    layer1[I] = pattern[ROW][I];
  for (I = ... )
    layer2[I] = SIGMOID(Mul_mat_vec(weight1,layer1,

n1,I) + bias2);
  for (I = ... )
    layer3[I] = SIGMOID(Mul_mat_vec(weight2,layer2,

n2,I) + bias3);
}

where Mul_mat_vec is the C function used to calculate a
matrix-vector multiplication.

NEUCOMP2 then combines the above loops into the
translated codes as can be seen in Fig. 3.

3.3 Analysing Data Dependencies

The loops to be executed in parallel are now in the newly
defined procedure.  All variable usages within the loop
iterations are analysed in order to identify which variable
depends on previous operations.  This is to guarantee
correct results when these statements are executed
simultaneously.  The variable usage in the loop can
belong to 4 categories : reduction variables, shared locked
variables, shared ordered variables and local variables
[10].  However, a local variable does not cause data
dependencies.

During analysis, NEUCOMP2 groups the variable usage
into 5 groups namely group0, group1, group2 , group3
and group4.  The variable usage in each group have the
following characteristics:-

(1) The group0 contains a variable written in the
form:-

x += ....

where x is read and written by a single statement.

(2) The group1 contains a variable written in the
form:-

... = x

x = ...

where x is read first and then written in other
statement.

(3) The group2 contains a variable written in the
form:-

... = x

where x is read only.

(4) The group3 contains a variable written in the
form:-

x = ...

where x is written only.

(5) The group4 contains a variable written in the
form:-

x = ...
... = x

where x is written first and then read in other
statement.

From the group classification, NEUCOMP2 can then
classify the type of data dependencies that may occur.
NEUCOMP2 assumes scalar variables may cause data
dependencies but not a vector or matrix variable.  They
are operated independently within the loop iteration
where each element is referenced by only one loop
iteration.  The scalars that exist in group0 are of type
reduction variables.  The scalars that exist in group1 and
group3 are of type locked shared variables because they
are written many times when running in parallel.  The
scalars that exist in group2 are independent shared
variables because they are read only.  The dependent
variables can be removed by a transformation process
which contains parallel mechanisms to transform its part
to run correctly in parallel.  The scalars that are in group4
are local because they are initialised on every iteration.

Other cases that the parallelising routine in NEUCOMP2
does not consider are:-

(1) The statements FOR and WHILE loop provided by
the NEUCOMP/NEUCOMP2 language.  Since the
main purpose of using the NEUCOMP/NEUCOMP2
program, is to make use of matrix/vector
assignments, the use of FOR and WHILE statements
is not common.  If used it is assumed that the
number of loops used is very small.

(2) A shared ordered variable.
(3) When the size of the loop is less than one third of

the total number of processors.

For cases (2) and (3), NEUCOMP2 will then consider the
next inner loop.
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3.4 Transformation Processes

Transformation processes involve the translation of the
sequential part into its parallel version after information
about variable usage is done.  It uses the parallel library
routines provided by Sequent Balance [10] for handling
data dependencies etc.

All variables in a loop iteration declared as global are
redeclared as shared variables.  The calling procedure
created by NEUCOMP2 as discussed earlier, i.e.
PROCESS0 is then forked by the routine m_fork .  The use
of parallel routines such as m_get_numprocs and
m_get_myid are also included.  The following example
shows the transformation of the program from Fig. 3.

      ...
    shared float *layer1; /* global variable */
      ...
    void training()
    void PROCESS0();
      ...
    {   ...
      m_fork(PROCESS0,ROW);
       ...
    }

void PROCESS0(ROW)
   int ROW;
   {  int NPROCS,I;
      NPROCS = m_get_numprocs();
      for (I = m_get_myid(); I<n1; I+=NPROCS)
         layer1[I] = pattern[ROW][I];
      ...
   }

where ROW has a value needed in the loop iteration and
therefore it is passed through the argument list of
PROCESS0.

3.4.1 Transforming a Reduction Variable

For a reduction scalar variable that exists in group0,
NEUCOMP2 performs two types of translations.  The
first type of translation occurs  if the reduction scalar
variable is declared by the user as global.  The following
example shows the transformation of the loop iteration
which contains the reduction scalar variable, sumerror.

...
shared float *error, sumerror;
  ...
void training()
{  ...
  m_fork(PROCESS0);
  ...
}

void PROCESSO()
{ float SCALAR0;
  int NPROCS,I;
  NPROCS = m_get_numprocs();
  SCALAR0 = sumerror;
  for (I = m_get_myid(); I<n1; I+=NPROCS)
    SCALAR0 += error[I];
  m_lock();
    sumerror += SCALAR0;
  m_unlock();
}

where sumerror is originally declared as a global variable.
Its type is then declared as shared.  In the PROCESS0, it
is replaced with a local variable, i.e. SCALAR0.  The
variable SCALAR0 is a system variable (reserved word)
which is initially set to sumerror.  There can also be more
unique SCALARs such as SCALAR1 and SCALAR2, when
more reduction variables are found.  The routines m_lock
and m_unlock  ensure that the shared lock variable
sumerror does the addition in each processor one at a
time.

The second type of translation occurs if the reduction
scalar variable is originally declared as local in the
procedure where it is used.  The following example shows
how the reduction scalar variable, sumerror declared as
local, is transformed.

...
shared float PSCALAR0;
   ...
void training()
{  ...
  void PROCESS0();
  float sumerror;

...
  m_fork(PROCESS0,sumerror);
  sumerror = PSCALAR0;

...
}
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void PROCESSO(sumerror)
float sumerror;
{ int NPROCS,I;
  PSCALAR0 = 0.;
  NPROCS = m_get_numprocs();
  for (I = m_get_myid(); I<n1; I+=NPROCS)
    sumerror += error[I];
  m_lock();
    PSCALAR0 += sumerror;
  m_unlock();
}
In this case, the reduction variable, sumerror is an
argument to the function m_fork  which passes its initial
value to PROCESS0.  The system variable, i.e.
PSCALAR0, declared as shared, is used in handling the
data dependencies.  There can be more unique
PSCALARs, i.e. PSCALAR1 and PSCALAR2, when more
reduction variables are found in the loop iteration.

    I = 0;
    SCALAR0 = DISTANCE(layer1,weight1,I,n1);
    ROW = 0;
    while ( ++I < n2) {
      layer2[I] = DISTANCE(layer1,weight1,I,n1);
      if (layer2[I] < SCALAR0) {
        SCALAR0 = layer2[I];
        ROW = I;
      }
    }

Fig. 2: The sequential code for the Kohonen algorithm

3.4.2 Transforming a Locked Variable

If a scalar exists in group1 or group3 , then this variable is
a locked variable.  As an example, Fig. 2 contains two
locked scalar variables, ROW and SCALAR0.  Variable
SCALAR0 is in group1 since it is read in the 'if condition'
and then written within it.  Variable ROW is in group3
since it is written in the loop iteration.  The loop iteration
to be executed in parallel in this case is the 'while loop'.

Fig. 4 shows the transformation code of the 'while loop' of
Fig. 2.  The shared locked variables, SCALAR0 and ROW,
are declared as local by NEUCOMP2 when the program
is translated into the sequential version.  In order to
overcome the data dependencies for both variables, they
need to be declared globally as shared.  Alternatively
NEUCOMP2 replaces the global variables declared with
shared variables namely PSCALAR0 and PROW.  They
then take initial values from these local variables via
parameter passing.  The final results of these shared
variables are then assigned to their respective local
variables.  The parallel loop from this example is different
from the 'for loop' discussed earlier. This parallel loop
follows a dynamic scheduling technique [10] specifically
generated when NEUCOMP2 locates the 'while loop'.
This loop is only applied to an assignment statement that
uses the symbol '>' or '<'.  The function m_next belongs to
DYNIX library function, the increment global counter
which is automatically set to one when first called.  The
second call returns to two, and so on.

...
void training()
void PROCESS0()
   ...
{
   ...
  PROCESS0();
   ...
}

void PROCESS0()
{
  int I;
  for (I = ... )
    layer1[I] = pattern[ROW][I];
  for (I = ... )
    layer2[I] = SIGMOID(Mul_mat_vec(weight1,layer1,n1,I) + bias2);
  for (I = ... )
    layer3[I] = SIGMOID(Mul_mat_vec(weight2,layer2,n2,I) + bias3);
}

Fig. 3: PROCESS0 holds the 'for loop'
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...
shared float PSCALAR0;
shared int PROW;
  ...
void training()
{ float SCALAR0;
  int ROW, I;
  I = 0;
  SCALAR0 = Mul_mat_vec(weight,layer1,n1,I);
  ROW = 0;
  m_fork(PROCESS0,ROW,SCALAR0);
  ROW = PROW;
  SCALAR0 = PSCALAR0;

...
}

void PROCESSO(ROW,SCALAR0)
float SCALAR0;
int ROW;
{
  int I,J,K;
  PSCALAR0 = SCALAR0;
  PROW = ROW;
  while ( (K = m_next()) < n2) {
    J = K + 1;
    for (I = K; I<J; I++) {
     layer2[I] = Mul_mat_vec(weight,layer1,n1,I);
     m_lock();
     if ( layer2[I] > PSCALAR0) {
       PSCALAR0 = layer2[I];
       PROW = I;
     } m_unlock();
    }
  }
}

Fig. 4: The transformation code for the 'while loop'

3.4.3 Synchronisation points

Synchronisation needs to be introduced when parallel
results from one execution is required by the next
operation otherwise an incorrect result will occur.  For
example, Fig. 3 requires m_sync to be included between
the loop iterations as shown below:-

...
void training()
void PROCESS0()
   ...
{   ...
  m_fork(PROCESS0,ROW);
   ...
}

void PROCESS0(ROW)
int ROW;
{ int I,NPROCS;
  NPROCS = m_get_numprocs();
  for (I= m_get_myid(); I <n1; I += NPROCS )
    layer1[I] = pattern[ROW][I];

  m_sync();
  for (I =  m_get_myid(); I <n2; I += NPROCS )
    layer2[I] = SIGMOID(Mul_mat_vec(weight1,layer1,

n1,I) +   bias2);
  m_sync();
  for (I =  m_get_myid(); I <n3; I += NPROCS )
    layer3[I] = SIGMOID(Mul_mat_vec(weight2,layer2,

n2,I)+ bias3);
}

where the first m_sync is introduced because layer1
which is being written from the first parallel execution
will be read by the next parallel execution.  The final
m_sync is not needed because at the end of the routine,
synchronisation is done automatically.

4.0 EXPERIMENTAL RES ULTS

Experiments similar to those in [11], were carried out to
study the performance of a parallel NN simulation
program generated by NEUCOMP2 and those produced
by the Neural Network Simulator (NNS).  NNS was
designed specifically for the Backpropagation network.
The results of the two programs were then compared.

NNS is an interactive NN simulation developed by
Sanossian [11] using Parallel Pascal running on the
Balance machine at PARC.  Its data structure is a linked
list of a one-dimensional array.  A number is assigned to
each node in the network.  Each node has a linked list that
holds all the node numbers connected to it and the
connection weights.  A one-dimensional array is used for
the state of the nodes.  Parallelism on the NNS was
implemented using two methods i.e., the 'On-line' and
'Batch' methods [11,13].  In the 'On-line' method, starting
from the first layer, the network is partitioned according
to the number of nodes onto each processor.  The weights
were updated for every training pattern.  In the ‘Batch’
method, all input patterns are divided equally among
processors.  The weights were updated after all training
patterns have been processed.

In measuring the performance, the execution time is taken
as the difference between the time at the beginning of
calling the training procedure and the time at the
completion of the procedure.  The speedup is measured
as:-

speedup = 
time1 

timep 

where time1 is the execution time for one processor and
timep is the execution time for p processors.

There are two sets of experiments.  The first set was done
using the 'On-line' method and the second one using the
'Batch' method.  Both sets of experiments were run for 10
iterations.  The effect of increasing the number of nodes
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in a network or the number of training pattern on the
speedup of the parallel simulation program was tested.

4.1 The On-line results

The results for the 'On-line' method generated by
NEUCOMP2 were compared with NNS.  These are
shown in Tables 1, 2 and 3.  The execution times were
measured for different numbers of processors and
different sizes of network (i.e. 5x5x5, 10x10x10,
40x40x40) with fixed training patterns (i.e. 50).  The
training patterns contain a set of input and target patterns
or vector pairs.  Appendix A shows the training data
(vector pairs) for the size of 40x40x40.

Graphs of speedup vs. number of processors for both the
NNS and NEUCOMP2 (Fig. 5, 6, 7) were plotted after
each table to show graphically the different speedups.
Both programs (with larger network size, i.e., 40x40x40)
showed a linear increase of speedup as the number of
processors increase.  It also showed that the parallel
program generated by NEUCOMP2 is slightly better.
This difference is probably due to the way the programs
were implemented.  The NEUCOMP2 program was
implemented using an array while the NNS was
implemented using a one-dimensional array of a linked-
list.  An array data structure has the advantage of getting

the value by referring its subscript, but to get the value
from an array of lists, a pointer is used to travel along the
linked-list until that value is reached.

4.2 The Batch results

Two sets of experiments in the 'Batch' method were
generated by NEUCOMP2.  The first experiment
(experiment1) was implemented using parallelism
amongst the training patterns and the second experiment
(experiment2) was implemented using parallelism on all
the loop iterations that involve the matrix/vector
operations.  However, the results in experiment1 was not
satisfactory.  This is because, in the program of
experiment1, the only loop that executed in parallel was
amongst the training patterns whereas within this loop,
there exists many loop iterations that operate on the
matrix/vector operations.  Such loops are the vector
operations for calculating the activation function of the
hidden layer and the output layer, calculating the sum of
errors for the output nodes and the hidden nodes, matrix
operations on the weight derivatives, etc.  This factor
affects the execution time of the processors.

Results for experiment2 were compared with the NNS
also using the 'Batch' method; Tables 4 to 6 show the
comparison.  In Table 4, the execution times were
measured for different number of processors and a
network of size 40x40x40 nodes, with fixed vector pairs
i.e. 50.  In Tables 5 and 6, the execution times were
measured for different numbers of processors as well as
different numbers of vector pairs, i.e. 80 and 100, with a
fixed size of network (i.e. 10x10x10 nodes).

Table 1:  The execution times and speedups of a network of 5x5x5 nodes using the 'On-line' method
produced by NNS and NEUCOMP2

NNS NEUCOMP2

Number of
Processors

Execution time
(sec.)

Speedup Execution time
(sec.)

Speedup

1 14.4 1.00 13.3 1.00

2 9.23 1.56 8.47 1.58

3 7.75 1.85 6.17 2.16

4 7.28 1.97 6.13 2.17

5 6.05 2.37 4.03 3.30

6 6.22 2.31 4.05 3.28

7 6.76 2.12 4.10 3.24

8 7.07 2.03 4.20 3.17

9 7.40 1.94 4.32 3.08

10 7.12 2.02 4.44 3.00
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Fig. 5:  Comparison of speedups vs. no. of processors for both NNS and NEUCOMP2

Table 2:  The execution times and speedups of a network of 10x10x10 nodes using the 'On-line' method
produced by NNS and NEUCOMP2

NNS NEUCOMP2

Number of

Processors

Execution time

(sec.)

Speedup Execution time

(sec.)

Speedup

        1 44.5 1.00 43.5 1.00

        2 24.3 1.83 22.7 1.92

        3 18.7 2.38 18.3 2.38

        4 15.1 2.95 14.4 3.03

        5 12.9 3.44 10.4 4.18

        6 13.0 3.43 10.2 4.27

        7 11.9 3.73 10.5 4.14

        8 12.2 3.66 10.2 4.27

        9 12.4 3.60 10.2 4.27

       10 10.5 4.24 6.61 6.58
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Fig. 6:  Comparison of speedups vs. no. of processors for both NNS and NEUCOMP2

Table 3:  The execution times and speedups of a network of 40x40x40 nodes using the 'On-line' method produced by
NNS and NEUCOMP2

NNS NEUCOMP2

Number of

Processors

Execution time

(x 101 sec.)

Speedup Execution time

(x 101 sec.)

Speedup

        1 59.1 1.00 58.7 1.00

        2 31.2 1.89 30.0 1.96

        3 21.2 2.79 20.8 2.82

        4 15.7 3.78 15.0 3.91

        5 12.8 4.62 12.2 4.81

        6 11.1 5.31 10.6 5.54

        7 9.62 6.15 9.22 6.37

        8 8.18 7.23 7.73 7.59

        9 7.73 7.65 7.58 7.74

       10 6.79 8.70 6.39 9.19
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Fig. 7:  Comparison of speedups vs. no. of processors for both NNS and NEUCOMP2

Table 4: The execution times and speedups of 40x40x40 nodes using the 'Batch' method on NNS and second
experiments of the NEUCOMP2 programs
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NNS NEUCOMP2

(experiment2)

Number of

Processors

Execution time

(x  101 sec.)

Speedup Execution time

(x 101 sec.)

Speedup

        1 35.5 1.00 28.0 1.00

        2 18.1 1.97 14.1 1.98

        3 12.2 2.90 9.86 2.84

        4 9.37 3.79 7.14 3.92

        5 7.35 4.83 5.81 4.83

        6 6.57 5.40 5.12 5.48

        7 5.76 6.16 4.41 6.36

        8 5.01 7.08 3.76 7.45

        9 4.46 7.96 3.76 7.45

       10 3.72 9.53 3.09 9.08
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Graphs showing the comparison between NNS and
experiment2 are given in Fig. 8 to Fig 10.  Fig. 8 shows
that the speedup for both NNS and experiment2 are
gradually increasing since the network size is large, i.e.,
40x40x40, but Fig. 9 and Fig. 10  do not perform as good
as NNS (although the size of vector pairs are large) since
the network size is small, i.e., 10x10x10.  This shows that
by executing the loop iterations on the matrix/vector
operation using NEUCOMP2 proved to produce better
execution times and speedups.

5.0 DISCUSSION

The parallel NN compiler called NEUCOMP2 was
designed for the Sequent Balance computer at PARC.
The main objective of NEUCOMP2 is to generate a
parallel simulation program to be executed on the parallel
machine. The work is an extension of the work carried out
on NEUCOMP.  The only change to the NEUCOMP
language from the old version is placing the statement
PARALLEL in front of the procedure call in order to run
that procedure in parallel.  The NEUCOMP2 program is
then compiled by NEUCOMP2 to generate the parallel C-
code that runs on the parallel machine.

The main characteristic of NEUCOMP2 is the
parallelising phase (Fig. 1) which can be changed to suit
any parallel machine of different architectures, i.e.
Transputer network, Intel Hypercube, etc., without
changing the whole process of the compilation technique.

The parallelising phase that has been implemented so far
is for the Shared-Memory parallel machine, i.e. the
Sequent Balance.  The design of the parallelising phase
was based on the strategies used in the automatic
parallelisation of programs or parallelising compiler.

NEUCOMP2 allows the loop iteration to be executed in
parallel on the matrix/vector operations.  Therefore, the
'On-line' and 'Batch' methods in the backpropagation
algorithm are actually parallelising the loops of the
program which is suitable for parallelism.  It has been
shown that parallelising the loops of the program
generated by NEUCOMP2 gives a better performance in
terms of execution time and speedup whereas
parallelisation by partitioning the training patterns in the
NEUCOMP2 did not perform so well.

To confirm the correctness of the parallel programs,
results were compared and checked satisfactorily with the
sequential versions.
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Fig. 8:  Comparison of speedups vs. no. of processors for NNS and experiment2 using the 'Batch' method for the
network of size  40x40x40
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Table 5:  The execution times and speedups of a network trained on 80 vector pairs for NNS and second
experiments of the NEUCOMP2 programs

NNS NEUCOMP2

(experiment2)

Number of

Processors

Execution time

(x  100 sec.)

Speedup Execution time

(x 100 sec.)

Speedup

        1 44.7 1.00 35.6 1.00

        2 22.7 1.97 18.6 1.92

        3 16.2 2.77 15.3 2.33

        4 11.9 3.75 12.0 2.98

        5 9.87 4.53 8.51 4.18

        6 9.23 4.85 8.76 4.07

        7 7.88 5.68 8.75 4.07

        8 7.28 6.14 8.74 4.07

        9 7.04 6.35 8.60 4.14

       10 6.07 7.37 6.04 5.90
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Fig. 9:  Comparison of speedups vs. no. of processors for NNS and experiment2 using the 'Batch' method
for the network of size 10x10x10 with 80 vector pairs
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Table 6:  The execution times and speedups of a network trained on 100 vector pairs for NNS and second
experiment of the NEUCOMP2 programs

NNS NEUCOMP2

(experiment2)

Number of

Processors

Execution time

(x 100 sec.)

Speedup Execution

time

(x 100 sec.)

Speedup

        1 55.9 1.00 44.4 1.00

        2 28.5 1.96 23.1 1.92

        3 19.8 2.82 19.2 2.31

        4 14.8 3.79 14.7 3.03

        5 12.2 4.60 10.7 4.15

        6 11.0 5.07 10.7 4.15

        7 9.57 5.80 10.6 4.18

        8 8.95 6.24 10.7 4.15

        9 8.65 6.46 10.6 4.18

       10 7.25 7.71 7.10 6.25
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Fig. 10:  Comparison of speedups vs. no. of processors for NNS and experiment2 using the 'Batch'
method for the network of size 10x10x10 with 100 vector pairs



Sulaiman and Evans

68

REFERENCES

[1] G. A. Korn, Design of function-generating
mapping networks by iteractive NN simulation,
Mathematics and Computers in Simulation, Vol.
33, North-Holland, 1991, pp. 23-31.

[2] G. A., Korn , Neural Network Experiments on
Personal Computers and Workstations, A
Bradford Book, The MIT Press, 1991.

[3] D. A. Padua and M. J. Wolfe, “Advanced
Compiler Optimizations for Supercomputers”,
Communications of the ACM, Vol. 29, No. 12,
1986, pp. 1184-1202.

[4] H. Zima and B. Chapman, Supercompilers for
Parallel and Vectors Computers, ACM Press,
Addison-Wesley, 1990.

[5] M. Y. Mohd-Saman and D. J. Evans,
“Investigation of a Set of Bernstein Tests for the
Detection of Loop Parallelization”, Parallel
Computing 19, pp. 197-207, 1993.

[6] D. J. Evans, and M. N. Sulaiman, NEUCOMP -
NEURAL NETWORK COMPILER, International
Journal of Computer Mathematics, Vol. 54, No. 1
& 2, Gordon and Breach, 1994.

[7] M. N. Sulaiman and D. J. Evans, “Using a general-
purpose NN simulation tool-NEUCOMP-for
character recognition problems”, Journal of
Microcomputer Application, 18, Academic Press,
pp. 65-81, 1995.

[8] D. J. .Evans and M. N. Sulaiman, “A Neural
Network Computer Simulation to the Intertwined
Spiral Problem”, Workshop - Research Network on
Nantechnological and Holographics Methods for
Real-Time Pattern Recognition (NATHAN), Berlin,
Sept. 1995.

[9] M. N. Sulaiman and D. J. Evans, “Solving
Optimisation Problems using NEUCOMP”,
International Journal of Computer Mathematics,
Vol. 63, No. 1-2, Gordon and Breach.

[10] A. Osterhaug, Guide to Parallel programming,
2nd. Ed., Sequent Computer Systems, 1987.

[11] H. Y. Y. Sanossian, The study of Artificial Neural
Networks and their learning strategies, Ph.D.
thesis, Loughborough University of Technology,
U.K., 1992.

[12] D. E. Rumelhart, G. E. Hinton, and , R. J.
Williams, Parallel Distributed Processing:
Explorations in the Microstructure of Cognition,
Vol. I, MIT Press, 1986.

[13] H. Y. Y. Sanossian, and D. J. Evans, “An
Acceleration method for the Backpropagation
Learning Algorithm”, Proceeding of the Neuro-
Nimes, Forth International Conference on Neural
Networks and their Applications, Nimes-France,
1991, pp. 377-385.

[14] D. Shumsheruddin, The Neural Network
Paradigm, In Advanced Topics in Computer Series,
Advances in Parallel Algorithms, Edited by L.
Kronsjo, and D. Shumsheruddin, Blackwell
Scientific Publication, 1992, pp. 66-84.

BIOGRAPHY

Md. Nasir bin Sulaiman is currently a Lecturer in
Computer Science in UPM.  Obtained Ph.D. in Neural
Network Simulation from Loughborough University UK
in 1994.  Research interest include neural networks,
parallel processing, and information systems.

D. J. Evans is currently an Emeritus Professor in
Computing, Loughborough University, Loughborough,
Leicestershire, U.K.  His areas of research are parallel
algorithms and numerical analysis.



NEUCOMP2 - Parallel Neural Network Compiler

69

APPENDIX A (Training data set)

Input data (50 patterns)

0 1 1 1 0
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 1 1 1 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1

0 1 1 1 0
0 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 1 1 1 1
1 0 0 0 1
1 0 0 0 1
0 0 0 0 0

1 1 1 1 0
1 0 0 0 1
1 0 0 0 1
1 1 1 1 0
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 1 1 1 0

1 1 1 1 0
1 0 0 0 1
0 0 0 0 1
1 1 1 1 0
1 0 0 0 1
1 0 0 0 1
0 0 0 0 1
1 1 0 1 0

0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 1 1 1 1

0 1 1 1 1
1 0 0 0 0
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 1 1 1

1 1 1 1 0
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 1 1 1 0

1 1 1 1 0
1 0 0 0 1
1 0 0 0 1
0 0 0 0 1
1 0 0 0 1
1 0 0 0 1
0 0 0 0 0
1 1 1 1 0

1 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 1 1 1 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 1 1 1 1

1 1 1 1 1
1 0 0 0 0
1 0 0 0 0
0 0 1 1 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 1 1 1 1

1 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 1 1 1 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

0 1 1 1 1
0 0 0 0 0
1 0 0 0 0
1 1 1 1 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 1 1 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 1 1 1 0

0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 1 1 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 1 0

1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 1 1 1 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1

1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 1 0 1 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 0

0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0

0 0 1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
1 0 0 0 1
0 1 1 1 0

0 0 0 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
1 0 0 0 1
0 1 0 1 0

1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
1 0 0 0 1

1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 0 0 0 0

1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 1 1 1 1

1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 1 1

1 0 0 0 1
1 1 0 1 1
1 0 1 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1

1 0 0 0 1
1 1 0 1 1
1 0 1 0 1
1 0 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 0 1
1 0 0 0 1

1 0 0 0 0
1 1 0 0 1
1 1 0 0 1
1 1 1 0 1
1 0 1 0 1
1 0 0 1 1
1 0 0 1 1
1 0 0 0 1

1 0 0 0 0
1 1 0 0 0
1 1 0 0 1
1 1 1 0 0
1 0 1 0 1
1 0 0 1 1
1 0 0 1 1
1 0 0 0 0

0 1 1 1 0
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
0 1 1 1 0

0 1 1 1 0
1 0 0 0 1
1 0 0 0 1
0 0 0 0 1
0 0 0 0 1
1 0 0 0 1
0 0 0 0 1
0 1 1 1 0

1 1 1 1 0
1 0 0 0 1
1 0 0 0 1
1 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

0 0 1 1 0
1 0 0 0 1
1 0 0 0 1
1 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 0

0 1 1 1 0
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 1 0 1
1 0 0 1 0
0 1 1 0 1

0 1 1 1 0
1 0 0 0 1
0 0 0 0 1
0 0 0 0 1
1 0 0 0 1
1 0 1 0 1
1 0 0 1 0
0 1 1 0 1

1 1 1 1 0
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 1 1 1 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

1 1 1 1 0
1 0 0 0 1
1 0 0 0 0
1 0 0 0 0
1 1 1 1 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

0 1 1 1 0
1 0 0 0 1
1 0 0 0 0
0 1 1 0 0
0 0 0 1 0
1 0 0 0 1
1 0 0 0 1
0 1 1 1 0

0 1 1 1 0
1 0 0 0 0
1 0 0 0 0
0 1 1 0 0
0 0 0 1 0
1 0 0 0 1
1 0 0 0 0
0 1 1 0 0

1 1 1 1 1
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0

1 1 1 1 1
0 0 1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 1 0 0

1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
0 1 1 1 0

1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
0 0 0 0 1
1 0 0 0 1
1 0 0 0 0
0 0 0 0 1
0 1 1 1 0

1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
0 1 0 1 0
0 0 1 0 0

1 0 0 0 1
1 0 0 0 0
1 0 0 0 1
1 0 0 0 0
1 0 0 0 1
1 0 0 0 1
0 1 0 1 0
0 0 0 0 0

1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 1 1
1 0 0 0 1

1 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 1 1
1 0 0 0 1

1 0 0 0 1
0 1 0 1 0
0 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 0
0 1 0 1 0
1 0 0 0 1

1 0 0 0 1
0 1 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 1 0
1 0 0 0 1
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Continue (input data):

1 0 0 0 1
0 1 0 1 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0

1 1 1 1 1
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0
0 1 0 0 0
1 0 0 1 0
1 1 1 1 1

Target patterns

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


