
Malaysian Journal of Computer Science, Vol. 9 No. 2, December 1996, pp. 92-97

92

A SOFTWARE MAINTAINABILITY ATTRIBUTES MODEL

Khairuddin Hashim and Elizabeth Key
Faculty of Computer Science and Information Technology

University of Malaya
50603 Kuala Lumpur

email: kh@fsktm.um.edu.my

ABSTRACT

Examines the factors that affect the maintainability of a
software. The proposed model can be used to highlight the
need to improve the quality of the product so that proper
and efficient maintenance is feasible without much
difficulty. It can also be used to develop a measurement for
maintainability which can be used to measure the level of
maintenance readiness before the completion and delivery
of a software product.

Keywords: Maintainability model attributes; Software
maintainability attributes

1.0 INTRODUCTION

Maintenance has often taken a back seat where software
development is concerned [1]. However, once a software is
delivered it gets maintained for the rest of its useful life.
With the continuing increase in software production more
and more resources are spent on maintenance. The
maintenance of existing software can account for 70 percent
of all effort expended by a software organisation [2]. It is
estimated that many companies will spend close to 80
percent of their software budget on maintenance if nothing
is done to improve the current approach. As such, a closer
look at improving our maintenance approach is needed.

Software quality can be defined as the totality of features
and characteristics of a product that could satisfy a given set
of requirements. Some of the factors of software quality
include reliability, reusability, maintainability and
portability. These quality factors are then broken down into
lower level quality criteria which serve as attributes of
software.

Contrary to perceived belief that much has been discussed
about maintainbility attributes, there is not much available
in terms of a refined and organized attributes model. This
paper discusses a proposed model that describes the basic
attributes that software should have to make it more
maintainable. It is time to take a closer look into
maintainability attributes again so that effort could be
directed more efficiently during the phases before
maintenance.

2.0 THE MAINTENANCE PROCESS

Basically, maintainability involves corrective, adaptive and
perfective maintenance. It is an important quality as
components are dynamic and require modifications in their
lifetime. However, maintainability can also be viewed as
two separate qualities:

• reparability
• evolvability

2.1 Reparability

Reparability involves corrective maintenance. A software
system is repairable or corrective if it allows the removal of
residual errors present in the product when it is delivered as
well as the errors introduced into the software during its
maintenance.

Reparability is affected by the number of parts in a product.
A software product comprising well-designed modules is
much easier to analyse and repair than a monolithic one.
However merely increasing the number of modules does not
make a more repairable product. The right module structure
with the right module interfaces has to be chosen to reduce
the need for module interconnections. The right
modularisation promotes reparability by allowing errors to
be confined to few modules, thus making it easier to locate
and remove them. Reparability can be improved through
the use of proper tools, for instance high-level language
results in higher reparability in a software product. A
product reparability affects its reliability. However, the
need for reparability decreases as reliability increases.

2.2 Evolvability

Due to the change in demands on performance over time,
software products are modified to provide new functions or
to change existing functions. A software product can evolve
gracefully if it is designed with care in the first place and
each step of modification which is to be done on it is
thought out carefully. Evolvability of software is assuming
importance due to the increase in the cost of software and
the complexity of application. Evolvability can be achieved
by modularisation but successive changes tend to reduce the
modularity of the original system especially so if the
modifications are applied without careful study of the
original design and without precise description of changes
in both design and the requirements specification. Hence,

A Software Maintainability Attributes Model

93

the initial design of the product, as well as any succeeding
changes must be done with evolvability in mind.

Evolvability involves two type of maintenance. Adaptive
maintenance has to do with adjusting the application to
changes in the environment, that is, a new release of the
hardware or a new database system. In adaptive
maintenance the need for software changes cannot be
attributed to a feature in the software itself, such as the
presence of residual errors or the inability to provide some
functionality required by the user. Rather, the software
must change because the environment in which it is
embedded changes.

Perfective maintenance involves changing the software to
improve some of its qualities. Here, changes are due to the
need to modify the functions offered by the application, add
new functions, improve the performance of the application,
make it easier to use, etc. The requests to perform
perfective maintenance may come directly from the
software engineer to upgrade the status of the product on the
market or they may come from the customer to meet some
new requirements.

3.0 PROBLEMS

Most problems that are associated with software
maintenance can be traced to deficiencies in the way the
software was developed. Braind et. al identify the initial
quality of software and its documentation as one of the
important factors affecting software maintenance quality
and productivity. Some of the problems identified are:

• no traceability
• no documentation
• badly designed and implemented
• unsuitable programming language,

development tools and techniques

4.0 THE MODEL

An attempt is made here to define maintainability as a
manifestation of other lower factors. The model describes
software related factors affecting maintainability of software
components.

One software quality matrix proposed by McCall [2] and his
colleagues looked at the three main aspects of a software
product namely product operation, product revision and
product transition. Maintainability is classified under
product revision with metrics such as concision,
consistency, instrumentation, modularity, self
documentation and simplicity. However, attributes such as
complexity, standardisation, programming language,
traceability and others are not considered.

An adequate and complete maintainability attributes
identification is necessary. A proposed maintainability
attributes model is depicted in Fig. 1. It encompasses
modularity, readability, programming language,
standardisation, level of validation and testing, complexity
and traceability. The model can be used to highlight the
need to improve the quality of the product so that proper and
efficient maintenance can be performed without much
difficulty.

Modularity

Readability

Programming Language

Standardisation

MAINTAINABILITY

Level of Validation &Testing

Complexity

Traceability

Fig. 1: A Software Maintainability Attributes Model

The maintainability attributes model described here is part
of a reusability attributes model developed to measure the
reusability of software components[4]. The model can also
be used to develop a measurement for maintainability which
can be used to measure the level of maintenance readiness
before the completion and delivery of a software product. A
high level of maintenance readiness would mean that a
software is equipped with the necessary program features
and documentation to allow it to be maintained efficiently.

Factors affecting maintainability are:

• modularisation
• readability
• programming language
• standardisation
• level of validation and testing
• complexity
• traceability

Factors relating to maintainability are discussed below.

Hashim and Key

94

4.1 Modularisation

Modularisation allows one to decompose a system into
functional units, to impose hierarchical ordering on
functional usage, to implement data abstractions, and to
develop independently useful subsystems. In addition,
modularisation can be used to isolate machine
dependencies, to improve the performance of a software
product, or to ease debugging, testing, integration, tuning
and modifications of the system. A complex system may be
divided into simpler pieces called modules. A system that is
composed of modules is called modular. High modularity
allows the principle of separation of concerns to be applied
in two phases:

(i) when dealing with details of each module in isolation
and ignoring details of other modules and

(ii) when dealing with the overall characteristics of all
modules and their relationships in order to integrate
them in a coherent system.

The goals of modularity are as follows [5]:

• decompose a complex system
• compose it from existing modules
• understanding the system in pieces
• continuity of modules
• protection of modules

Decomposability of a system is based on dividing the
original problem top down into sub-problems whose
solution may then be pursued separately and then applying
the decomposition to each sub-problem recursively. This
reflects the well-known Latin motto divide et impera (divide
and conquer). The rational behind decomposition involves
the method in reducing the apparent complex system into a
set of simpler or less complex subsystems which they
themselves would be decomposed into atomic components.

The composability of a system on the other hand is based on
starting bottom up from elementary components and
proceeding to the finished system. In software production,
one is able to assemble new applications by taking modules
from a library and combining them to form the required
product, possibly in an environment quite different from the
one in which the components were developed. This is in
direct concern with reusability whereby a component library
must be referred to before any activity is done from scratch.
The three most widely recognised mechanisms for
compositions are the pipe mechanism in Unix, inheritance
in Smalltalk and the sharing of interfaces between modules.

In composability, one would have to integrate all the
building blocks to form a system. The size of such blocks
can vary from a small subroutine to a program, as in the
Unix pipe. Granularity refers to the size of these building
blocks. If the reusable component is bigger, there is a better
chance that the interface it provides will be more abstract

and hence easier to reuse. Also the payoffs are larger in the
case of bigger building blocks.

Ease of composability refers to the effort required to
compose reusable blocks. Understandability of block would
be an factor in composability. It could vary from the
understanding of the source code to just knowing the input
and output of the program. If the effort is less, there is a
better chance that reusers will use existing entities. Hence,
the popularity of the pipes in Unix. Such reusable modules
should be designed with reusability in mind. By using
reusable components, one may be able to speed up both the
initial system construction and its fine-tuning.

Comprehending each component is a prior step for
modifying a system. Each component if understood
separately aids in modifying a system. If the entire system
can only be understood in its entirety then modifications are
unlikely. Otherwise, modification would result in an
unreliable system. This criterion is important as proper
modularity would also help to confine the search for the
source of malfunction to single components in the case of
maintenance.

If a component exhibits the continuity characteristic then an
occurrence of a small change in a specification would not
result in ripple effects in the system. A small change should
only affect individual modules in the architecture of the
system rather than the architecture itself or the relationship
among the modules [5].

Component protection refers to the ability of architectures
of components to withstand any abnormal condition
occurring at a run-time. The effects of abnormalities should
be confined to that particular module or be propagated to a
few minimal neighbouring modules. The abnormalities
here refers to run-time errors, resulting from erroneous input
or lack of needed resources. Hence, the architecture of
component ought to be robust to protect itself from any
form of abnormal conditions.

To achieve the goals of modularity (modular
composability, modular decomposability, modular
understanding, modular continuity, modular protection) the
following principles must be observed. Five principles are
examined[6] as below, the first principle being related to
notation and the rest four principles addresses the issue of
communication between modules.

• linguistic modular units
• few interfaces
• small interfaces (weak coupling)
• explicit interfaces
• information hiding

A Software Maintainability Attributes Model

95

Modules must have high cohesion if all its elements are
related strongly. Elements of the same module are grouped
together in the same module for a logical reason in order to
achieve the goal that is the function of the module.
Coupling characterises a module's relationship to other
modules. It measures the independence of two modules.
High coupling exists between two modules when they
depend on each other heavily. Ideally, modules in a system
should exhibit low coupling as this would ease analysing,
understanding, modifying, testing or reusing them
separately.

Hence modular systems are desirable as they are [7]:
• easier to understand and explain because they

can be approached a piece at a same time and
because each piece have well-defined inter-
relationships.

• easier to understand and explain and hence
easier to document.

• easier to program as independent groups can
work on separate modules with little
communication.

• easier to test because they can be tested
separately and then integrated and tested
together, one module at a time.

• easier to maintain because changes can be
made without disturbing the rest of the system.

4.2 Readability

Readability refers to the degree to which a reader can
quickly and easily understand source code. This is
important as every program is read again and again during
its creation, testing, debugging and maintenance.
Readability is affected by the quality and quantity of
program documentation. If a program is supported by clear,
complete yet concise documentation, the task of
understanding the program can be relatively
straightforward. Consequently, program maintenance costs
tend to be less for well-documented systems than systems
supplied with poor or incomplete documentation.

Readability is enhanced by its
• internal documentation
• external documentation

Self-documentation refers to the source code which
provides meaningful description to increase
comprehensibility and legibility of program enabling user to
understand the software functionality, operational
environment and all other required attributes. A well-
documented program should have its interface and design
specifications of components too.

Comments refer to supplementary text, table, graphs
interspersed with source code. Comments could include
goals of program, plans which outline the processing steps
for achieving program goals.

External documentation includes:
• program unit notebook
• implementation notes

This external documentation comprises material about
source code external to the source code file. It helps readers
to understand code, and it provides an implementation
tracking mechanism, a mechanism for tracing the fulfilment
of requirements and helpful summaries of the testing,
debugging and change history of code segments. Program
unit notebook is a diary of the life of a program unit, written
by the unit's programmer. It contains

• a synopsis of the requirements fulfilled by the
program unit.

• a review of the program unit's design
• discussion of difficult, unusual or tricky

aspects of implementation.
• implementation milestones and completion

dates for the program unit.
• the program unit test plan
• the modification history for the program unit.

Implementation notes helps to improve readability as it
discusses difficult or subtle algorithms and data structures.
It includes graphs, drawing, charts and other representations
difficult to reproduce in source code library. It also
comprises photocopies of portions of books or articles
relevant to the design or implementation. All these
documentation enhance readability of program. The more
readable a module the faster and more accurately a reuser
can obtain information about it. Here readability can be
gauged by the average number of right answers to a series
of questions about the program in a given length of time.
Comments could indirectly rescue a not so modular
program and make it as readable as modular program by
increasing its readability.

4.3 Programming Language

Is the code written in the desired language? A code written
in a language where the programmers of an organization are
not familiar with results in the difficulty in maintaining the
reused code. The language used will also affect the
readability of the programmer. A standard language for
each domain application is highly recommended as an
essential strategy in software development.

Programs written in a high-level programming language are
usually easier to understand than that in a low-level
language. The understandability could enhance other
qualities like evolvability and verifiability.

Hashim and Key

96

4.4 Standardisation

A set of programming standards should be available to act
as a guide in code writing to avoid idiosyncrasy among
programmers. Project coding standards specifying internal
documentation guide where such guidelines list rules for
improving code readability should include naming and
formatting conventions, practices and the use of types and
control structures, practices and templates for writing
comments and targets for code size and comment density.

Program conventions, programming language, macros,
program formats and documents are standardised for better
understandability. The system should be consistent in the
use of notations, terminologies and symbols. Code should
be indented in a homogeneous manner.

The programming standards, guidelines and practices used
in writing a program clearly contributes to its readability
and hence understandability, therefore, directly affecting
modifiability and maintenance.

4.5 Level of Validation and Testing

Generally, more time and effort spent on design validation
and program testing, results in fewer errors in program and
consequently decreases maintenance cost resulting from
error correction. Maintenance costs due to error correction
are governed by the type of error to be repaired. Coding
errors are relatively cheap to correct, whereas design errors
are much more expensive as they may involve the rewriting
of one or more program units. Errors in the requirements
specification are normally the most expensive to correct
because of the drastic redesign which is usually involved.

4.6 Complexity

The complexity of a software affects its maintainability. It
is supposed to reflect to a certain extent, the difficulty in
comprehending or maintaining codes. It can also be used as
guideline for estimating the number of test cases and so
forth. Measuring the complexity of a module involves
measuring the control flow of the module, data flow and
even data structures used. A module's complexity control
flow [8] is a general concept relating to the order in which
the various instructions of a program are executed and as
such any measure indicative of the number and nature of
statements that alter the sequential flow can be used as a
measure of complexity.

4.7 Traceability

Traceability refers to the ability to trace a design
representation or actual program components back to
requirements. It is manifested in the availability of
information linking requirements with corresponding design
components and to their corresponding code fragments,
providing reverse mapping information.

Traceability is best implemented by implementing cross
referencing features such as requirements labelling and
function indexing across all software development
documents.

5.0 CONCLUSION

A software maintainability attributes model is proposed
taking into consideration important factors such as
traceability which affects the maintainability of software.
As the amount of effort and resources expended on software
maintenance grows, new approaches to software
development have to be explored, highlighting the
importance of developing software in a controlled and
documented manner. It is hoped that through highlighting
the important attributes described in this paper, evaluation
of proper completion of a software development project
with respect to its maintainability level can be checked.

REFERENCES

[1] Schach, Classical and Object-Oriented Software
Engineering, 3rd. Ed., IRWIN, 1996.

[2] R. S. Pressman, Software Engineering: A

Practitioner's Approach, McGraw-Hill Book Co.,
1992.

[3] L. C. Briand, V. R. Basili, Y. M. Kim, and D. R.

Squier, “A Change Analysis Process to Characterise
Software Maintenance Projects”, Proceedings of the
International Conference on Software Maintenance,
Victoria, Canada, 1994.

[4] E. Key, "A Tool For Software Reuse", M. Comp.

Sc.. Thesis, University of Malaya, 1994.

[5] B. Meyers, Object-oriented Software Construction,

Prentice Hall, New York, 1988.

[6] I. Sommerville, Software Engineering, Addison-

Wesley, 1992.

[7] C. Ghezzi, M. Jazayeri and D. Mandrioli,

Fundamentals of Software Engineering, Prentice
Hall, 1991.

[8] P. K. Sinha, S. J. Prakash, K. B. Lakshmanan, " A

new look at the control flow complexity of computer
programs", in Barnes D. & Brown P., Software
Engineering 86, Short Run Press Ltd., 1986 pp. 88-
102.

A Software Maintainability Attributes Model

97

BIOGRAPHY

Khairuddin Hashim is an associate professor at the
Faculty of Computer Science and Information Technology,
University of Malaya where he teaches Software
Engineering, Systems Analysis and Design and
Programming Principles and Techniques. He is a doctoral
graduate in Computing Science from the University of Bath,
UK. His research interests include Programming
Languages, Software Reusability, Requirements
Engineering, Software Metrics, Software Maintenance and
Process Modelling.

Elizabeth Key graduated with a Master in Computer
Science from University of Malaya, Kuala Lumpur,
majoring in software reusability.
.

