
Malaysian Journal of Computer Science, Vol. 10 No. 2, December 1997, pp. 1-16

1

A FLEXIBLE AND RELIABLE DISTRIBUTED MULTIMEDIA SYSTEM FOR MULTIMEDIA
INFORMATION SUPERHIGHWAYS

James Won-Ki Hong, Tae-Hyoung Yun, Ji-Young Kong and Young-Mi Shin
Dept. of Computer Science and Engineering

POSTECH
Pohang Korea

{jwkhong, thyun, konga, dry}@postech.ac.kr

ABSTRACT

Multimedia applications are being developed and used for
many aspects of our lives today. New high-speed,
broadband networks have emerged and made the operation
of these high-bandwidth requiring applications readily
feasible. However, the development of distributed
multimedia applications and efficient and reliable
operation of these applications are still very difficult. This
paper presents a flexible and reliable distributed
multimedia system that provides a rich multimedia API and
that provides distributed multimedia services which can be
used to develop a variety of multimedia applications easily.
The system as well as applications running on it are
managed and controlled in order to provide a reliable and
efficient multimedia operations environment. We validate
our claim by developing a number of multimedia
applications using our distributed multimedia system and
by using them for supporting distributed collaborative
research experiments on top of a high-speed, broadband
information superhighway.

Keywords: distributed multimedia system, multimedia
applications, information superhighway,
distributed multimedia services, multimedia
communication, collaborative research,
operation and management, CORBA,
application management

1.0 INTRODUCTION

Multimedia applications are beginning to play an important
role in various aspects of our lives, including education,
business, health care, publishing, and entertainment. The
recent advances in computing and networking technologies
have fueled the emergence of these applications requiring
real-time processing and high bandwidth. In order for these
applications to be truly useful and effective, they must be
able to operate in a distributed fashion, covering users
possibly located in geographically distant locations. Many
national and international information superhighways [1, 2,
3, 4, 5, 6] being developed today can be used to support
collaboration of distant users using multimedia
applications, exchanging various multimedia data. The real
problem in making the national or international users
collaborate using multimedia applications, as if they are in
a same physical location, is providing a system that can be

used to develop multimedia applications easily and
supporting the operation of these applications in an efficient
and reliable way.

One of the major problems in supporting the development
and operation of such applications lies in the operating
systems of the computers being used. Most conventional
operating systems running on these computers have not
been designed to support multimedia systems that impose
stringent constraints. Multimedia applications also require
various forms of communication (such as conferencing,
collaboration, multicasting and so on). Further, most of
these operating systems have not been designed to support
applications operating in a distributed fashion. In order for
the system and applications to operate efficiently and
reliably, they must be monitored and controlled properly at
run time. As the number of user increases, the underlying
system must be able to cope with the increased resource
requirements. What is needed is a solution that is easily
scaleable.

Much research work related to multimedia systems has
been done [7, 8, 9, 10, 11]. Most of these systems fall short
of meeting the requirements mentioned above. In this
paper, we present a distributed multimedia system called
MAESTRO [12, 13, 14] that is flexible enough to support
the development of a variety of multimedia applications
easily and that can support efficient and reliable operation
of the applications. MAESTRO has been designed to
support a wide variety of multimedia applications (such as
video/audio conferencing, multimedia-on-demand,
whiteboard, electronic notebook, telemedicine,
teleshopping, etc.) that can operate in a distributed
environment in mind.

The heart of MAESTRO lies in the multimedia application
programming interface (API) and multimedia services that
can be used to develop, operate and manage various
multimedia applications. The multimedia API uses the set
of distributed multimedia services MAESTRO provides for
the operation and management of distributed multimedia
applications. MAESTRO multimedia services include
communication service for supporting various forms of
communication (1-to-1, 1-to-N, N-to-M), session service
for managing multimedia sessions, naming service for
naming and locating objects, storage/retrieval service for
storing and retrieving multimedia data, and

Hong, Yun, Kong and Shin

2

management service for monitoring and controlling
services and applications. The API as well as the
underlying services, has been modeled and implemented
using the object-oriented approach. OMG CORBA [15]
has been used as the middleware for mainly supporting
interactions between distributed application components.

As a validation of our claim, we have developed a number
of distributed multimedia applications using MAESTRO
for a national information superhighway project in Korea.
In this project, distant researchers (mechanical engineers,
chemical engineers and chemists) collaborate in performing
various research experiments simultaneously and collect,
analyze and view the results using the multimedia
applications developed using and running on MAESTRO.

The remainder of this paper is organized as follows:
Section 2 presents the architecture of MAESTRO. Section
3 presents the multimedia application programming
interface (API). Section 4 describes the distributed
multimedia services provided by MAESTRO. Section 5
presents the implementation details of MAESTRO. Section
6 describes the national information superhighway project
that uses MAESTRO briefly and presents the applications
we have developed for the project. We summarize our
work and discuss some possible future work in Section 7.

2.0 MAESTRO ARCHITECTURE

In this section, we present the layered architecture of
MAESTRO as illustrated in Fig. 1. At the top layer, there
exist various multimedia applications (video/audio
conferencing, video-on-demand, telemedicine, whiteboard,
electronic notebook, etc.) which use the multimedia API.

The second layer provides multimedia API that is used by
various multimedia applications. This layer has been
designed using the object-oriented approach and consists of
class definitions that can be used to generate and transfer
multimedia data between multimedia devices. This layer is
used by multimedia application components, which are
scattered throughout a distributed environment and
collectively form a distributed multimedia application.

The third layer consists of distributed multimedia services
that are needed to support the operation and management of
distributed multimedia applications. This layer has also
been designed using the object-oriented approach and
consists of services, such as Communication Service,
Session Service, Naming Service, Storage/Retrieval Service
and Management Service. These services are used by
multimedia applications at run time such that they allow
multimedia applications to discover their source or
destination associations, create/join/destroy sessions,
exchange multimedia data, store or retrieve multimedia data
and be monitored and controlled.

Video/Audio Conferencing Tool, Whiteboard, Electronic Notebook,

Chatting Tool, VOD, Telemedicine, Telepublishing, etc.

Multimedia Applications

Multimedia API

Communication Service, Session Service, Naming Service,

Storage/Retrieval Service, Management Service

Distributed Multimedia Services

CORBA, DCOM, etc,

Distributed Services

Operating System and Physical Network

Fig. 1: Layered architecture of MAESTRO

A Flexible and Reliable Distributed Multimedia System for Multimedia Information Superhighways

3

At the fourth layer, there exist distributed services that
provide transparency to distributed multimedia services and
applications. Although any existing middleware service
can be used in this layer, distributed object technologies
such as CORBA [15] or DCOM [28] may be suitable. At
the lowest layer, there exist various operating systems (such
as Solaris, HP-UX, AIX, Digital Unix, IRIX, Linux,
Windows NT) and networking technologies (such as ATM,
FDDI, SONET, Fast Ethernet, Ethernet, Token Ring) that
physically connect the parties involved in a distributed
multimedia application.

The heart of our work is the multimedia API of the second
layer and the distributed multimedia services of the third
layer. We will present more details of those two layers in
the following two sections.

3.0 MULTIMEDIA API

In this section, we describe the purpose of defining
multimedia API and present the objects that are defined in
the multimedia API layer.

3.1 Purpose of Multimedia API

The purpose of defining Multimedia API is as
follows:
• To provide a wide range of multimedia-related

class definitions so that multimedia applications
can deal with multimedia-related problems
easily and flexibly.

• To provide a common programming interface so
that the developers of multimedia applications
can develop new multimedia applications easily.

• To reuse codes, which are common to many
multimedia applications.

• To support the processing and presentation of
various kinds of media such as video, audio,
image, and text so that multimedia applications
can deal with various kinds of media easily.

• To reduce software development time.

3.2 Object Classes in Multimedia API

The multimedia API is composed of three object class
hierarchies, which are media class hierarchy, component
class hierarchy and device class hierarchy. The media class
hierarchy models various multimedia data being exchanged
in multimedia applications. The component class hierarchy
models media producers and consumers, which generate
and transmit media from a sender and receive and output
the media to the receiver devices. Finally, the device class
hierarchy models various devices (such as camera,
microphone, monitor display, speaker) involved in
multimedia applications.

There are two main classes in the media class hierarchy.
The first class is Media which is the root class and has

common interfaces for all kinds of media type. The second
class is Temporal which is a subclass of Media and has
common interfaces for the temporal media types. Here, we
define a temporal media type as one that is much affected
by time factor when they are presented. The subclasses of
Temporal include Audio, Video, Music and Animation
classes. Fig. 2 shows the media class hierarchy.

Fig. 2: Media Class Hierarchy

In MAESTRO, multimedia applications use the concept
called component objects [27] to transmit and receive
various kinds of data. Component objects are objects of a
special form. That is, they have their own thread of
execution.

Fig. 3: Component Class Hierarchy

Fig. 3 shows the component class hierarchy. Component is
the root class` of the component class hierarchy. Producer
is a subclass of Component and models application
components that generate data. Consumer is also a subclass
of Component and models application components that
consume data generated by Producer objects.
Video_Producer is a subclass of the Producer, which is
used for generating Video. Audio_Producer is also a
subclass of the Producer but it is used for generating Audio.
Similarly, Video_Consumer and Audio_Consumer are used
to consume Video and Audio , respectively. The
VA_Producer inherits both Video_Producer and
Audio_Producer and is used to generate both Video and
Audio. The VA_Consumer inherits both Video_Consumer
and Audio_Consumer and is used to consume both Video
and Audio . Video/audio conferencing tools typically use
VA_Producer and VA_Consumer objects for generating
video and audio data in the sender and consuming them in
the receiver. Although the component class hierarchy
(illustrated in Fig. 3) shows the hierarchy for video/audio-
related producers and consumer, any type of producers and
consumers can be modeled and developed.

Component Producer

Consumer

Audio_Producer

Video_Producer

Audio_Consumer
Video_Consumer

VA_Producer

VA_Consumer

Media Text

Still_Image

Graphics

Temporal Audio

Video

Music

Animation

Hong, Yun, Kong and Shin

4

Fig. 4: Device Class Hierarchy

Fig. 4 shows the device class hierarchy. There are three
main classes in this class hierarchy. The first class is
Device that is the root class. It has common interfaces for
all multimedia-related devices. The second class,
Audio_Device, is a subclass of Device and has common
interfaces for the audio-related devices. The third class,
Video_Device, is also a subclass of Device and has common
interfaces for the video-related devices. Speaker is a
subclass of Audio_Device, which is used to control audio-
output device. Microphone is also a subclass of
Audio_Device, which is used to control audio-input device.
Similarly, Camera and Display are subclasses of
Video_Device, which are used to control video-input and
video-output devices, respectively.

4.0 DISTRIBUTED MULTIMEDIA SERVICES

In this section, we present MAESTRO distributed
multimedia services that are essential in supporting the
operation and management of distributed multimedia
applications. There are currently five distributed
multimedia services defined, which include Communication
Service, Session Service, Naming Service, Storage/Retrieval
Service and Management Service. These distributed
multimedia services support multimedia applications to
transmit or receive multimedia each other, to do a
collaborative work in a session, to find a service in a
distributed environment, to store/retrieve multimedia, and
to monitor and control services and multimedia
applications.

Although, we present only five important distributed
multimedia services, a new service can be easily defined
and incorporated since the services have also been modeled
using the object-oriented approach. Now, we describe each
distributed multimedia service.

4.1 Communication Service

In this section, we describe Communication Service that is
needed by multimedia applications to exchange various
kinds of media. The functional requirements of the
Communication Service for supporting distributed
multimedia communication are as follows:

l It should be possible to exchange various media
including temporal and non-temporal media.

l Multi-point communication should be possible
to support conferencing, multicasting and

collaboration.
• It should control the flow of temporal media

and synchronize two or more types of media if
necessary.

• It should allow multimedia applications to
control the quality of service (QoS).

The Communication Service in MAESTRO has been
designed with the functional requirements mentioned
above. The unit of data exchange in MAESTRO
communication is media object, which can be of any size or
type defined using the media class hierarchy. Main features
of the communication service include the support of multi-
point communication (i.e., one-to-one, one-to-many, many-
to-many communication) and intra-domain and inter-
domain communication which are essential for supporting
distributed multimedia applications. Below, we present the
details of the communication service.

4.1.1 Objects in Communication Service

The objects that are defined and used in the Communication
Service are CommunicationFactory, ConnectionManager,
Port, Connector and Channel objects. The role of
CommunicationFactory is to create, manage or destroy
Port, Connector and Channel objects that are used by
multimedia applications in a multi-point communication. If
a multimedia application wants to communicate, it must
first create a Port using a CommunicationFactory. After
creating a Port, the multimedia application can
communicate with another multimedia application that also
has created its own Port. A Port alone cannot join a multi-
point communication because the Port cannot know all the
information about the created Ports, Connectors and
Channels. Thus, a Port must join a multi-point
communication by passing a connection request to a
ConnectionManager that has all the information about the
created Ports, Connectors and Channels. Connector is
used when an inter-domain communication is needed. The
role of Connector will be described in more detail in
Section 4.1.3. Channel keeps all the references of Ports
that are joining the Channel.

There are two kinds of Ports. One is one-to-many Port, the
other is many-to-many Port. When a multimedia
application creates a Port, it should pass an argument that
specifies whether the Port should be one-to-many Port or
many-to-many Port.

4.1.2 Multi-point Communication

Multi-point communication (i.e., one-to-many, many-to-
many communication) is essential when developing
multimedia applications. Thus, the Communication Service
in MAESTRO provides multi-point communication. One-
to-one communication can be easily achieved by using
either one-to-many communication or many-to-many
communication.

Device

Microphone

Speaker

Display

Device

Microphone

Speaker

Display

Audio_Device

Video_Device Camera

Audio_Device

Video_Device Camera

A Flexible and Reliable Distributed Multimedia System for Multimedia Information Superhighways

5

Fig. 5: One-to-many and many-to-many communications
in MAESTRO

Before describing the multi-point communication in
MAESTRO, we define what we mean by one-to-many and
many-to-many communication. Fig. 5 (a) illustrates an
example of one-to-many communication where component
A can send the media to all the other components. The
components B, C and D can send the media back to
component A only. Fig. 5 (b) illustrates an example of
many-to-many communication where any component can
send the media to all other components.

In MAESTRO, Ports and Channels are used for multi-point
communication. If a multimedia application component
wants to take part in one-to-many or many-to-many
communication, it must create a one-to-many or many-to-
many Port using the CommunicationFactory. The
multimedia application component must also create a
Channel using the created Port. Then, other Ports that
have been created by other participating multimedia
application components can join the created Channel by
connecting to the Port that has created the Channel .

Fig. 6: Ports and Channels in Multi-point communication

Fig. 6 illustrates how a multi-point communication is
realized conceptually. In the figure, Port A created by a
multimedia application component creates a Channel. Port
A automatically joins the Channel by creating the Channel.
Then, when Port B and Port C connect to Port A, they
automatically get joined to the Channel. Thus, there are
two ways for a Port can join a Channel:

1. by creating a Channel itself, or
2. by connecting to a Port which has already joined a

Channel.

When a Port joins a Channel we can make the connection
of Ports in many ways. For example, a hierarchical tree or
a virtual ring of Ports can be constructed to make the

connection of Ports. In MAESTRO, we selected to
construct a hierarchical tree when a Port joins a Channel .
Fig. 7 illustrates how a hierarchical tree of Ports is
constructed in MAESTRO. First, Port A creates a Channel,
which makes it possible for other Ports to connect to Port
A. So, Port B can connect to Port A. Similarly, Port C and
Port D can connect to Port A. Now, Port E can connect to
Port D because there is a Channel that Port D has joined.
Port F can join likewise. Through this hierarchical tree of
Ports, multi-point communication between multimedia
application components using the respective Ports is
possible.

Fig. 7: Hierarchical Tree of Ports in Multi-point
communication

The construction process of hierarchical tree is the same in
both one-to-many communication and many-to-many
communication. The difference lies in the way media flows
in the tree. We now describe the difference using Fig. 7.

We describe the case of one-to-many communication first.
If the root Port sends a media object, all the other Ports
receive it. For example, if a multimedia application
component sends a media object to Port A, Port A sends the
media object to its children Ports B, C and D. Port D then
sends the media object to its children Ports E and F. If any
Port except the root Port sends a media object, only the
root Port receives that media object. For example, if a
multimedia application component sends a media object to
Port F, Port F sends the media object to its parent, Port D,
but Port D just passes the media object only to its parent,
Port A.

In the case of many-to-many communication, any Port can
send a media object to all the other Ports. For example, if a
multimedia application component sends a media object to
Port A, the media object flows same as in one-to-many
communication. If a multimedia application component
sends a media object to Port F, then Port F sends the media
object to its parent Port D. And Port D sends the media
object to its child, Port E and parent, Port A. Also, Port A
then subsequently send the media object to its children
Ports B and C.

Port A

Port B

Port C
Channel

Port A

Port B Port DPort C

Port E Port F

Connect

Connect Connect

ConnectConnect

A B

DC

A B

DC

(a) One-to-many communication (b) Many-to-many communication

Hong, Yun, Kong and Shin

6

4.1.3 Intra-domain and Inter-domain Communication

We define a domain as an area in which distributed
multimedia services are provided to multimedia
applications. In MAESTRO, we have used the concept of
domain for the ease of administration as well as for the
purpose of scalability. There can be no doubt that
multimedia applications should be able to communicate
each other in a same domain. But it should be also possible
for multimedia applications in different domains to
communicate each other.

The general concept of intra-domain communication and
inter-domain communication is illustrated in Fig. 8.
Multimedia application components A and B, which use the
distributed multimedia services in the same domain, are
participating in an intra-domain communication.
Multimedia applications components A and C, which use
the distributed multimedia services in two different
domains are participating in an inter-domain
communication.

Now, we will illustrate the difference of intra-domain and
inter-domain communications in MAESTRO. Suppose a
hierarchical tree has been constructed as in Fig. 9 (a). If all
the Ports (A, B and C) are located in a local domain, then

the connection of the Ports is the same as what we
described in Section 4.1.2 using Fig. 6. This is shown in
Fig. 9 (b). However, if Port A is located in a local domain,
and Ports B and C are located in a remote domain, a
Connector in the remote domain is needed to connect the
Ports as shown in Fig. 9 (c).

Although we can construct a hierarchical tree without a
Connector, the reason why we use the Connector in an
inter-domain communication is for transmitting the media
object more efficiently across domains. That is, if a media
object should be transmitted across different domains, a
single copy of the media object is transmitted to the
Connector only rather than transmitting multiple copies to
all the destination Ports in a remote domain. The
Connector would then transmit the media object locally to
appropriate Ports.

4.1.4 Connection Establishment

Now, we describe the detailed process of connection
establishment between Ports. First, we describe an intra-
domain connection where two Ports exist in a single
domain. Then, we describe an inter-domain connection
where two Ports exist in different domains. An intra-
domain connection is illustrated in Fig. 10 (a).

A

CS SRS

NS

SS

MS

CB

CS

SS

SRS

NS MS

Intra-domain
communication

Inter-domain
communication

Domain 1 Domain 2

MAESTRO Services MAESTRO Services

Fig. 8: Intra-domain and Inter-domain communication in MAESTRO

Port A

Port B Port C

Port A

Port B

Port C
Channel

(a) Example connection

Port A

Port B

Port C
Channel

Connector

 (b) Intra-domain connection (c) Inter-domain connection

Domain 1 Domain 2

Fig. 9: Intra-domain and Inter-domain connections

A Flexible and Reliable Distributed Multimedia System for Multimedia Information Superhighways

7

(1) A multimedia application component issues a
connection request. When issuing a connection
request, the multimedia application component
passes a domain name and port number which
identify a unique destination Port. Note that a
unique port number is given to a Port when it is
created.

(2) Port A passes the connection request to
ConnectionManager.

(3) ConnectionManager finds the destination Port in a
local domain and makes a tree relationship
between the two Ports.

An inter-domain connection is illustrated in Fig. 10 (b).
(1) A multimedia application component issues a

connection request.
(2) Port A passes the connection request to

ConnectionManager.
(3) After discovering that the destination Port exists in

a remote domain, ConnectionManager
communicates with the appropriate remote
ConnectionManager to carry out the connection
request.

(4) Remote ConnectionManager finds the destination
Port.

(5) The local ConnectionManager and remote
ConnectionManager make a tree relationship
between the two Ports by passing the needed
information to each other.

We have presented the details of the most important
multimedia service, communication service. In the
remainder of the section, we describe the rest of distributed
multimedia services that comprise MAESTRO services.

4.2 Session Service

The second multimedia service provided in MAESTRO is
the Session Service that keeps track of currently active
sessions in MAESTRO. A session is a live activity in
which one or more users can interact using multimedia

applications. In MAESTRO, multiple sessions can exist
simultaneously, involving users from different domains.

Essential functional requirements of the Session Service are
as follows. The Session Service in MAESTRO has been
designed with these functional requirements.

• A user should be able to create, join, leave or
destroy a session.

• A user should be able to discover the users
currently participating in a session

• There should be a chairman (i.e., a super user) in a
session such that he should have all the rights in a
session.

• If needed, the chairman should be able to control
the right to speech.

• A user should be able to join and leave a session
that is created not only in a local domain but also
in a remote domain.

• If needed, the chairman should be able to
forcefully terminate sessions or eliminate
participants from a session.

4.2.1 Objects in Session Service

The objects that comprise the Session Service are Session
Service Object (SSO), Session, User, Application and
ApplicationDB objects. The role of SSO is to create,
destroy and search a Session object that has the information
of a session. A User object has the information of a user
and an Application object has the information of an
application.

Fig. 11 illustrates how the objects including SSO, Session,
User and Application are managed in the Session Service.
SSO manages Sessions and Session manages Users and
User manages Applications. Thus, one can discover which
sessions have been created by SSO and which users have
joined a session. One can also discover which users are
running which applications.

Port A

ConnectionManager

(1) Connect

(2) Connect

ConnectionManager

Port C

(3)

(4)

(5)

Port A

Port B

ConnectionManager

(1) Connect

(2) Connect

(3)

(a) Intra-domain connection (b) Inter-domain connection

Fig. 10: The process of connection establishment

Hong, Yun, Kong and Shin

8

Fig. 11: Object Management in Session Service

Finally, ApplicationDB has the information about what
kind of multimedia applications can be used with the
Session Service. If any multimedia applications should be
integrated with the Session Service, an authorized user
should register the name and the location of those
multimedia applications first before users can use the
applications.

4.3 Naming Service

The objects that comprise distributed multimedia services
are distributed in a network. In such an environment,
multimedia applications should be able to find the objects
that serve the wanted services. The role of the Naming
Service is to allow a name to be bound to an object and to
allow the object to be found subsequently by resolving that
name within the Naming Service. Thus, if an object wants
to provide a service, it should register itself with the
Naming Service first, giving it a name that can be used by
multimedia applications to find the object.

The Naming Service provides the following functions:
l Binding a name to an object reference.
l Resolving a name to find an object reference.
l Unbinding a name to remove a binding.
l Listing the names.

There is a Naming Service specification that has been
defined by OMG (Object Management Group). The
Naming Service specification is one of the many service
specifications of the CORBAservices [16]. The
CORBAservices is a standard document from OMG, which
extend the core CORBA specification with a set of optional
services that are useful in many applications. In our current
version of MAESTRO, we are using the naming service
specification defined by OMG.

4.4 Storage/Retrieval Service

In the multimedia API layer, various kinds of media objects
have been modeled. The Storage/Retrieval Service allows
these objects to be stored into or retrieved from a common
repository. The Storage/Retrieval Service provides the
following basic functions:
l Storing a media object.

l Retrieving a media object.
l Searching a media object.

When storing a media object, the multimedia application
should pass a name with the media object. This name can
be used when a multimedia application wants to retrieve the
media object that the name identifies. Also, multimedia
applications can discover what kinds of media objects are
stored currently by using the searching function.

4.5 Management Service

In this section, we describe the Management Service that is
required to monitor and control MAESTRO services and
applications. The Management Service makes MAESTRO
services more efficient and reliable so that MAESTRO
applications can perform their tasks without problems.

The functional requirements of the Management Service are
as follows:
l Various information about MAESTRO services and

applications should be provided.
l Relationship information between MAESTRO

services and applications should be provided.
l Events and faults which may occur in MAESTRO

services and applications should be reported.
l Performance level of MAESTRO services should be

measured.
l Users’ list and access control list should be

managed.

The Management Service in MAESTRO has been designed
based on the functional requirements mentioned above. We
now describe the details of the Management Service.

4.5.1 Management Service Architecture

The objects that are defined and used in the Management
Service Object (MSO) are configuration management
service object (cMSO), fault management service object
(fMSO), security management service object (sMSO) and
performance management service object (pMSO). Each
object is in charge of each management service category.
In addition, a management interface object (MIO), which is
instrumented in each service object, is used to make service
objects manageable. Fig. 12 shows the architecture of the
Management Service.

MIO is an object that is instrumented in every managed
service object (SO) so that SOs can be managed by MSO
[18]. MIO is defined as a set of management operations
and management information [19] needed to manage SOs.
Specific MIOs can be developed by extending the generic
MIO using the inheritance feature of the object-oriented
technique.

MSOs deal with management requests from management
applications (MA). A request may involve one, two or
three MSOs. In some cases, a request may require services

SSO

Session 2

User 2

Application 2

Session 1

User 1

Application 1

…

A Flexible and Reliable Distributed Multimedia System for Multimedia Information Superhighways

9

provided to the MIO of SO indirectly. Such request is
transferred through MSOs. After processing the requests,
replies are sent to MA. The replies may be management
information of an SO, configuration information between
SOs, or some events occurred.

In addition, MSOs interact each other. For example, fMSO
may need configuration information of managed SOs to
detect faults. In this case, fMSO uses services provided by
cMSO. Also, cMSO may request sMSO to provide an
access control list (ACL) for a SO when it is requested to
get some MIB information of a SO by MA.

fMSO contains an object for forwarding events called
“event channel” and objects for filtering events, called
“event filter”. All events flow into the event channel and
then the event channel forwards the events to objects that
are supposed to receive them. Upon receiving the events
from fMSO, MA will perform appropriate actions such as
changing the color of the corresponding object or
displaying the message associated with the event.

In addition, since we are interested in managing multimedia
services that are distributed in a possibly large internetwork
environment, we may require more than one set of MSOs.
MSOs may need to communicate with each other to support
distributed management of the distributed multimedia
services. Below, we describe major component services
that comprise the Management Service in MAESTRO.

4.5.2 Configuration Management Service

The configuration management service is concerned with
configuration initialization, maintenance and shutdown of
service objects (SOs) and applications within a MAESTRO

domain. While the SOs are in operation, the configuration
management service is responsible for monitoring the
configuration and making changes in response to user
requests. The detailed functions of configuration
management are as follows:
l Finding and maintaining a list of SOs to be

managed.
l Providing information of SOs.
l Monitoring SO’s status and notifying problems.
l Initializing and terminating the operation of an SO.

4.5.3 Fault Management Service

The fault management service is responsible for providing a
reliable service environment by handling faults gracefully
when they do occur in the SOs of a management domain.
The fault management service consists of two areas: the
underlying event transmission mechanism and fault
analysis. Event transmission mechanism is designed by
adopting event service specification [17] of OMG CORBA.
The detailed functions of fault management are as follows:
l Providing underlying event transmission

mechanism.
l Filtering and logging reported events.
l Detecting faults by analyzing reported events and

other information.
l Providing some fault diagnostic capabilities.

4.5.4 Performance Management Service

The performance management service is responsible for
providing an efficient multimedia service environment. To
achieve this, the behavior of SOs must be monitored closely
and appropriate performance data must be collected and
analyzed. The detailed functions of performance

Management Application

mgmt requests

requests

cMSO

SO

Mgmt
Interface

Application
Interface

event flow

replies

SO

mgmt requestsmgmt replies

fMSO

Event Filter
Object

MSOs

sMSO

pMSO

Fig. 12: Architecture of Management Service

Hong, Yun, Kong and Shin

10

management are as follows:
l Measuring performance data, e.g., response time,

throughput, average number of requests, operation
errors and bytes.

l Providing thresholds which can be assigned.
l Notifying cases in which a performance level

grows worse, e.g., when a performance metric
exceeds its threshold.

l Providing a history of performance data.

4.5.5 Security Management Service

The security management is responsible for providing a
secure environment for the operation and management of
the SOs. The service is composed of two functional areas,
namely, authentication and authorization. The detailed
functions of security management are as follows:
l Adding a user to authorized users’ list.
l Deleting a user from authorized users’ list.
l Allowing a user to log in a management system by

passing a valid password.
l Allowing a user to log out.
l Providing ACL (access control list) against an

MAESTRO service.
l Allowing ACL to be changed.

5.0 MAESTRO IMPLEMENTATION

Based on the MAESTRO design architecture, multimedia
API and distributed multimedia services presented in the
previous sections, we have carried out a prototype
implementation of the MAESTRO system. This section
presents the details of our implementation.

First, MAESTRO multimedia API has been implemented
using Java [29] and C++ programming languages. This
allows the development of Java-based applications as well
as more traditional X Window/Motif GUI-based
applications. Java-based applications can run on any Java-
enabled Web browsers and thus have the advantage of
being able to run on many Unix and PC platforms.

Second, MAESTRO distributed multimedia services (in the
form of distributed cooperative servers) have been
implemented using CORBA and C++ on the Sun Solaris
platform. The use of CORBA allows the multimedia
services to be defined using CORBA IDL and the body of
services to be implemented in a number of programming
languages but we chose C++ as the programming language.
Thus, MAESTRO distributed multimedia services have
been implemented as CORBA objects interacting with each
other within a domain or between domains to support the
operation of distributed multimedia applications.

There are currently several freely available CORBA
implementations as well as a number of commercially
available implementations. We chose to use IONA’s
CORBA implementations (OrbixWeb 2.0.1 [20] and Orbix

2.2 [21]) that are commercial but known to be the most
stable among the ones currently available. IONA
OrbixWeb 2.0.1 allows Java-based applications to access
MAESTRO multimedia services implemented as CORBA
objects and Orbix 2.2 allows C/C++ based applications to
access the services.

Using the MAESTRO multimedia API and distributed
multimedia services, we developed a number of multimedia
applications such as video/audio conferencing tool,
video/audio multicasting tool, whiteboard, electronic
notebook, chatting tool and session management tool. Most
of these applications have been developed using Java and
thus they can run on any platform that supports Java Virtual
Environment [30]. For example, the multimedia
applications that we developed can be run on the Web
because Web browsers such as Netscape and Microsoft
Explorer supports Java Virtual Environment. The
multimedia applications that we have developed will be
explained in more detail in the following section.

The hardware we have used are Sun Sparc 20 (running on
Solaris 2.4) and Sun Ultra 1 (running Solaris 2.5). We have
used SunVideo Card [22] and Solaris XIL Library [23] for
video/audio compression and decompression used in
video/audio conferencing and multicasting tools .

6.0 MULTIMEDIA APPLICATIONS ON
MAESTRO

In this section, we first briefly introduce the “Distant
Cooperative Research Experiments” project that is funded
by the Korean Information Infrastructure (KII) initiative
[1]. The use of multimedia applications is essential in
carrying out this project and thus a number of multimedia
applications have been developed and operating for this
project using MAESTRO. The developed multimedia
applications include video/audio conferencing tool,
video/audio multicasting tool, whiteboard, electronic
notebook, chatting tool and session tool, whose details are
then explained.

6.1 Distant Cooperative Research Project

The Korean Information Infrastructure (KII) initiative is
funded by the Ministry of Information and Communication,
South Korea, for setting up high-speed, broadband
networks throughout the peninsula of Korea, connecting
various government organizations, research institutions and
universities. KII has been funding various research projects
for developing systems and applications that will utilize the
information superhighway being set up. One of the KII
initiative projects is “Distant Cooperative Research
Experiments” where researchers in the fields of science and
engineering perform various research experiments using
facilities possibly located in remote sites and sharing the
results. The motivation behind this is to encourage
cooperative research work among co-workers without

A Flexible and Reliable Distributed Multimedia System for Multimedia Information Superhighways

11

travelling to a site where expensive research facilities are
located and at the same time reduce the time for traveling
and the cost. Such kind of cooperative research is possible
through the use of multimedia applications such as
video/audio conferencing, whiteboard, electronic notebook,
remote experimental apparatus monitoring, and information
archival and retrieval.

MAESTRO has been chosen to be a multimedia system for
developing applications required to support the project and
to support the operation and management of those
applications on the ATM-based high-speed, broadband
network. Fig. 13 illustrates the underlying 155-Mbps ATM
backbone network connecting four universities and one
research institute spread apart by hundreds of kilometers in
South Korea. Two universities (SNU and Soongsil) are

located in Seoul, one university (KAIST) and one research
institute (SERI) are located in Taejeon which is about 150
kilometers from Seoul, and our university (POSTECH) is
located in Pohang which is about 200 kilometers from
Taejeon and 350 kilometers from Seoul. Researchers at
these institutions interact each other with a number of
multimedia applications running on the ATM backbone
network. The remainder of the section describes the
multimedia applications we have developed using
MAESTRO for this project.

6.2 Video/Audio Conferencing Tool

Using a video/audio conferencing tool, researchers in this
project can interact each other in real-time without
travelling to remote sites. Fig. 14 shows the video/audio

A T M
B a c k b o n e

(155 M b p s)

S N U
(S e o u l)

S E R I
(T a e j e o n)

K A I S T
(T a e j e o n)

Soongs i l
(S e o u l)

P O S T E C H
(P o h a n g)

Fig. 13: Underlying 155Mbps ATM Backbone Network connecting Distant Researchers

Fig. 14: Video/Audio Conferencing Tool

Hong, Yun, Kong and Shin

12

conferencing tool developed using and operating on
MAESTRO. The tool has been implemented using C++
and X Window/Motif library for user interface and Sun
Video/Audio Card for capture of video and audio from the
source. Users can control the transmission and reception of
video and audio data separately using the buttons shown in
the left figure. This is a desirable capability so that when
no voice is to be heard, one can shut it off and send/receive
the video data only. Further, when audio conferencing is
only required, then video signals can be turned off, thus
effectively using the tool as an audio conferencing tool.

The video/audio conferencing tool has been implemented
using the objects in multimedia API and one-to-many
communication service. Fig. 15 shows how objects in the
layers of multimedia API and distributed multimedia
services have been used to implement the video/audio
conferencing tool. A video/audio conferencing session is
achieved by the use of VA_Producer and VA_Consumer
objects in the multimedia API layer (described in Section

3.2) and Port objects in the multimedia services layer
(described in Section 4.1).

Conferencing tool A uses a VA_Producer object which is
an instance of the VA_Producer class in the multimedia
API layer. VA_Producer has inherited features of the
Video_Producer and Audio_Producer classes.
VA_Producer generates video and audio data by capturing
video data using a camera and audio data using a
microphone. The captured data are represented as Video
and Audio media objects and are transmitted to the receiver
Port objects. Conferencing tool B, in turn, uses a
VA_Consumer object which is an instance of the
VA_Consumer class. VA_Consumer has inherited features
of the Video_Consumer and Audio_Consumer classes.
VA_Consumer object uses a display (such as monitor) and
speaker to output the received media objects. Transmission
of video and audio data in the reverse direction (i.e., tool B
to tool A) is achieved using the same objects only in the
reverse direction.

Port

VA_Producer

Camera

Port

VA_Consumer

Display
Multimedia

API

Distributed

Multimedia

Services

Multimedia

Applications
 Conferencing Tool A Conferencing Tool B

...

Microphone Speaker

Fig. 15: Objects in Video/Audio Conferencing Tool

Fig. 16: Video/Audio Multicasting Tool

network
MAESTRO

MAESTRO
MAESTRO

 server

client client client

A Flexible and Reliable Distributed Multimedia System for Multimedia Information Superhighways

13

6.3 Video/Audio Multicasting Tool

The video/audio multicasting tool can be used for
broadcasting or showing a video tape or equivalent video
archive to a participating group of researchers. The tool
consists of server and client applications. The server
application controls the initiation and termination of
multicasting and the client application is used by each of
the participating users to receive the multicasting. Like the
video/audio conferencing tool, this tool has also been
implemented using C++ and X Window/Motif and Sun
Video/Audio Card. Fig. 16 illustrates the video/audio
multicasting tool.

6.4 Whiteboard & Chatting Tool

Other multimedia applications that have been developed for
the “Distant Cooperative Research Project” are whiteboard
and chatting tool. Researchers may use the whiteboard
application to aid the discussion with others in real-time by
drawing figures and adding texts. This simulates an
interactive group discussion using a black or white board in
a meeting room. Figures and texts entered by a user are
displayed instantaneously to the whiteboards of other
participants. Fig. 17 illustrates the drawing control and
display windows of the whiteboard tool we have developed.
The tool has been developed using the Java language so
that any Java-enabled Web browser on any platform can be
used to execute the tool.

Fig. 17: Whiteboard drawing control and display

The Chatting tool shown in Fig. 18 can be used by a
number of researchers when they need to have interactive
multi-user discussions or when they wish to simply talk by
exchanging texts. This tool may be used in conjunction
with video/audio conferencing and whiteboard tools or
separately, especially when video/audio conferencing is not
available due to problems with camera and/or speakers or
due to lack of bandwidth available to support video/audio
conferencing. This tool has also been developed using the
Java language so that any Java-enabled Web browser on
any platform can be used to execute the tool.

Fig. 18: Chatting Tool

6.5 Electronic Notebook & Session Management Tool

Electronic notebook can be thought as a normal paper
notebook that is made with the help of computer. Thus, we
do write on it using a pen by hand but by keyboard and
mouse through a graphic user interface. The electronic
notebook tool that we have developed can be used by a
group of researchers for taking notes during a distant
experiment. It can be also used to retrieve the old notes
taken during a previous experiment. The tool is capable of
inserting graphical images as well as texts, as shown in Fig.
19. This tool also has been implemented using Java and
can be executed on any Java-enabled Web browser.

Fig. 19: Electronic Notebook

Fig. 20 illustrates the user interface of the session
management tool that is used to manage and control the
sessions in MAESTRO as well as the information on the
participants of a session. Using this tool, a user can
discover what sessions have been opened in a domain,
which users are currently participating in a session, and
which applications are being used by which users. It is also

Hong, Yun, Kong and Shin

14

possible to do a collaborative work using the session
management tool because all the multimedia applications
introduced above are integrated with it. That is, using this
tool, one can run a video/audio conferencing tool
automatically connecting to other video/audio conferencing
tool and run a whiteboard automatically sharing the
information of whiteboard with other user’s whiteboard,
and so on. This tools also has been implemented using Java
and can be executed on any Java-enabled Web browser.

Fig. 20: Session Management Tool

7.0 CONCLUDING REMARKS

This paper discusses the motivation behind our work on
developing a distributed multimedia system called
MAESTRO, which can be used to support a variety of
multimedia applications on multimedia information
superhighways. We presented its architecture, multimedia
API and distributed multimedia services. Using this
system, distributed multimedia applications can be easily
developed and operated efficiently and reliably.

As a proof of concept, we have developed a number of
multimedia applications that are required for supporting
cooperative research experiments among distant users on
the Korean national information superhighway. Using such
multimedia applications, researchers can perform
experiments using research facilities located in remote
institutions, collect and analyze data, and interact with
remote colleagues in real-time. This not only can save a lot
of money by sharing expensive experimental facilities but
also can save a lot of time by not traveling to remote sites.
We believe that this type of collaboration will be exercised
more commonly in the future and multimedia systems such
as MAESTRO can play a key role in making it possible.

We are currently developing other multimedia applications
(such as telemedicine, telepublishing and telecommerce)

using MAESTRO. We plan to evaluate our system with an
increase in the number of users (in the order of thousands or
more), to truly evaluate the scalability of MAESTRO and to
fine-tune the system for even better performance. We also
plan to include international sites running multimedia
applications on MAESTRO so that we can extend the
underlying network infrastructure from the national
information superhighway to an international information
superhighway.

Another work in progress deals with Quality of Service
(QoS) in MAESTRO. Most of national and international
networks being used today in various organizations are not
high-speed, broadband networks and thus do not satisfy all
the requirements of multimedia applications. What is
needed is a way to adapt flexibly to the quality of
underlying networks so that these applications can run on
most of the networks that exist today.

8.0 ACKNOWLEDGEMENTS

The work presented in this paper has been funded in part by
1995 Special Fund for University Research Institute, Korea
Research Foundation and by 1997 Research Fund for the
Cooperative Research & Experimental System Project,
Systems Engineering Research Institute (SERI). The
authors would like to thank the MAESTRO project team
members, Young-Hwan Lee, Yong-Woo Shin, Chang-Won
Kwak, Binhminh Do and Sang-Eun Park who spent many
sleepless nights in developing multimedia applications on
MAESTRO.

REFERENCES

[1] Korea Information Infrastructure Project,
http://www.nca.or.kr/NCA97e/index97.html.

[2] The ACTS ATM Internetwork, http://www.arl.mil
/HPCMP/DREN/testbed/aai.html.

[3] Singapore Information Technology (IT2000),
http://www.ncb.gov.sg/.

[4] CANARIE Information Highway,
http://www.canarie.ca:80 /eng/main.html .

[5] National Information Infrastructure,
http://nii.nist.gov /nii/niiinfo.html .

[6] Global Information Infrastructure,
http://www.gii.org/ .

[7] Barry K. Aldred, “IBM Lakes Architecture:
Introduction and Programmers' Guide”, IBM UK
Laboratories Ltd., http://www.hursley.ibm.com
/~p2p/, 1993.

A Flexible and Reliable Distributed Multimedia System for Multimedia Information Superhighways

15

[8] Interactive Multimedia Association, “IMA
Recommended Practice Draft”, http://www.ima.org
/forums/imf/mss/, September 1994.

[9] P. Dubois, “Detailed Specification of the BETEUS
application platform”, BETEUS Consortium,
http://www.tik.ee.ethz.ch/ ~beteus/, November 1994.

[10] Mux Tutorial, Electronics and Telecommunications
Research Institute (ETRI), 1995.

[11] M. Arango, et al, “The Touring Machine System”,
Communications of the ACM, 36(1), January 1993,
pp. 68-77.

[12] T. H. Yun, J. Y. Kong and J. W. Hong, “Object-
oriented Modeling of Distributed Multimedia
Services”, Proc. o f IEEE International Conference
on Communications, Montreal, Canada , June 1997,
pp. 777-781.

[13] T. H. Yun, J. Y. Kong and J. W. Hong, “A CORBA-
based Distributed Multimedia System”, Proc. of
1997 Pacific Workshop on Distributed Multimedia
Systems, Vancouver, Canada, July 1997, pp. 1-8.

[14] T. H. Yun, J. Y. Kong and J. W. Hong, MAESTRO:
A CORBA-based Distributed Multimedia System,
Technical Report, PIRL-TR-97-2 , POSTECH, March
1997.

[15] OMG, The Common Object Request Broker:
Architecture and Specification Revision 2.0 , OMG,
July 1995.

[16] OMG, “CORBA services: Common Object Services
Specification”, OMG Document Number 95-3-31,
March 1995.

[17] OMG, CORBAservices: EventService Specification,
http://www.omg.org/corba/sectrans.htm, March
1995.

[18] J. W. Hong, G. Gee, and M. A. Bauer, “Towards
automating instrumentation of systems and
applications for management”, Proc. of the IEEE
Globecom, Singapore, November 1995, pp. 107-111.

[19] Ji-Young Kong and J. Won-Ki Hong, “A CORBA-
based Management Framework for Distributed
Multimedia Services and Applications”, Technical
Report PIRL-TR-97-1, POSTECH, March 1997.

[20] IONA, OrbixWeb 2.0.1 , IONA Technologies Ltd.,
Release 2.0.1.

[21] IONA, Orbix 2, IONA Technologies Ltd., Release
2.0.

[22] Sun Video User’s Guide, Sun Microsystems, August
1994.

[23] Solaris XIL 1.1 Imaging Library Programmer’s
Guide, Sun Microsystems, November 1993.

[24] H. Lutfiyya G. S. Perrow, J. W. Hong and M. A.
Bauer, “The Abstraction and Modeling of
Management Agents”, Proc. of the Fourth
International Symposium on Integrated Network
Management, Santa Barbara CA, May 1995, pp.
466-478.

[25] J. Won-Ki Hong. “Distributed Systems Management
Technology”, KISS Review 14(1), January 1996, pp.
51-61.

[26] OMG, “Control and Management of A/V Streams
Request For Proposal”, August 1996.

[27] S. J.Gibbs and D. C. Tsichritzis, Multimedia
Programming, Objects, Environments and
Frameworks, Addison-Wesley, 1995.

[28] Microsoft, “DCOM: A Business Overview”,
http://www.microsoft.com/ntserver/info/dcom.htm,
August 1997.

[29] E. R. Harold, Java Network Programming, O’Reilly
& Associates, 1997.

[30] The Java Virtual Machine Specification, Sun
Microsystems , http://java.sun.com/docs/books/
vmspec/index.html , 1997.

BIOGRAPHY

James Won-Ki Hong is an assistant professor in the Dept.
of Computer Science and Engineering, POSTECH, Pohang,
Korea. He has been with POSTECH since May 1995.
Prior to joining POSTECH, he was a research professor in
the Dept. of Computer Science, University of Western
Ontario, London, Canada, where he worked on the CORDS
project and MANDAS project. Dr. Hong received the BSc
and MSc degrees from the University of Western Ontario in
1983 and 1985, respectively, and the PhD degree from the
University of Waterloo, Waterloo, Canada in 1991. His
research interests include network and systems
management, distributed computing and multimedia
systems. He is a member of IEEE, ACM, KNOM and
KISS.

Tae-Hyoung Yun received the BS degree in Computer
Science and Engineering from POSTECH, Korea in 1996.
He is currently a Masters degree candidate in the Dept. of
Computer Science and Engineering, POSTECH. His
research interests include distributed computing and
multimedia systems. He is a member of IEEE and KISS.

Hong, Yun, Kong and Shin

16

Ji-Young Kong received the BS degree in Computer
Science and Engineering from POSTECH, Korea in 1996.
She is currently a Masters degree candidate in the Dept. of
Computer Science and Engineering, POSTECH. Her
research interests include network and systems
management and distributed computing. She is a member
of KISS.

Young-Mi Shin received the BS degree in Computer
Science and Engineering from POSTECH, Korea in 1997.
She is currently a Masters degree candidate in the Dept. of
Computer Science and Engineering, POSTECH. Her
research interests include distributed multimedia systems
and network and systems management. She is a member of
KISS.

