
Malaysian Journal of Computer Science, Vol. 10 No. 1, June 1997, pp. 36-41

36

A DYNAMIC ACCESS CONTROL WITH BINARY KEY-PAIR

Md. Rafiqul Islam, Harihodin Selamat and Mohd. Noor Md. Sap
Faculty of Computer Science and Information Systems

Universiti Teknologi Malaysia
Jalan Semarak

54100 Kuala Lumpur
Malaysia

Tel: 603-2904957
Fax: 603-2930933

email: mmcc0004@utmkl.utm.my

ABSTRACT

Based on the concept of an access control matrix, a new
dynamic access control scheme with binary key-pair is
proposed, which is different from those based on concept of
key-lock pairs. In the proposed scheme, each user is
assigned a pair of binary keys, which are derived from the
access rights with respect to the files. The derivation of the
access rights is simple. The method has a special feature, a
file or user can be added to or removed from the system
without much effort.

Keywords: Dynamic access control, Key-pair

1.0 INTRODUCTION

Access control is very important in information security
systems, because of the increasing complexity of various
sorts of information, the large number of users, and the
widely used communication networks. The issue of
information protection includes secrecy, authenticity and
availability. The so-called information privacy is defined as
a decision-making of a subject’s privilege to access certain
information. However, information security is a method or a
technique by which the decision of information privacy is
executed to protect the legitimate access and to reject the
illegitimate one.

In 1972 Graham and Denning [2] developed the abstract
protection model for computer systems. The model is based
upon protection system defined by a triple (S, O, A), Where:

1. S is a set of subjects (or accessors), the active entities of

the model.

2. O is a set of objects (or resources), the protected entities

of the models.

3. A is an access matrix, with rows and columns
corresponding to subjects and objects respectively. An
entry aij lists the access rights (privileges) of subjects Si

and object Oj .

The access control for a computer system is achieved by
employing an access control matrix, as depicted in Fig. 1.
Here the user U1 can Execute file F3 and Execute/Read file F4

and U3 can Execute/Read/Write file F2. In 1984 Wu and
Hwang [3] proposed an alternative Scheme storing just one
key for each user and one lock for each file. To figure out
access rights aijs of users to files, a function f of Key Ki and
Lock Lj is used. Mathematically,

aij = f (Ki, Lj) (1)

Files
 Users

F1 F2 F3 F4 F5 F6

 U1 0 0 1 2 0 0
 U2 4 0 1 0 0 0
 U3 0 3 0 0 2 0
 U4 0 2 0 2 0 3
 U5 4 0 3 0 0 0

Fig. 1: Access control matrix

0: No access
1: Execute
2: Execute/Read
3: Execute/Read/Write
4: Execute/Read/Write/Delete

A Dynamic Access Control With Binary Key-Pair

37

Several relevant methods appeared in the literature after Wu
and Hwang’s work [4-9]. Hwang et al. in 1992 proposed a
protection method using prime factorization [9]. In 1994
Chang et al. [10] introduced a method with binary keys. We
are inspired by these two methods and proposed an access
control scheme using binary pair-keys for each user. From
Hwang et al.’s method we exploit only the idea of using
non-zero entries. The next section reviews Chang et al.’s
method which is our main inspiration.

2.0 THE BINARY KEY METHOD

This method is proposed by Chang et al. [10] for
implementation of access control matrix in distributed
systems. In this scheme, each user is assigned a binary key,
which is derived from the access rights with respect to the
files. The binary key is possessed by the user, and can be
used to derive the access right to the files.

Here each aij in access control matrix is rewritten in its
binary form bij as (ij ij ij

cb b b1 2 . . .) where

c = 1 + log w and w is the maximal value of aijs. The
binary form of an access control matrix with m users and n
files is depicted in Fig. 2. The key vectors for each user are
defined as follows:

i i i inK b b b1 1
1

2
1 1= (. . .) ,

i i i inK b b b2 1
2

2
2 2= (. . .) ,

. (2)

.

.

ic i
c

i
c

in
cK b b b= (. .)1 2 .

If
ir
jK is the jth bit in the binary Key Kir, then

 ij i
j

i
j

ic
ja K K K= (. . .)1 2 (3)

By considering the access control matrix in Fig. 1, a binary
access control matrix can be found as shown in Fig. 3.

According to equation (2), the key vectors for users U1, U2,
U3, U4 and U5 are assigned as [Fig. 3]:

User U1: K11 = 000000
K12 = 000100
K13 = 000000,

User U2: K21 = 100000
K22 = 000000
K23 = 001000,

User U3: K31 = 000010
K32 = 000000
K33 = 010000,

User U4: K41 = 000000
K42 = 010101
K43 = 000001,

User U5: K51 = 100000
K52 = 001000
K53 = 001000.

In this method there are c Key vectors for each user. It has
been easily noticed that the scheme need to reconstruct the
whole system in the case of file deletion and file insertion.
This is an important point. On the other hand since the
access control matrix is usually a sparse [3, 9], this method
has wastage of storage for zero entries.

In order to overcome the above weak points, a new dynamic
access control method with pair-keys is proposed. Our
proposed method is dynamic in the sense that a new
file/user can be deleted from, updated on or joined to the
system. The strategy of delete/update changes only pair of
keys for dedicated users. The details are described in the
next section.

 Files
Users

F1 F2 . . . Fn

 U1 (. . .)11
1

11
2

11b b bc (. . .)12
1

12
2

12b b bc . . . (. . .)1
1

1
2

1n n n
cb b b

 U2 (. . .)21
1

21
2

21b b b
c

(. . .)22
1

22
2

22b b b
c . . . (. . .)2

1
2
2

2n n n
c

b b b

 .
 .
 .

.
.
. . .
.

. . .

 Um (. . .)m m m
cb b b1

1
1

2
1 (. . .mn mn mn

cb b b1 2

Fig. 2: Binary access control matrix with m users and n files

Islam, Selamat and Md. Sap

38

 Files
 Users

F1 F2 F3 F4 F5 F6

 U1 000 000 001 010 000 000
 U2 100 000 001 000 000 000
 U3 000 011 000 000 100 000
 U4 000 010 000 010 000 011
 U5 100 000 011 000 000 000

Fig. 3: The binary access control matrix for Fig. 1

3.0 THE BINARY KEY-PAIR METHOD

Here we describe the binary key-pair method with respect to
binary access control matrix as in Fig. 2 as well as in Fig. 3.
In the proposed method each user is assigned a pair of
keys. The first key is a logical one and the second key for
opening access right. These keys are derived from access
rights with respect to the files. The keys are possessed by
the user and can be used to derive access right to the files.
From the first key we can know whether a specific user has
access right to a specific file. Using the bit of logical key we
can find out the access right for users to files. Each user Ui

is assigned the following two vectors:

iL iL iL iL
sK K K K= 1 2 . . . (4)

 for i = 1, 2, . . . , n and s ≤ n,

where the xth bit of KiL can be defined as follows:

 { (5)

If the bit string bij contains all zero bits, then we will say bij

as zero bit string, otherwise non-zero bit string. The key for
access right is defined as follows:

iR iR iR iR
c

iR
c c

iR
c

iR
rc c

iR
rc

K K K K K K
K K

= − +

− +

1 2 2 1 2

1
... ...

. (7)

where r is the number of 1s in logical key vector KiL, and c is
defined as in section 2. That means KiR is built from non-
zero bijs. For instance to check any access right aij i.e., the
access right of user Ui to the file Fj, at first we will examine
logical key vector KiL and find whether the user has access
right to the file. If the jth bit of KiL is 1, then there is an
access right of user Ui to the file Fj, otherwise i.e, if

iL
jK bit

is zero then there is no access of user Ui to the file Fj. Here
we will check the access right using algorithm 1 that is
encoded later.

Example 1: Initialization of key vectors.

From binary access control matrix in Fig. 3, we can define
the following key vectors. Since b11 = 000 (zero bit string),

1
1 0LK = and b13 = 001 (non-zero bit string), 1

3 1LK = .

K1L = 0011, K1R = 001010,
K2L = 101, K2R = 100001,
K3L = 01001, K3R = 011100,
K4L = 010101, K4R = 010010011,
K5L = 101, K5R = 100011,

Algorithm 1. Verification of access right.
Input: i, j, KiL, KiR.
Output: a

ij
.

Steps:
1. Input i, j, KiL, KiR;

2. If iL
jK = 1 then

begin
If j > 1 then

p = number of 1s up to jth bit of KiL;
else

p = 1;

ij iR
pc c

iR
pc c

iR
pca K K K= − + − +1 2 . . . ;

end;
else

aij = Zeros;
3. Output aij.

Example 2 : Verification of access right.

Case I: For instance we want to verify the access right, a
46

.

Here i = 4, j = 6, 4
6 1LK = , p = 3;

so we can write 46 4
7

4
8

4
9 011a ,= =R R RK K K which is

correct.

Case II: Check access right, a
44

. Here i = 4, j = 4, 4
4 1LK = ,

p = 2; 44 4
4

4
5

4
6 010a = =R R RK K K ,

which is correct.

 0 if bij is zero-bit string

1 otherwise.

iL

xK =

A Dynamic Access Control With Binary Key-Pair

39

Case III: Check access right, a
21

. Here i = 2,

 j =1, 2
1 1LK = ,p=1; 21 2

1
2
2

2
4 100a ,= =R R RK K K

which is correct.

4.0 IMPLEMENTATION OF DYNAMIC ACCESS
CONTROL

In this section, we devise algorithms to implement the
dynamic access control, such as access right changing and
file updating (deletion and addition of a file). We will
discuss the case of user updating by example, because it
can be performed simply by reconstructing or deleting the
relevant pair of keys.

Algorithm 2: Access right changing.
/* Let access right aij be changed by bit string

ij ij ij ij
cl l l l= 1 2 */

Input: j, KiL, KiR, lij.
Output: KiL, KiR.
Steps:

1. Input j , KiL , KiR , lij .

2. Compute p = number of 1s up to jth bit of Key vector
KiL;

r = number of 1s in KiL;
3. If lij is a non-zero bit string then

begin
If iL

jK = 0 then

begin
p = p + 1;
r = r + 1;

Reset bit iL
jK of iLK ;

end;

 iR iR iR iR
c

iR
p c

ij ij ij
c

iR
p c c

iR
rc

K K K K K l l l
K K

= −

+ − +

1 2 1 1 2

1 1
.

. . . ;
()

()

end;
else
 begin

iR iR iR iR
c

iR
p c

iR
p c c

iR
r cK K K K K K K= − + − + −1 2 1 1 1 1.() () ()

Reset bit iL
jK of iLK ;

end;
4. Output KiL, KiR;

Example 3: Changing access right.

Case I: Suppose a
43

 = 000 will be changed into

lij = 100. In this case j = 3, K4L = 10101,

 K4R = 010010011, 4
3 0LK = , p = p + 1 = 2,

 r = r +1 = 4; then
K4R = 010100010011 (updated), and K4L = 011101 (by
resetting).

Case II: Assume a
35

 = 100 will be changed into lij = 010.

Here j = 5, K3L = 01001, K3R = 011100, 3
5 1LK = , lij is a

non-zero bit string, p = 2, r = 2 ; K3R = 011010 (updated).

Case III: If a
23 = 001 by lij = 000, j = 3, K2L = 101, K 2R =

100001, p = 2; then
 K2R = 100, and K2L = 100 (by resetting).

Algorithm 3 . File Updating.

Section 1 : File Addition.

/* Let file Fq is added and the access right of user Ui is
denoted as iq iq iq iq

cl l l l= 1 2 */

Input: q, liq, KiL, KiR.
Output: KiL, KiR.
Steps:

1. Input q, liq, KiL, KiR.
2. If liq is zero bit string then

KiL and KiR remain unchanged;
else

begin
Update KiL by putting 1 in

iL
q

K position;

iR iR iR iR
rc

iq iq iq
cK K K K l l l= 1 2 1 2. ;

end;
3. Output KiL, KiR.

Section 2: File Deletion.
/* Let file Fj is deleted */
Input: j, KiL, KiR.

Output: KiL, KiR.

1. Input j, KiL, KiR;

2. If K
j

iL = 0 then
KiL and KiR remain unchanged;

else
begin
Compute p = number of 1s up to jth bit of KiL;

 iR iR iR iR
p c

iR
p c c

iR
r cK K K K K K= − + − + −1 2 1 1 1 1.() () () ;

Reset bit iL
jK of KiL;

end;
3. Output KiL, KiR.

Example 4 : Addition and deletion of files.

Here we consider the system in Fig. 3 and let F7 added to
the system that U2 can write, U5 can delete. So there will be
a

27 = 011 and a
57 = 100. Here it is required to update first

KiL, then KiR that is enough.
K2L = 1010001 (putting 1 in iL

jK position),

K2R = 100001011 (putting bit string);
 K5L = 101001, K 5R = 100011100.
If file F2 is deleted that U3 can write, a

32
 = 011 and U4 can

read, a
42

 = 010. Now we have to update first KiR, then KiL.

Therefore we get, K3R = 100 (Shift left),

Islam, Selamat and Md. Sap

40

K3L = 000001 (by resetting bit 3L
jK); K4R = 0111, K4L =

000101.

Example 5: Addition and deletion of users.

Let us reconsider the system in Fig. 3. If U6 is added to the
system, who will read file F3 and write in file F5, then we just
construct two key vectors K6L and K6R for user U6.

Suppose U4 is deleted who can read F2, F4 and write in F6.
Here we shall just delete the two key vectors for U4.

5.0 STORAGE REQUIREMENT

We know that the access control matrix is usually sparse.
So here we shall consider non-zero-rate r, which is defined
as the ratio of non-zero entries in the access control matrix.
The storage: For
 KiLs = mn bits (n bits for each user, which is maximum).

For KiRs = mnrc bits.
Then the required storage = (mnrc + mn) bits.

Example 6: Storage calculation.

Let there are m = 2000 users and n = 1000 files, c = 3,
 r = 0.1 , then the storage requirement for the system,
mnrc + mn = 2000 × 1000 × 3 × 0.1 + 2000 × 1000 =
26,00000 bits. But in case of Chang et al.’s method [10],
mnc = 2000 × 1000 × 3 = 60,00000 bits.
Suppose r = 0.5 , so mnrc + mn = 2000 × 1000 × 3 × 0.5 +
2000 × 1000 = 30,00000 bits. But in Chang et al.’s
method same as above,
mnc = 60,00000 bits. That means if the non-zero rate is
50% , the system in our method takes less storage.
If c = 5 , then mnrc + mn = 2000 × 1000 × 5 × 0.1 + 2000 ×
1000 = 30,00000 bits. But in Chang et al.’s method, mnc =
20000 ×1000 × 5 = 100,00000 bits.

From the above example it is cleared that our method takes
less storage than that of Chang et al.’s method.

6.0 THE ADVANTAGES OF THE METHOD

The proposed method has the following advantages:
1) Initialization of key vectors for each user is simple.
2) We propose a simpler procedure of access right

checking.
3) Access right changing is easy.
4) Updating users is very simple.
5) Updating files is also easy and dynamic. While the

binary key method needs to reconstruct the whole
system.

6) Compacted space is used for storing key-pair for each
user and the required storage is less than that of
binary key method.

7.0 CONCLUSION

In this method we devise algorithms for access right
checking and implementation of dynamic access control,
such as access right changing and updating files. One
good feature of our system is that insertion or deletion of
any file can be successfully implemented without
reconstructing all key-vectors. The storage requirement is
also less than that of Chang et al.’s method.

REFERENCES

[1] D. E. R. Denning, Cryptography and Data Security.
Addison-Wesley, Reading, MA, 1983.

[2] G. S. Graham and P. J. Denning, “Protection-Principle
and Practice”, Proc. Spring Joint Computer Conf.,
Vol. 40, AFIPS Press, Montvale, NJ, 1972, pp. 417-
429.

[3] M. L. Wu and T. Y. Hwang, “Access Control with
Single-Key-Lock”. IEEE Transaction on Software
Engg., Vol. SE-10, No. 2, 1984, pp. 185-191.

[4] C. C. Chang, “On the design of a key-lock-pair
mechanism in information protection systems ”. BIT,
Vol. 26, 1986, pp. 410-417.

[5] C. C. Chang, “An Information Protection Scheme
Based upon Number Theory”. The Computer
Journal, Vol. 30, No. 3, 1987, pp. 249-253.

[6] C. K. Chang and T. M. Jiang, “A Binary Single-Key-
Lock System for Access Control”. IEE Transaction
on Computers, Vol. 38, No. 10, 1989, pp. 1462-1466.

[7] C. S. Laih, L. Harn and J. Y. Lee, “On the design of a
single-key-lock mechanism based on Newton’s
interpolating polynomial”. IEEE Transaction on
Software Engineering, Vol. 15, No. 9, 1989, pp. 1135-
1137

[8] J. K. Jan, C. C. Chang and S. J. Wang, “A dynamic
Key-Lock-Pair Access Control Scheme”. Computers
& Security, Vol. 10, 1991, pp. 129-139.

[9] J. J. Hwang, B. M. Shao and P. C. Wang, “A New
Access Control Method Using Prime Factorization”.
Computer Journal, Vol. 35, No. 1, 1992, pp. 16-20.

A Dynamic Access Control With Binary Key-Pair

41

[10] C. C. Chang, J. J. Shen and T. C. Wu, “Access
control with binary keys”. Computers & Security,
Vol. 13, 1994, pp. 681-686.

BIOGRAPHY

Md. Rafiqul Islam obtained his Master of Science in
Engineering (Computers) from Azerbaijan Polytechnic
Institute in 1987. He is an Assistant Professor of Computer
Science and Engineering Discipline of Khulna University,
Khulna of Bangladesh. Currently, he is on study leave and
doing Ph.D. at the Faculty of Computer Science and
Information Systems of the Universiti Teknologi Malaysia.
His research areas include design and analysis of
algorithms, Database security and Cryptography. He has
published a number of papers related to these areas. He is
an associate member of Bangladesh Computer Society.

Harihodin Selamat holds an M.Sc from Cranfield
University, UK and a Ph.D. from the University of Bradford,
UK both in computer science. Currently he is an Associate
Professor in the Faculty of Computer Science and
Information Systems at the Universiti Teknologi Malaysia.
His research area includes Database security, Database
design and Software engineering.

Mohd Noor Md. Sap is an Associate Professor in the Faculty
of Computer Science and Information Systems at Universiti
Teknologi Malaysia. He holds degrees in computer science:
a B.Sc.(Hon) from the National University of Malaysia, an
M.Sc from Cranfield University, UK, and a Ph.D. from the
University of Strathclyde, UK. He is currently carrying out
research in Database security, Case-based reasoning and
Information retrieval.

