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ABSTRACT

Examines the computational efficiency of the master slave Multiple
processor architectures system by considering a system consisting
of a master M and p slave processors.  The system performance is
found by modelling it as a Markov process and a new method
presented for computing the steady-state performance by dividing
the state space into an interior and boundary space.  The
throughput of the system is then compared with that of a cost
equivalent single processor using different values for the well-
known Grosch parameter.  It is demonstrated that the system is
computationally efficient only for a sufficiently large number of
jobs.

Keywords: Multiprocessor systems, Closed queuing
systems

1.0 INTRODUCTION

Distributed architectures for processing with a number of
different processors in the system have become a popular
form of organization in recent years.  There is however a
question as to whether such architectures fully utilize the
resources committed for computation.  An example is the
master-slave architecture which has been used in a number
of real-time computer control applications like robotic
motion control, aircraft control and computer-aided
manufacturing systems.  From a computer architectural
point of view, the system can be thought of as a
combination of a sequential and a parallel system.  Jobs
requiring both kinds of operation are sequentially processed
in the master and then divided into tasks, which are
processed in parallel by the slaves.  On completion of
processing of all the tasks, the job is reassembled and sent
back to the master, possibly for further processing.  This is
an example of a parallel, cyclic two stage system [2].  As an
alternative to this architecture we may also design a more
powerful single processor to process all the jobs.  As is
obvious, this will process a single job more efficiently, as
the processing of a single job does not use the computation
resources efficiently in the distributed architecture, where
some of the processors are idle for extended periods of time.
To improve the utilization, a number of jobs can be
processed to produce a multijob, multitasking environment.
The question still remains whether this can indeed perform

the processing in a more cost-effective manner as opposed
to a single machine

The answer to this question clearly requires the evaluation
of the performance of the master-slave processor system.
The cyclic two stage system has been studied extensively in
the literature [3-5] and it is noted that performance
computations are difficult due to enormous increases in the
size of the state space.  In the present paper, we address
two tasks: first we confine our attention to the master-slave
architecture and propose a computationally efficient method
for performance calculation by reduction of the state space
size.  We then use this method to compute the performance
for different numbers of jobs and provide an analysis of the
cost effectiveness of the parallel architecture, which shows
that the increase in complexity can be justified only if the
number of jobs in the system is sufficiently large.

The paper is organized as follows: in Section 2, a model for
the system is presented to facilitate the analysis.  The new
method to compute the steady state probabilities is outlined
in Section 3.  In Section 4 we compare this method with
others from the point of view of complexity of the algorithm.
The method used to compare the master-slave configuration
with a single processor system is then presented in Section
5 and the results given in Section 6.  Some concluding
remarks are presented in Section 7.  The text is illustrated
throughout by an example taken from robot dynamics
calculations.

2.0 SYSTEMS MODEL

The model of the multitasking master-slave processor
system considered in this paper is shown in Fig 1. It
consists of two sections: the master section M and the
slave section S.  The master section consists of a single
processor designated as M and the slave section consists
of p identical processing centers Si, i = 1,2...p. The master is
connected to the slave section through a fork node F such
that a job passing through this node is split into q sibling
tasks (in this paper we confine ourselves to q = p).  Similarly
the slave section is connected to the master through a join
node  J.  This join node is an AND join node i.e. all the
sibling tasks have to be completed before the job can be
reassembled and sent back to M.
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Fig. 1: Master Slave Architecture

The master-slave system can process work assigned to it by
a combination of sequential and parallel processing.  It is
assumed that jobs assigned to it consist of parts that can be
executed in parallel, with the parallel sections of the
algorithm separated by sequential sections.  All jobs arrive
initially at the master M where an initial sequential section
(if any) is processed.  The job is then sent to F where it is
split into tasks, which are assigned to available processors
in the slave section.  Any tasks for which processors are
not available are queued in an FIFO queue at S.  Upon
completion of processing, a task arrives at J; if all its sibling
tasks have been completed, it is routed back to the master;
otherwise it waits at J for the remaining tasks to be
completed.  During the processing of the tasks in parallel,
the master may begin the processing of the sequential
section of another job and thus may not be available to the
first job for processing, in which case the job waits at an
FIFO queue at M for processing.  On acquiring the
processor, a further sequential section of the job is
processed, possibly using the results of the previous
parallel section, and the operation proceeds in this manner
until the job is completed.

The processors are assumed to have an exponential service,
the service rate being µM for the master and µS for each of
the slaves.  Let N be the total number of jobs being
processed by the system and let NM, NS denote the number
of jobs at the master and slave centers respectively
(including the jobs/tasks in queue), with NM + NS = N.

A task completing service and arriving at J will have two
possible situations:

1. Its remaining p-1 sibling tasks are already waiting
at J after completion.

2. Some or all of them are still being processed in S
or are in queue.

To denote such situations, we define the job state for a job A
being processed in S as ϕA = ( l , m ), where l is the number
of tasks in A which have been completed and m is the
number being processed.  Then p - l - m tasks are in queue at
S. Clearly l + m ≤ p and m = 0 implies l = 0.  Also l can only
assume values 0,1...p-1, since, as soon as l = p, the job is
reassembled and sent back to M.  Let ϕ1 , ϕ2, ... ϕN be the job
states of the N jobs and let Φ = (ϕ1 , ϕ2, ... ϕy)

with 0 ≤ y ≤ p denoting the jobs with at least one task being
served in S.  The system state σ =  [Φ, NS, NM ].  Clearly the
number F of all the different possible Φ depends only on p
and not on N as illustrated below.

Illustrative Example

To illustrate and clarify the procedure and its advantages,
we apply the method to a case calculation of robot
dynamics.  Robot arm dynamics computations involve a lot
of operations on small matrices related to co-ordinate
transformations.  A well-known method uses the Newton-
Euler equations of motion to calculate the force or torque to
be applied to each robot joint given a desired motion
trajectory.  Master-slave architectures have often been used
for these computations with a number of processors, each
processor being used to perform the computations for one
of the joints or degrees of freedom.  The details of the model
are omitted here and can be found in [6] and accompanying
references.  Here we assume that the computations are to be
carried out on a 3 processor system consisting of a master
and two slave processors.  Five separate robot joints are
considered and the calculation of each is regarded as a
separate job.  The usual method is to model the job as a task
graph [6], which divides each job into a number of
sequential and parallel operations.  For convenience we
regard the taskgraphs of all the jobs as identical.  In the
terminology of our model, N=5 and p=q=2.

The values of Φ are Φ1 = (0,2), Φ2 = {(1,1),(0,1)}, Φ3 =
{(1,1),(1,1)} and F = 3.  As may be noted, the number F is
not changed if N is changed say from 5 to 6, but it changes
if p increases.  The states are :
   σ1 = [Φ1,0,4]   σ2 = [Φ1,2,3]  σ3 = [Φ1,4,2]  σ4 = [Φ1,6,1]  σ5 =
[Φ1,8,0]  σ6 = [{(1,1)}, 0,4] σ7 =  [Φ2,1,3]  σ8 = [Φ2,3,2]  σ9 =
[Φ2,5,1]  σ10 = [Φ2,7,0]  σ11 = [Φ3,0,3]  σ12 = [Φ3, 2,2]  σ13 =
[Φ3,4,1]  σ14 =  [Φ3,6,0]

All transitions occurring in the system can be classified as
one of the following types:

A. A change of state due to a task moving from S to
J: if zA is the number of jobs with a task in S and
less than q-1 tasks in J, then rate of this is zA µS.

B. A change of state due to a task moving from S to
M: if zB is the number of jobs with q-1 tasks in J,
then the rate of this is zB µS. Also zA+zB = p = q.

C. A change of state due to a job moving from M to
the S queue (and splitting into q tasks): the rate
of this is µM.

It may be noted that a B type transition increases the
number of jobs in M by 1, a type C transition decreases it by
1 and a type A transition leaves it unchanged.  For example,
the example system moves from σ8 to σ9 by a type
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C transition, splitting the job into 2 tasks.  It also moves
from σ13 to σ8 by a type B transition; since there are two
ways to do this, the rate is 2µS.

The system is then a homogeneous Markov process.  The
transition probabilities from one state to another are
determined by which jobs are currently in M or S.  It is
assumed that only single event transitions occur, the
probability of multiple events completing simultaneously
being considered negligible.  Let W denote the state space
of dimension k, Q the one step Markov transition matrix of
dimension kxk and let π = [πσ1, πσ2,  ..... πσk] denote the steady
state probabilities of the states σ1, σ2 etc.  Since the
transition matrix is easily verified to be irreducible, there
exists a unique steady state probability given by the
solution of the linear equations π Q = π, subject to the
normalising condition ∑ πI = 1.  The first step in determining
performance is to calculate these steady state or equilibrium
probabilities.

3.0 THE SOLUTION METHOD

After the transition matrix has been obtained, a solution can
be obtained by different methods.  One of these is the
solution of the equations  π Q = π by standard methods of
solving linear algebraic equations like the Gaussian
elimination.  Another method is the well-known Matrix
Geometric method [7] which takes advantage of the sparsity
of the matrix.  This relies on the fact that the equation  π Q =
π can be rewritten as π P = 0 where P = Q - I and I is the
identity matrix.  It is readily shown that P has a block
tridiagonal structure.  The probability vector π can then be
written as the sum of two matrix geometric terms plus a
linear term; the matrix geometric terms can be found by
solving for new matrices R’ and R”, which are solutions of
two matrix quadratic equations.  The time complexity of the
MG method depends on the time to find these new matrices,
which are usually calculated by iterative methods.  The
number of iterations increases with the spectral radius of R’
and R” and the calculations become increasingly
computation intensive.

We will hence introduce a different method for calculating  π
which is computationally more efficient.  In order to do this,
the state space W is partitioned into inner space W i and
boundary space Wb, defined as follows: W = W i + Wb where

W i is the set of all states such that for any state σ ∈ W i

the number of jobs js in S satisfy p < js < N and hence
the number of jobs jm in M satisfy 1 ≤ jm ≤ N-p-1.
Wb is the set of all states such that 0 ≤ js ≤ p or js = N
and jm = 0 or N-p ≤ jm ≤ N,

The equilibrium probability vector can also be written as
    ππ  =  [ ππb(0), ππ i(1) ....... ππ i(N-p-1), ππb(N-p) ......

ππb(N) ] (1)
where ππa(k) includes the equilibrium probabilities for all
states with k jobs in M for a = i or b.  Since any state σ can
be identified by (Φi, k), one can write ππ i(k) = [πφ1 , πφ2, .....
πφ |F|] as all |F| values of Φ are possible for any inner state.
The same is true for ππb(0) and ππb(N-q).  As can easily be
verified, ππb(N) has order 1 and ππb(N-1) order q.  The
remaining subvectors ππb(N-2) to ππb(N-q+1) have orders
increasing from q to |F| as enough tasks are not available to
produce all values of Φ.

As illustration, we return to our example.  Here the inner
states are k=1,2 and all three values of Φ are seen to be
valid, as they are for the boundary states k=0,3.  However
the type B transition from Φ3 to Φ2 is not possible for σ11 as
the S queue is empty, thus making this value of k a
boundary state.  Though k=0 is a boundary state as a type
C transition is not possible, it also has all the 3 values of Φ.
For k=4, only Φ1 and a form of Φ2 (in σ6) is possible and k =
5 has of course only one possible state with all jobs in M.
We now note some properties of the system:

Property 1.  The number F does not depend on N.

Property 2.  The inner state space has cardinality |W i| = |F|
(N-p-1) and the boundary space has |Wb| ≤ (|F|+1)p + 1,
which is independent of N.

This is obvious as there are N-p-1 states and each has all
the |F| values of Φ.  Let σA be the set of states from which a
given state σ may be entered by a type A transition and let
xA be the value of zA for this.  Similarly define σB, σC and xB.
Then

Property 3.   All inner states σ  with a common Φi must have
the same global balance equation
π µ µ µ π µσ σσ( )z z xA S B S M A S+ + ∑ -  

AA

              −  -    =   0
B C

π µ π µσ σxB S M (2)

Proof.  The first term in the above expression gives the
probability of transiting from σ. and the second term that of
transiting into σ., which must be equal in the steady state.
All states have the same Φ and only differ in the number of
NS and NM.  Now since the NS jobs are waiting in a queue,
they cannot contribute to any transitions.  Thus transitions
from σ will be due only to the jobs in Φ and those in NM.
Since this is an inner state, NM is at least 1 and thus one way
of transiting from σ is at a rate µM by a C type transition.
Further, since Φ is the same for all the states, ways of
making A or B type transitions from the state must be
identical with weights zA and zB respectively.  Similarly for
any inner state, the transitions of all types into the state are
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possible, with weight 1 for a C type transition and xA, xB for
A and B type transitions.  The equation hence follows:
The equation (2) can be rewritten as a common equation for
all inner states
µ π µ µ µ πσ σM S B S Mi i i

k z k( ) ( ))+ + +1  =  (z  A  
i

   -  

x k k
AA S A S Bσ σσ µ π µ π( ) ( ) -  x

B
−∑ 1 (3)

with A i, Bi ∈{1,2....|F|} and k = 1,2 ... N-p-1.  The equilibrium
probabilities πi(2) ... πi(N-p-1), πb(N-p) can now be obtained
by solving the series of equations (3) as recurrence
relations.  This still leaves a set of Wb unknown
probabilities πb(0), πi(1), πb(N-p+1) .....πb(N).  These can be
obtained by writing the global balance equations for all the
states in Wb.  This can be done by inspection and requires a
limited amount of work as by definition Wb is independent
of N.

Using our example for illustration, for Φ2, the inner states are
σ8 and σ9.  For both zA = zB = 1.  σ8 can be entered by a type
A transition from σ3, a type B transition from σ13 and a type
C transition from σ7 and xA =xB=2.  Exactly the same is true
for σ9 with the indices of states increased by 1.  Hence (2)
becomes
πσ8 [µM + µS.1 + µS.1]  -  πσ7 µM - πσ3 µS.2 -

πσ13 µS.2  =  0
and is a generic equation for all σ with Φ2.  The states can
be entered by a C transition from another state with Φ2, an
A transition from a Φ1 state or a B transition from a Φ3 state.
Thus (3) is
  µM πφ2(k+1)  =  [ 2 µS + µM ] πφ2(k)  -
    2 µS πφ1(k) - 2 µS πφ3(k-1)       k=1,2

Similar equations can be written for Φ1 and Φ3 for the inner
states.  We can now combine these by defining a vector
X(k) = [πφ1(k), πφ2(k), πφ3(k), πφ3(k-1), πφ2(k-1)].  Then we have
the recurrence relation

X(k+1)  =  X(k) C k=1,2
and the matrix C is
C  =

 

2 +  -2 0
0 2 +  - 0
0 2 +  0

- 0
0 -2 0

S M S

S M S
S M

S S
S S

µ µ µ
µ µ µ

µ µ
µ µ

µ µ

0 0
0

0 0
0 0

0



















Thus the steady state probabilities can be expressed as X(k)
= X(1) Ck-1 for k = 2,3.  The remaining steady state
probabilities are found by writing the equations for the
boundary states, e.g. for k=4
       µM π(5)  =  µS πσ6 - 2 µS πσ1 - 2 µS πσ11

These equations are limited in number and can be written by
inspection.  Thus all the steady state probabilities are easily
available in terms of X(1) and the final values can be
obtained by using the normalizing equation.

The complete details for the example are given in Appendix
1.  A similar procedure can be followed for any other
example with a different set of states and a different matrix C.
We restate the solution procedure in the form of an
algorithm.

ALGORITHM 1

1. Generate the set F of all the Φ for the specified value
of p.

2. Obtain the equation set (3) for each value of Φ for all
inner states.

3. Determine the matrix C.
4. Complete the set of equations by obtaining the

equations for the boundary states by inspection.
5. Obtain all the inner state X(k) in terms of X(1) and

find X(1) by using the boundary state equations and
the normalizing equation.

6. Substitute values of  µM and µS to obtain numerical
values of all probabilities.

4.0 COMPLEXITY ANALYSIS

The dimension of the matrix Q is O(N)xO(N) asymptotically
and solving the equation πQ = π by the Gauss elimination
method would cost O(N3).  By taking advantage of the
banded nature of the matrix, the cost can be reduced to
O(N).  However this is a numerical solution method and
hence unsuitable for parametric studies.

The Matrix Geometric method requires the computation of
the matrices R and R’, which may be obtained by an iterative
procedure.  Each step of this procedure is O(|F|3) and the
convergence rate depends on the spectral radius of  R and
R’ and requires from O(|F|1/3) to O(|F|) steps.  The
computation of the probability vector requires O(N) steps,
each requiring the product of the |F| order matrix R by π.
Thus the total cost is O(|F|4) + O (N|F|2).

The present method incurs heavy computation only in Step
5 of the algorithm and requires the product of C by the
vector ππ(k).  The matrix C is of order |F| and is independent
of N and can be easily banded, so that the cost of a single
step is O(|F|) and, since O(N) steps have to be performed,
the cost is O(N|F|) and thus linear in N.  However F
increases rapidly with p, a problem also faced by the above
two methods.  An important advantage of this method is
that up to Step 5 of the algorithm all values are expressed
symbolically and numerical values are calculated only in
Step 6.  This factor increases its advantage in parametric
studies, as opposed to the purely numerical methods.
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Moreover, once a solution has been obtained for a given N,
the solution for another N’ can be obtained only by O (N’-
N) operations.

5.0 COMPUTATION OF PERFORMANCE OF
MASTER-SLAVE ARCHITECTURE

As explained in Section 1, the method outlined above is
used extensively to calculate the steady state probabilities
and thus the throughput of the system for different values
of the total number of jobs N.  The primary purpose of this
is to evaluate the efficiency of the system as opposed to a
single processor from the point of view of computation.
The method adopted here will be to compare two systems,
i.e. a single and a multiprocessor one, which are equivalent
in terms of cost and evaluate the relative gain in processing
power by using multiple processing units.

An empirical law proposed by Grosch in the 1940s stated
that the cost c of computers increased as

c  =  t Pa (4)
where t is a constant, P is the processing power of the
computer and a is the Grosch parameter.  The formula has
been widely used with different measures like memory
capacity, instruction cycles, MIPs etc. being used for P.  A
value of 0.5 for a was projected, indicating that computer
systems are subject to economies of scale i.e. doubling the
power would cost less than double.  More recently [8] a=1
has been suggested as valid for modern distributed
architectures.  Thus it is suggested that a computer design
based on a single powerful processor is no longer valid due
to economies of scale.  In essence, there exists a limit to the
amount of computing power that can be compressed into a
single chip due to limited speed of electronic signals and
resolution of integration processes.  The more the design
moves towards these limits, the more the value of a
increases.  One way to counteract this effect would be to
distribute the computing power between a number of
processors as in the master-slave architecture, and a
parametric analysis of such systems will demonstrate the
extent to which such action would be successful.

Let Z be the average number of operations required at the
processing center S; then average operations from each
processor will be Z/q.  Let P(1) and P(q) denote average
processing power for a single and q processor unit and let µ
and µ‘ denote average operating rates. and c and c’ the
costs of the two systems.  One has

µ  =   P(1)/Z (5)
for the single processor, denoted System A and

µ‘ = g(q)  P(q)/ (Z/q) (6)
for the p processor system, denoted System B.  Here 0 < g <
1 is a factor to take into account the processing rate
degradation due to parallel operation.

For the single processor system to be at an advantage, c < q
c’.  Substituting the Grosch equation, one has, after some
algebra,

µ‘  =  q(a-1)/a µ g(q) (7)
for the two system costs to be equal.  Thus µ‘, the rate of
processing for the parallel processor system, is seen to be a
function of the Grosch parameter a nd the level of
parallelism q in order to provide the same overall cost as the
single processor system.

Table 1 shows the values of  µ‘ computed for different
values of  a using (7) for q = 2,  µ  being taken as 10.  The
value of µ‘ is always equal to 10 for all q for a = 1 and the
change is clearly much faster for higher  values of q.

We will now take the two systems with arbitrary µ and µ‘
obtained as above so that they are cost equivalent and
compare their performance.  The performance measure is
chosen here to be the system throughput or the number of
jobs executed by the system in unit time.  Throughput is
null if the system runs no jobs (N=0) and increases as N is
increased, eventually reaching to a bottleneck saturation.

Table 1: Values of a and u‘ for q = 2

a µ‘

  0.1 0.020

  0.3 1.98

  0.5 5.00

  0.7 7.42

  0.9 9.26

  1.0 10.00

  1.2 11.23

  1.5 12.60

  2.0 14.14

To examine the effect of the parameters a, q and N on the
performance, g has been taken as 1 in the present study.
The analysis can be modified easily if values of g<1 are to
be used.  To compare the throughputs of the two systems
correctly, it must be remembered that the units being
processed in a single processor system are jobs, whereas
those in the multiprocessor one are tasks.  In other words,
since each job is split into q tasks for being processed in
parallel, the completion of a job is equivalent to that of the
completion of q tasks.  This is taken into account by
dividing the productivity of the processors in System B by
q before comparing with that of System A.  The analysis for
the systems is now done as indicated in the following
algorithm.
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ALGORITHM 2

1. Set the value of  N.
2. Set µ = 10 (an arbitrarily chosen value) and calculate

the throughput T for System A by conventional
methods [3].  To ensure that the slave processor does
not become a bottleneck node, µM is taken as k where k
is the number of jobs at the master.

3. Set the value of a and q and calculate µ‘ to make the
cost of the two systems equal.

4. For this value of a, q, and N, calculate all steady-state
probabilities by Algorithm 1.

5. Compute the system throughput T’ from the steady
state probabilities by conventional methods, e.g. that
given in [3].

6. Repeat steps 3-5 for increasing values of a.
7. Repeat steps 3-6 for different values of q.
8. Repeat steps 2-7 for different values of N.

In the above exercise, the value of µS is taken as µ‘ and µM

taken as explained.

The master-slave processor forms a closed queuing network
and various parameters like state probabilities, waiting time,
throughput etc. can be calculated by the

standard methods for such networks like the load balance
method or mean value analysis.  It is also possible to
calculate the state probabilities and obtain the other
parameters directly from these.  Example computations are
outlined in Appendix 2.  As is well-known, the throughput is
limited by a node with greatest service demand, which may
be regarded as a ‘bottleneck’.  The parameters are selected
here to make sure that the parallel processor does not
become the bottleneck.

6.0 RESULTS AND DISCUSSIONS

The system throughput of both Systems A and B are shown
plotted against the value of the Grosch parameter a in Fig. 2
for different values of q and N.  Only the values for q = 2,
the lowest degree of parallelism, are shown for N =2,5,10 and
20, as well as the results for q=3 for N=2.  The conclusions
obtained from this are readily extended to cases of higher
values of q.

The result confirms that as a is increased from values below
1 to those above 1, greater performance can be obtained by
using a distributed architecture without any additional cost.

Fig. 2: Grosch Parameter vs Throughput
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Fig. 3: Jobs vs Throughput

From Fig. 2, we have the values of throughput as 1.80, 4.46,
7.85 and 9.98 for N = 2, 5, 10 and 20 respectively for System
A.  This indicates of course that bottleneck effects are
increasingly coming into play as N increases. At a = 0.5
parallelism is seen to be far from a useful alternative for any
N.  However it becomes increasingly more attractive as soon
as a increases.  Interestingly, the value of a* seems to
decrease with N. a*(2) = 2, a*(5) = 1.3, a*(10) = 1.03 and
a*(20) = 1.0, implying that a* tends to be around 1 for large
N.  On the other hand, this can also be interpreted to mean
that, for any given a, provided it is large enough, the
number of jobs has to be large to make parallelism
computationally attractive.  For the current postulated value
of a = 1, the number of jobs is seen to be more than 10 to
make the master-slave architecture competitive.

Fig. 3 shows a graph drawn between different values of N
and the throughput; this essentially complements the
information in Fig. 2.  The data values for different N and a
are given in Table 2 for q=2.  System A calculations are
given in Appendix 2.

The introduction of a more realistic value of g (<1) would
make this requirement even stronger and still larger N would
be required to make the parallel architecture efficient.

An interesting insight into the matter may be obtained by a
study of Table 1.  It is seen there that the power of the
parallel processor for the same cost as the uniprocessor, as
given by its rate of processing, falls off rapidly as a

becomes less than 1 whereas for a=1 the two have the same
processing power. (it may be recalled that µ = 10 in the
above calculations of Table 1).  This clarifies the reason for
the lack of advantage to the multiprocessor system for
values of a < 1.

Table 2: Throughput values for different N and a for q=2

N

a 2 5 10 20

0.5 1.30 3.5 5.7 6.5

1.0 1.75 4.0 7.7 9.8

1.5 1.84 4.6 8.1 12.0

2.0 1.86 4.7 8.5 13.8

7.0 CONCLUSIONS

In the above paper we have presented a method for
evaluating the performance of a distributed processor
system, the master-slave architecture, from the point of view
of computational efficiency.  Incidentally a method for
calculating the steady state probabilities has also been
presented, which is seen to be particularly useful for
calculations when the parameter values are to be varied, as
opposed to purely numerical methods.  The advantage lies
in the ability of the proposed method to use symbolic
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representations over most of the steps of the algorithm so
that different numerical values may be introduced only at
the last step.  This method has been used to compute the
performance of the master-slave system for a range of
parameter values and compare its throughput with that of a
cost-equivalent single processor system to evaluate any
improvement.  It has been seen that the advantage can lie
with the multiprocessor system only if computer sizes do
not respond to economies of scale, as is widely believed
now, and further if the number of jobs being processed by
the system is sufficiently large.  It may be noted that these
conclusions are primarily based on the utilization of the
processing powers of the systems concerned.  Other
considerations, like that of speed of processing the job by
making use of more than one processor, have not formed
the basis of this study, though they may of course play an
important part in deciding the form of the system
architecture to be adopted.
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APPENDIX 1

Here we briefly describe the equations obtained for our
illustrative example.  For Φ1 the inner states are σ3 and σ4

and the equations are
πσ3 [µM + µS.2]  -  πσ2 µM - πσ9 µS   =  0
πσ4 [µM + µS.2]  -  πσ3 µM - πσ10 µS   =  0
as no Type B transition is possible from this state and it
cannot be entered by a Type A transition.  For Φ2 the inner
states are σ8 and σ9 and the equations are
πσ8 [µM + µS.1 + µS.1]  -  πσ7 µM - πσ3 µS.2 -

πσ13 µS.2  =  0

πσ9 [µM + µS.1 + µS.1]  -  πσ8 µM - πσ4 µS.2 -
πσ14 µS.2  =  0

and finally for Φ3, the inner states are σ12 and σ13 and the
equations are
πσ12 [µM + µS.2]  -  πσ11 µM - πσ8 µS  =  0
πσ13 [µM + µS.2]  -  πσ12 µM - πσ9 µS  =  0
as a Type A transition is not possible from this state and it
cannot be entered by a type B transition.

This is rewritten as
µM πφ1(k+1)  =  [ 2 µS + µM ] πφ1(k)  -  µS πφ2(k-1) 

k=1,2
µM πφ2(k+1)  =  [ 2 µS + µM ] πφ2(k)  -  2 µS πφ1(k) 

- 2 µS πφ3(k-1) k=1,2
µM πφ3(k+1)  =  [ 2 µS + µM ] πφ3(k)  -   µS πφ2(k) 

k=1,2
leading to the matrix C given above after augmenting with
two trivial equations to make it square.

The boundary equations are written as
µM π(5)  =  2 µS  πφ1(4)  -   µS πφ2(3)
µM πφ1(4)  =  [ 2 µS + µM ] πφ1(3)  -   µS πφ2(2)
µM πφ1(1)  =   2 µS  πφ1(0)
µM πφ2(4)  =  [ 2 µS + µM ] πφ2(3)  -  2 µS πφ1(3) - 

2 µS πφ3(2)
µM πφ2(1)  =  2 µS πφ2(0)  -  2 µS πφ1(0)
µM πφ3(1)  =  2 µS πφ3(0)  -   µS πφ2(0)
The solution then proceeds as indicated in the algorithm
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APPENDIX 2

The procedure for System A is first outlined for various
values of N starting with 2.
For N=2, the states are (0,2), (1,1) and (2,0) where the
numbers refer to jobs in the master and slave respectively.
The steady state equations are readily found to be
10 π(0) =  π(1)
5 π(1) = π(2)
and the normalising equation
π(0) +  π(1) + π(2)  =  1

Here the number in parentheses refers to the number of jobs
at the master. Solving π(0) = 1/61 and this gives the
throughput 110/61 or nearly 1.8.

For N= 5, the state equations are
10 π(0) = π(1); 5 π(1) = π(2);
10 π(2) = 3 π(3); 2.5 π(3) = π(4);
and 2π(4) = π(5)
together with the normalising equation
π(0) + π(1) + π(2) + π(3) + π(4) + π(5) = 1
giving π(0) = 3/4330 and throughput = 4.46.

We similarly find throughput for N = 10 as 7.8 and for N = 20
as 9.98.

For System B, the solution has to be done by the procedure
of Algorithm 2.  Only the case for N = 2 is illustrated.  The
job states are φ1 (0,2), φ2 {(1,1),(0,1)}, φ3{(1,1),(1,1)} and
states are σ1 = {φ1,0,1}, σ2 = {φ1,2,0}, σ3 = {(1,1),0,1}, σ4 =
{φ2,1,0}, σ5 = {φ3,0,0}

We can write the state balance equations
2 π(2) + k π2(0) - (2k+1) π1(1) = 0
π1(1) - 2k π1(0) = 0
2k π1(1) + 2k π3(0) - (1+k) π2(1) = 0
2k π1(0) + π2(1) - 2k π2(0) = 0
k π2(0) - 2k π3(0) = 0
together with the normalising equation
π(2) +  π1(0) + π1(1) + π2(0) + π2(1) + π3(0) = 1

Here the subscripts 1, 2, 3 refer to states with φ1,φ2,φ3

respectively and k = µS/µM.  As indicated above, the
symbolic equations can be solved in terms of the parameter
k.  After simplifying we get
(8k3 + 24k2  + 34k + 3) π1(0)  =  6k

At this point numerical values have to be substituted to get
various system parameters.  As an example we see for a = 1,
µ‘ = µS = 10.  Substituting we get the throughput to be
18840/10743 = 1.753.  Similarly for µ‘ = µS = 14, the
throughput is found to be 49448/26706 = 1.85.

Calculation for other values of N are similar though more
complex due to an increased number of balance equations.
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