
Malaysian Journal of Computer Science, Vol. 10 No. 2, December 1997, pp. 45-50

45

ALIASES AND THEIR EFFECT ON DATA DEPENDENCY ANALYSIS

R. Parimaladevi and R. K. Subramanian
School of Computer Sciences

Universiti Sains Malaysia
11800 Pulau Pinang

Fax: 04-6573335
Tel: 04-6577888 ext. 2128

email: rks@cs.usm.my

ABSTRACT

Parallelising compilers try to automatically convert
sequential programs into parallel programs to be executed
on the targeted parallel machine. The main task of the
parallelising compiler is to locate the areas of potential
parallelism in the sequential programs. The major problem
in doing so is the data dependency in the programs. These
could be identified by one or more passes of the program if
unique variable names are used for the memory locations.
If different variable names are used to point to the same
memory location it causes a different dimension to the
problem. If different variable names refer to the same
location they are called aliases. Aliases could occur when
there is a subprogram call. The parameters passed to the
subprogram could be aliases in the subprogram itself or be
aliases to the variable used in the calling program. Aliases
occur during the usage of recursive data structures.
Parameter scoping could also lead to alias problem when a
global variable is passed to the subprogram as a
parameter. To handle the problem of aliases the compiler
will have to perform a detailed alias analysis so that
suitable parallel codes could be gene-rated. The alias
problem has been examined and methods of identifying the
occurrences of aliases have been developed. The methods
adopted by the tool for handling the aliases in C programs
have been described.

Keywords: Parallel Programming, Dependency
Analysis, Alias Analysis, Software Tools,
Parallelising Compilers

1.0 INTRODUCTION

Recent advances in technology has made parallel
processing a reality. However, inadequate parallel software
is a major factor in the very slow transition to parallel
computing. Though there are many significant parallel
applications and there are many parallel proces-sing
hardwares built, system software for the new archi-tecture
is still immature. VLSI provides for cheap and powerful
microprocessors for assembly into an ensemble which has
resulted in more unconventional and customized
approaches to building parallel machines. The architecture
of these parallel computers is totally different from Von-
Newmann architecture. The existing software is written to

suit the single-processor systems. Therefore these software
need to be modified in order to be executed on parallel
computers. But the programmers who are used to think and
write programs in a sequential fashion find both developing
parallel programs and modifying the existing sequential
programs to parallel programs tedious. Besides, a large
number of programs in sequential languages are still
available and useful. Rewriting all of them to suit a parallel
computer may be an avoidable tough task. An ideal way to
use these bank of programs is to develop a tool which could
convert the sequential programs to parallel programs either
automatically or by interaction with the programmer. This
tool is called parallelising compiler which would convert a
sequential program into a parallel program that could run
on parallel computers.

The major problem in parallelising a sequential program is
the existence of data dependency in the program [1]. Data
dependency not only occurs among the same variable
names but also with their alias names which refer to the
same memory location. Thus, the major obstacle for an
accurate data dependency analysis is the existence of
aliases in the programs.

Languages like Fortran and C, allow a memory location to
be referred by more than one variable name, which causes
aliasing in the program. Let, x and y are variable,
x is an alias of y, x = y <=> iff, x and y are associated with
same location during program execution [2].

There are two types of aliasing, static and dynamic[2].
Static aliasing results from explicitly specified storage
overlays, such as EQUIVALENCE in Fortran. Dynamic
aliasing is caused by the effect of the execution of certain
statements such as pointer manipulation [3] or calls with
reference parameters [4].

Let’s consider the following statements:
S1: x = 4 * k;
S2: z = y;

In the absence of above information about alias, data
dependency analysis indicates that statements S1 and S2
can be executed in parallel. But if y is an alias of x, there
exists a flow dependency between these statements and
parallelising them will lead to inconsistent result.
Therefore, before we proceed to data dependency analysis,

Parimaladevi and Subramanian

46

these alias names for a variable should be identified and the
information should be passed to data dependency analyzer
for an accurate analysis.

2.0 ALIASES

In C, static alias occurs when a pointer variable is assigned
to an address of another variable [5]. Whereas, dynamic
aliases occur during the manipulation of pointer data
structures [3, 5, 6] and during the procedure calling [4].

2.1 Static Aliases

When a variable is declared as a pointer and assigned to the
address of another variable, then we say that there exists
aliases between the pointer variable and the second
variable. Consider the following program code:

int k;
int *j;

j = &k;
...
...
S1 : *j = 10;
...
...
Sn : k = 20;

Since j is referring to the address of k, *j = k, they are
aliases and, any changes made to *j will also affect the
value of k . Hence, in the above example, an output
dependency between statement S1 and Sn, is hidden
because of their alias names.

2.2 Dynamic Aliases

Dynamic aliases occur mainly under two situations:
i) alias during procedure calls and
ii) alias while using pointer data structures.

2.2.1 Aliases During Procedure Calls

C allows parameters passed to a subprogram in both pass-
by-reference and pass-by-value method. However, the
possibility of aliases is very high in pass-by-reference
method, since they pass the address of the actual parameter
to the subprogram. The program may pass same address to
more than one formal parameter, and lead to the possibility
of referring a variable with more than one name [7, 8].
Whereas, in pass-by-value method the value of actual
parameter is copied to another location, thus any changes
made to the formal parameter will not affect the value of
actual parameter. When it comes to array and strings,
although we use a pass-by-value method, to save the
memory space, C handles it as pass-by-reference [9]. Such
cases may lead to aliases.

Let us consider the program code below to see the
situations where aliases could occur.

void calculate_1(int x, int y);
void calcualte_2(int *x, int *y);
void assign(int k[], int l[]);

int G;

main()
{

int p,q,r,i,j;
int Number[100];

S1 : p = 10;
S2 : q = 12;
S3 : calculate_1(p,p);
S4 : calculate_2(&p,&p);
S5 : calculate_2(&G,&p);
S6 : r = p/100;
S7

:calculate_2(&Number[i],&Number[j]);
S8 : assign(Number,Number);
return ;

}

void calculate_1(int a, int b)
{

int s;

S9 : s = a + b;
S10: a++;
S11: b = G + a;
return;

}

void calculate_2(int *a, int *b)
{

S12: *a = G / 10;
S13: G++;
S14: *b++;
return;

}

void assign(int t[], int v[])
{
 int i;

for (i=0; i<100; i++)
S15: t[i] = v[i-1] * 0.5;

return;
}

In statement S3, subprogram calculate_1 is called by value.
The value of p will be duplicated to a and b which will be
stored in different memory locations. Thus a <> b, and
there is no aliases in the subprogram calculate_1.

However, in statement S4, p is passed by reference to
subprogram calculate_2, and causes same address to be

Aliases and Their Effect on Data Dependency Analysis

47

passed to the both formal parameters *a and *b. Since *a
and *b are referring to the same address, *a=*b, these
variables are aliases to each other [10]. This leads to output
dependency between statements S12 and S14.

Aliases also occur, when a formal parameter is bound to an
argument of a global variable [2, 7, 8]. This is obvious in
statement S5, where the global variable G is passed-by-
reference to subprogram. Hence, G= *a. Therefore, an
output dependency exists between statements S12 and S13.

Consider statements S5 and S6, since in S5, the value of p
may change (updated) in calculate_2, there exists a flow
dependency between them [11].

In statement S7, *a = *b, *a will be alias of *b, iff i = j
[10]. If this is the case, then an output dependency between
statements S12 and S14 is hidden in the subprogram
calculate_2.

In statement S8, although this is a pass-by-value method,
since arrays are involved, now, both formal parameters are
bound to the same address. Hence, t = v, and there exists a
flow dependency in statement S15.

2.2.2 Aliases During Pointer Data Structures
Manipulation

Dynamic data structures are defined by programmers. They
could go as complicated as the programmers need. The
well known data structures are link list and binary trees.
The pointer fields defined in the data structure could have
different meaning for each type of structure. For example,
both binary tree and two way link list could have pointers
left and right. For the link list right will point to the next
node in forward direction, and left will point to the previous
node in backward direction. However, for the binary tree
the pointers go to the right and left direction. This means
that each type of pointer data structure leads to aliases in
their own way. Here let us trace how the two way link list
and a binary tree cause aliases in C programs.

Consider the program code below, assume head, r, s, t and
u are declared as dynamic data structures with two way link
and a, b and z are variables.

S1 : r = head->right
S2 : s = r;
S3 : r->value = a;
S4 : b = s->value;
S5 : t = s->left;
S6 : r = r->right;
S7 : u = r->left;
S8 : u->value = z;

There is a flow dependency between statements S1 and S2.
But, since this is dealing with pointers, r is alias of head-
>right and therefore, statement S2, can be rewritten as

s = head->right;

which will overcome the dependency that existed before
the modification.

Now, consider statements S3 and S4, since r is an alias of s,
there exists a flow dependency between them.

In statement S6, r moves to next(right) node, which leaves
r->left to point to the previous node, which is s; This
causes s to become an alias of u in statement S7. Thus an
anti-dependency between statements S4 and S8 exists.

Now, consider the program code below, which deals with a
leaf linked binary tree. Assume p, q and s are pointer data
structures and a and b are variables.

S1 : r = root->right;
S2 : q = p->right;
S3 : s = p->left;
S4 : s = s->next;
S5 : s->value = a;
S6 : q-> value = b;

In statement S2, q points to the right child of p; whereas in
statement S3, s points to the left child of p. In statement S4,
s moves to the next sibling, which is q. (refer to the
diagram below). Therefore, after statement S4, s and q are
being aliases to each other. This causes an output
dependency between statements S5 and S6.

Root

p

qs

left right

next

Fig. 1: A Leaf Linked
Binary Tree

3.0 HANDLING ALIASES

Mohd. Saman [11] has discussed the Bernstein Sets method
to collect information in the inter procedure analysis. This
method is based on the set formation containing variables in
programs, i.e., fetched and stored variable sets for each
statement in the program. The paper also has discussed the
parallelism of pass-by-value and pass-by-reference
parameters which cause aliases in the called function. We
have proposed a separate alias analysis to enhance the
accuracy of data dependency analysis on the function calls.
This work provides a more detailed analysis performed on
the function calls to detect the occurrences of alias names.
To handle the alias problem, the first thing we need to do is
to identify and collect the alias names of each variable.
Then this infor-mation is stored in a data structure, called
alias table. This table will be maintained throughout the

Parimaladevi and Subramanian

48

analysis of the sequential program. We replace the relevant
variables in the program code with their alias names from
the alias table. This will eliminate the spurious data
dependencies and also make the real data dependencies
visible. Hence, the data dependency analyzer will be able
to come out with optimum and accurate result for
parallelism.

3.1 Solution for Static Aliases

For the static aliases, (refer to the example given in 2.1),
*j = k, statement S1 have to be modified to:

S1: k = 10;
This will make the data dependency analyzer to detect a
output dependency between statements S1 and Sn.

3.2 Solution for Dynamic Aliases

For passing two same addresses (pass-by-reference) and
passing two same arrays (pass-by-value), the subprogram
should be duplicated by passing the first parameter only. In
the duplicated subprogram, the second variable name
should be replaced by this first variable name. This will
overcome the problem of hidden data dependencies. For
example, consider the program code below:

 the call : calculate_2(&p,&p);

the subprogram should be duplicated to:

void calculate_2dup(int *a)
{

S12: *a = G / 10;
S13: G++;
S14: *a++;
return;

}

and the call should be : calculate_2dup(&p);
Now it is obvious that there exists an output dependency
between statements S12 and S13.

For passing global variables by address to a subprogram in
a duplicated subprogram, that particular variable name
should be replaced with the relevant global name. For
example :

the call : calculate_2(&G,&p);

the subprogram should be duplicated to:

void calculate_2dup(int *b)
{

S12: G = G / 10;
S13: G++;
S14: *b++;
return;

}

and the call will be : calculate_2dup(&p);

Handling aliases in pointer data structures is a bit
complicated, because each statement in the program should
be analyzed and the best suited alias name should be
replaced. Each statement could lead to different access
path for each single pointer variable declared. Tracing the
program code and then creating the access path
corresponding to the main pointer (such as HEAD or
ROOT) will enable us to identify the alias names for each
pointer variable declared. Each type of dynamic data
structure has its own axioms to be followed. This axioms
will help us to trace the access path of each type of data
structure.

A detailed work to handle the aliases caused by dynamic
data structure has been proposed by Hummel et al. [6]. The
dynamic data structure is handled by building an access
path matrix for each statement, recording the "link" of the
pointer variables. For instance, let us say there is a
statement,

S1 : p = q->next;

The APMS1
 will have entries of variables p and q, and in

the column of p, the link next will be recorded. At this
point, the axioms are not being applied on the links yet.
Later, during the data dependency analysis, the APMs for
those statements under analysis will be compared to detect
the alias cases. Only at this point the axioms will be
applied on the recorded links on the APMs.

We discuss a simpler way to handle the aliases caused by
dynamic data structure. Instead of access path matrix for
each statement in the program code, we propose an access
path table which records all the pointer variables in the
program. All the links will be recorded with respect to the
main header or root of the structure. The axioms will be
applied on the links and according to the outcoming result
the link path of the respective pointer variable will be
updated in the access path table. Hence, this access path
table will contain the current position of the pointer
variables along the dynamic data structure, with respect to
the main header. At any one instance, by comparing the
link path of the pointer variables the tool could identify the
alias variables in the program.

Now, let us trace the program code below to identify the
alias names for the pointer variables head, r, s, t and u in
two way link list.

S1 : r = head->right;
S2 : s = r;
S3 : r->value = a;
S4 : b = s->value;
S5 : t = s->left;
S6 : r = r->right;
S7 : u = r->left;
S8 : u->value = z;

Aliases and Their Effect on Data Dependency Analysis

49

In the statement S1, r = HR

In statement S2, s = r = HR

Since s is alias of r, statements S3 and S4 contain a hidden
flow dependency. To make it obvious, statement S3 should
be rewritten to :

S3 : s->value = a;

In statement S5, t = sL
 = HRL,

according to the axioms of a two way link list : p. LR = p,
&& p.RL = p;

t becomes an alias of head; t = H.

In statement S6, r = rR
 = HRR.

In statement S7, u = rL
 = HRRL
 = HR

Notice that at this point, s = HR, means that u is an alias of
s.

In statement S8, u->value is being updated causing an anti-
dependency between statements S4 and S8. This hidden
dependency will be obvious when statement S8 is rewritten
as :

S8 : s->value = z;

Thus, after modification, the above program code will look
like:

S1 : r = head->right;
S2 : s = head->right;
S3 : s->value = a;
S4 : b = s->value;
S5 : t = s->left;
S6 : r = r->right;
S7 : u = r->left;
S8 : s->value = z;

The difficult part in doing the modification is to choose the
best suited variable to be replaced when each alias names
being encountered. For example, when considering
statements S3 and S4, if we modify statement S4 instead of
statement S3, as

S4 : b = r->value;

although the flow dependency between them are clear, this
will hide the anti-dependency between statements S8 and
S4 since u is an alias of s, not to r at this point, since r is
moved to another location in statement S6.

Now, let us trace the alias properties in a leaf linked binary
tree through the program code below; assume r, q and s are
pointer data structures and a and b are variables.

S1 : r = root->right;
S2 : q = p->right;
S3 : s = p->left;
S4 : s = s->next;
S5 : s->value = a;
S6 : q-> value = b;

In statement S1, r = RoR

In statement S2, q = pR
= RoRR

and in statement S3, s = pL
= RoRL

In statement S4, s = sN
= RoRLN

These information for each pointer variable will be
recorded in access-path-table. The comparison of the
access paths for each pointer variable together with the
axioms will give us the alias properties for a leaf linked
binary tree.

Axioms for a leaf linked binary trees are:
A1: f.LN = f.R
A2: f.RLN = f.RR
A3: f.LRN = f.RL

and axiom A3 can be expanded to:
f.LRxN = f.RLx, where x is the counter for R and

L.

Consider the pointer variables q = RoLR;
and s = RoLLN;

For the above case assume f as RoL which is the property of
both pointer variable;
Now, we have:

s = f.LN; q = f.R;
which is true according to axiom A1. Therefore, we have
found that s is an alias of q after statement S4.

Thus, the program code should be changed to,

S1 : r = root->right;
S2 : q = p->right;
S3 : s = p->left;
S4 : s = s->next;
S5 : s->value = a;
S6 : s-> value = b;

Now, the output dependency between statements S5 and S6
became obvious for the data dependency analyzer.

Aliasing variable names cause hidden data dependencies
between statements. So for an accurate data dependency
analysis aliases should be identified and proper actions

Parimaladevi and Subramanian

50

should be taken. This will enable parallelising a sequential
program with very high efficiency.

ACKNOWLEDGMENTS

The grants provided for the above research work by
University Sains Malaysia and IRPA program are gratefully
acknowledged.

REFERENCES

[1] R. K. Subramanian, “Reusing Sequential Programs
on Parallel Platforms”, Proceedings of the IASTED
International Conference on Modeling and
Simulation held in Pittsburgh, USA, April 1995.

[2] Hans Zima, Barbara Chapman, “Supercompilers for
Parallel and Vector Computers”, Addison-Wesley
Publishing Company, 1991, pp. 95-109.

[3] Joseph Hummel, Laurie J. Hendren, Alexandru
Nicolau, “A General Data Dependence Test for
Dynamic, Pointer Based Data Structures”, In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and
Implementation, June 1994, pp. 218-229.

[4] J. P. Banning, “An Efficient Way to Find the Side
Effects of Procedure Calls and the Aliases of
Variables”, 6th ACM Symposium on Principles of
Programming Languages, 1979, pp. 29-41.

[5] Joseph Hummel, Laurie J. Hendren, Alexandru
Nicolau, “A Framework for Data Dependence
Testing in the Presence of Pointers”, Proceedings of
the 23rd Annual International Conference on
Parallel Processing , August 1994, pp. 216-224.

[6] Joseph Hummel, Laurie J. Hendren, Alexandru
Nicolau, “Path Collection and Dependence Testing in the
Presence of Dynamic, Pointer Based Data Structures”,
Proceedings of 3rd Workshop on Languages, Compilers
and Run-time Systems for Scaleable Computers, May 1995,
pp. 15-27.

[7] Alfred V. Aho, Jeffrey D. Ullman, “Principles of
Compiler Design”, Addison-Wesley Publishing
Company, 1978, p. 506.

[8] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman,
“Compilers-Principles, Techniques and Tools”,
Addison-Wesley Publishing Company, 1988, p.
648.

[9] Beatrice Creusillet, Francois Irigoin,
“Interprocedural Array Region Analyses”, In
Proceedings of the 8th International Workshop on
Languages and Compilers for Parallel Computing,
August 1995.

[10] Robert W. Sebesta, “Concepts of Programming
Languages”, The Benjamin/Cummings Publishing
Company Inc., 1993, pp. 131-136.

[11] M. Y. Mohd. Saman, D. J. Evans, “Inter-procedural
Analysis for Parallel Computing”, Parallel
Computing 21, 1995, pp. 315-338.

BIOGRAPHY

R. K. Subramanian is currently a Professor with the
School of Computer Sciences, Universiti Sains Malaysia.
He has over 30 years of teaching and research experience.
His research interests include Parallel Processing, Artificial
Intelligence and Computer Networking. He received his
B.E. (Hons) in Electrical Engineering from Annamalai
University and M.Sc (Engg) in Electrical Engineering from
University of Madras and Ph.D. in Computer Science from
the Indian Institute of Technology, Delhi. He has around
60 publications to his credit.

Parimaladevi graduated from Universiti Malaya, in 1994,
with a B.Sc.Comp (Hons) degree. After teaching for a
short period in a private institute she has taken up research.
She is currently working for her masters degree in the field
of Parallel Processing, in the School of Computer Sciences,
Universiti Sains Malaysia. The research focuses on
developing a parallelising compiler for C programs.
Special attention is given to the area of inter-procedural
analysis and the usage of dynamic data structures in C
programs.

