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ABSTRACT

Presents a ‘hybrid’ neural network architecture
comprising two Kohonen maps interrelated by Hebbian
connections to perform a neural network based simulation
of the development of a ‘concept memory’, ‘word lexicon’
and ‘concept lexicalisation’ in an unsupervised learning
environment using realistic psycholinguistic data.  The
results of the simulation demonstrate how neural networks,
incorporating unsupervised learning mechanisms, can
indeed simulate the learning of categories amongst
children.  The work demonstrates the efficacy of neural
networks towards providing some insights into the elusive
mechanisms that lead to the emergence of human
categories and an explication of inherent conceptual
categories.
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1.0 INTRODUCTION

Neural networks is a research discipline with the agenda to
(a) understand the nature of human intelligence by
simulating aspects of human behaviour; (b) incorporate
‘human-like’ intelligence within computer systems; and (c)
provide a conceptualisation of the mind.  These objectives
are addressed by a highly parallel architecture comprising
simple processing units that facilitate massive co-operative
computation among these processing units.  The
processing units are provided with a variety of ‘stimuli’ and
by communicating with each other they ‘respond’ in a
manner that mimics aspects of human behaviour.  The key
notions in neural networks include learning: learning from
being instructed by a ‘tutor’ in a supervised manner or
learning on its own through observation and deduction in
an unsupervised fashion.

The emergence of neural networks has provided scientists,
both in computer science and psychology, an alternative
framework for understanding the intricate and elusive tenets

of human cognition; and a case can be made that this new
class of information processing models construe cognition
not as involving symbol manipulation, rather neural
networks focus on causal processes that facilitate the
excitation and inhibition of simple, highly interconnected
processing units.  Such a methodological position makes
neural networks a prime candidate for modelling human
cognition - researchers recommend neural networks as a set
of general principles, primitives, structures and approach
that appears to provide a computatonal framework that is
both psychologically and neurologically plausible [1].  In
fact, the statement is extended further by arguing neural
networks to be seen as a vehicle for operationalising
cognitive development theories [2].

One important aspect of cogntive development is the
emergence or learning of conceptual categories amongst
humans, in particular developing children.  Human learning
of categories is a fairly indirect affair.  Many categories that
humans learn in real life are acquired in observational
conditions in an autonomous learning environment that
does not involve any feedback from a ‘tutor’.  In neural
network terms this would have clear parallels with the
unsupervised mode of learning as opposed to the
supervised mode of learning based on feedback from a
‘tutor’.  If one believes that categories are means of making
sense of the environment then the argument goes that some
aspects of learning about the environment should be
unsupervised because humans, or more appropriately
developing children, must invent their own categories for
describing the environment as they perceive it.

The question we ask in this paper is how are categories
learnt by humans?  Indeed how one goes on to investigate
how categories are learnt?  There is no direct evidence.  The
only evidence that shows children have, in fact, learnt some
categories is when they talk about groups of animals,
groups of people, sets of toys, edible items, furniture and so
forth.  Child language researchers would argue that when
children learn language, they appear to learn concepts first,
or more precisely categories of concepts.  Futhermore, the
learnt concepts have been lexicalised - meaning that the
child has not only learnt about concepts and categories of
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concepts but has also learnt to name them and articulate
about them.

The lexicalisation of concepts, then, is a phenomenon which
has to be simulated within the scope of neural networks in
order to evaluate whether neural models can indeed simulate
human learning and that the models demonstrate the
emergence of categories during learning.  This task would
require the learning of concepts and associated words.  We
believe that such a study would provide students of human
learning an operational framework where data and theory
can be tested.

This paper describes neural network based simulations
involvings the learning of concepts and the learning of
associated words and furthermore discusses how one can
use a ‘hybrid’ neural architecture to interrelate concepts and
words, i.e., to simulate lexicalisation of concepts.  In
architectural terms, we present a ‘hybrid’ neural network
architecture comprising two Kohonen maps and a Hebbian
connection network.  Note that Kohonen maps and Hebbian
connections are both instances of unsupervised learning
and we show how unsupervised learning algorithms can
indeed learn categories by using realistic child language
development.  We believe that development of language
involves continuous interaction of the child with the
environment which in turn leads to the unsupervised
‘invention’ of categories.  In neural network terms
environmental influence, in terms of ‘perceptual’ and ‘audio’
(phonetic) stimuli, during learning is demonstrated by the
adaptability of the ‘plastic’ structure of the neural networks
to account for information received from the environment.
In passing, we would like to note here that not much work
has been undertaken on the learning of categories using
unsupervised learning neural networks.

2.0 INTRODUCTION TO NEURAL NETWORKS

Neural networks attempt to mimic the neural structure of the
brain albeit rather simplistically in that a neural network
comprises a large number of computationally simple
processing units.  The processing units are highly
interconnected through plastic connections.  The
‘plasticity’ in the architecture of a neural network is
introduced with the help of varying connection weights that
can change over time and with experience.  Basically, the
connection weight determines the effect of the incoming
input on the activation level of the unit.  The configuration
of the neural network dynamically adapts to the
environment as a consequence of ‘learning’.  To put it
simply, learning in neural networks can be envisaged as the
problem of finding a set of connection weights which allow
the neural network to store experiential knowledge and to
exploit it to simulate the desired behaviour.  One can then
argue that neural networks have a ‘natural’ propensity for
storing experiential knowledge which is acquired and

retained through ‘training’ or ‘learning’ as opposed to
explicit programming.

Typical explanations of neural network learning begin with
statements like “learning would involve relatively enduring
changes in a system of given architecture that results from
its interaction with the environment.  The most obvious
form of learning is adjustment in the weights of
connections” [2: p. 270].

Neural networks learning algorithms are broadly classified
into two main categories: supervised learning and
unsupervised learning.  Supervised learning algorithms
require an input pattern along with a desired output pattern.
The learning algorithm typically computes the difference
between the desired output of the network to its actual
output, i.e. an error value..  The computed error is then used
to modify the interconnections between the units. Best
exemplars of supervised learning are perceptrons and
backpropagation networks.  Unsupervised learning
algorithms relate to the so-called ‘self-organising’ networks.
Here, the neural network is presented only with a series of
input patterns and is given no information or feedback at all
about its performance or desired output.  Kohonen maps [3]
are amongst one of the best examples of this class of neural
networks and are particularly useful for organising and
categorising complex, multidimensional information.

3.0 A ‘HYBRID’ NEURAL NETWORK
ARCHITECTURE

A psychologically plausible simulation of category learning
involves the simulation of three distinct, yet highly
interrelated, psychological activities – (i) the development
of concepts, (ii) the learning of words and (iii) the
lexicalisation of concepts – associating concepts with
corresponding words.  These activities can be further
distinguished by the existence of a variety of input patterns,
representation schemes, outputs and the underlying
processing requirements.

To perform a realistic simulation of human category learning
we propose a ‘hybrid’ neural architecture that synthesises
three individual neural networks: (1) Concept Memory -
characterising children’s ‘semantic store’ where the
acquired conceptual knowledge (i.e. concepts) is stored; (2)
Word Lexicon - characterising children’s ‘phonological
store’ where words corresponding to concepts are stored;
and (3) Naming Connection Network - storing associative
relationships between concepts and their lexical labels, i.e.
names.  For our purpose, a ‘hybrid’ neural network
integrates in a principled manner a number of neural
networks, where each neural network simulates a particular
psychological activity.  The efficacy of hybrid neural
network architecture originates from the architectural and
functional synthesis of the neural networks and a co-
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operation between the constituent neural networks yields
the overall objectives of the simulation.

The choice of appropriate neural networks for each activity,
and more so how these neural networks are to be
synthesised to form a hybrid architecture, is far from
universal and formal.  However, our choice of neural
networks for simulating each activity is guided by
psychological observations pertaining to the task.
Furthermore, in order to maintain psychological plausibility
we base our selection of the neural networks, from the wide
range of available neural network classifications,
architectures and learning algorithms, on the following
criterion: (a) type of data to be learnt, (b) input data
representation formalism, (c) explication of output and (d)
learning strategy involved.

Psychological evidence suggests that all three activities
that are to be simulated involve an unsupervised mode of
learning.  For that matter we have chosen an unsupervised
learning neural network – the so-called Kohonen maps [3]
for simulating the development of the concept memory and
the learning of words.  Kohonen maps employ a ‘self-
organising’ algorithm for learning; in fact, the efficacy of
Kohonen maps is further extended by the fact that the
learning algorithm segregates the input space into distinct
regions or ‘topological maps’, where each region may
contain similar patterns – the so-called automatic
categorisation of patterns.

Development of naming connections is also to be simulated
by using an unsupervised learning algorithm i.e. Hebbian
connections that are regarded to be the simplest algorithm
for learning associations between two entities.
Architecturally, the naming connection network connects all
the output units in the concept memory with all the output
units in the word lexicon.  Appropriately weighted Hebbian
connections, termed as ‘naming connections’, establish a
relationship between a concept in the concept memory with
its corresponding lexical label, i.e. word, in the word lexicon.
These Hebbian connections are used to spread the
activations from one Kohonen map to another such that a
localised activity pattern in either Kohonen map will cause a
corresponding localised activity pattern on the other
Kohonen map, and this would be the basis of concept
lexicalisation.  Table 1 gives the architectural specifcations
of the three neural networks to be used for the simulation
with detailed description to follow in the forthcoming
discussion.

Now that we have specified the constituent neural networks
we present a synthesis of these neural networks to realise
our ‘hybrid’ neural network architecture (see Fig. 1) to carry
out the simulations.  A simulation model development
framework for the synthesis of various neural networks to
yield a ‘conglomerate’ neural network architecture has been
proposed by Abidi [4, 5, 6, 7].  Here, the integration of the

concept memory, word lexicon and the naming connection
network is in line with the modular (or hybrid) architectrure
approach proposed in detail by Abidi [4, 5, 6, 7].

Table 1: Architectural specifications of the hybrid neural
network architecture

Activity Input layer Output Layer
Development of
Concept Memory
(Kohonen Map)

20 units 121 units

Development of
Word Lexicon
(Kohonen Map)

5 units 121 units

Development of
Naming Connections
(Hebbian Connection
Network)

121 units 121 units
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Input Layer = 20 units
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Word Lexicon
Kohonen Map

Input Layer = 5 units
Output Layer = 121 units

Naming Connection
Network

Hebbian Connections
= 121 * 121 = 14641

(a)

(b)

Fig. 1: The ‘hybrid’ simulation architecture: A synthesis of
two Kohonen maps via Hebbian connections

4.0 A SIMULATION OF THE DEVELOPMENT OF THE
‘CONCEPT MEMORY’

In neural network terms, children’s concept memory where
the acquired conceptual knowledge is ‘stored’, can be
characterised by (a) the concept representation scheme, (b)
the organisation of stored concepts, (c) the means for
learning new concepts.  Assuming that the child must take
some initiative during concept development, we regard the
learning of new concepts as an unsupervised process,
whereby children appear to detect the salient ‘semantic
features’ of a concept without any guidance.  The storage
of concepts is effected by categorising them on the basis of
perceived semantic features.  We have simulated the
development of a ‘concept memory’, i.e., the learning of 42
‘concepts’ using a 121 unit Kohonen map.  The 42 concepts
being learnt were selected from the 50-60 concepts reported
in child language literature [8].
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Previous simulations of the development of concepts were
conducted in a supervised learning environment [9, 10, 11];
a concept was learnt by repetitively associating its semantic
feature based representation with the concept’s lexical label.
Categorisation was achieved by merely learning the label of
the category to which it belonged.  We have some
disaggrements with this strategy to learn concepts as it
seems more as a case of ‘rote learning’.  We elaborate below
our simulation of the development of the concept memory
together with the discussion on the emergence of
conceptual categories.

4.1 A Neural Network Inspired Concept Repre-
sentation Scheme

Represenation of natural conepts in a neural network
formalism is of prime importance and demands a fine balance
between psychological plausability and neural network
pragmatism.  To represent concepts in a neural network
environment we have adopted the conventional ‘semantic
feature’ based formalism which describes the similarities and
differences between various concepts that leads to the
definition of categories.  Each concept in our representation
scheme is represented by a 20-dimensional ‘semantic feature
vector’ [12] comprising two types of features: ‘defining
features’ - determining a category structure, and ‘individual
features’ - distinguishing individual concepts within a
category.  We discuss below how these defining and
individual features are used to construct a semantic feature
vector for representing a concept.

The defining features of concepts are based on an ‘object-
oriented’ taxonomy suggested by Katherine Nelson [13].
Nelson’s ‘semantic structure’ classifies or categorises
‘objects’ and ‘non-objects’ at a considerable level of detail,
enabling us to determine the category of the object/non-
object concept in consideration.

Children’s possession of a variety of concepts, differing
from one another in terms of salient features, suggests that
a category level abstraction alone may not suffice to
represent children’s concepts.  We argue that ‘individual
features’ unique to a concept help discriminate one concept
from other concepts having the same ‘defining features’.
For instance, children are believed to distinguish various
objects by observing aspects such as ‘size’, ‘shape’,
‘colour’ and even, at times, their ‘function’.  For that matter,
the individual features derive from a taxonomy of children’s
concepts suggested by Bloom [8], comprising concepts
belonging to seven different categories: objects, agents,
events, states, locations, prepositions and ‘function words’.

To conclude, our semantic feature vector encodes two
types of information: super-ordinate category information
(defining features) and specific information (individual
features).  Table 2 illustrates the semantic feature vectors for
some exemplar concepts using in our simulation.

4.2 Description of the Simulation

The simulation of the development of the concept memory
is carried out in an iterative manner, such that in each
iteration a different concept is presented to the concept
memory [14].  The repeated presentation of the concepts
over a number of iterations is analogous to the child’s
increased appreciation and knowledge of the concept over a
period of time.  Presentation of individual concepts in a
random order ensures that the ‘learning’ taking place is not
biased and does not reflect a predefined course of
development.

Table 2: Semantic feature vectors for concepts – ‘dad’,
‘mum’, and ‘dog’.  The defining features are given in

bold type-face

Concept
Instance

Defining
Features

Individual Features

dad object -
animate -
people -
specific

agents, human, human-beings,
not self, familiar, does cares,
is kin, male, large, has name

   [1,1,1,1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1]
mum object -

animate -
people -
specific

agents, human, human-beings,
not self, familiar, does cares,
is kin, female, large, has name

   [1,1,1,1 , 1, 1, 0, 0, 1, 1, 1, 0, 1, 1]
dog object -

animate -
animal -
generic

agents, non-human, animal,
 is indoor, furry coat, unfamiliar,
no distinct colour, has distinct,
sound, medium, no name

   [1,1,0,0 , 1, 0, 1, 1, 1, 0, 0, 1 , 0, 0]

At the start of the simulation of the development of the
concept memory, the Kohonen map implementing the
concept memory is initialised with random weight vectots.
This ensures that the concept memory does not contain any
a priori  knowledge.  This claim is validated by noting that
potentially close concepts are mapped quite sparsely,
indicating the absence of any prior categories (see Fig. 2a).

Kohonen map’s learning can be quantified in terms of two
parameters - (i) activation level (ACT) of the desired
concept’s unit when retrieved and (ii) the ‘Euclidean
Distance’ (ED) between the desired concepts’ unit and the
most highly active unit.  In fact, as learning progresses, the
ED is minimised by the self-organisation mechanism
inherent in Kohonen map learning algorithm, whereas at the
same time the activation level of the desired concept’s unit
increases.  A concept is deemed to be learnt when the
activation level of its representative (or image) unit higher
that all other units (approaching unity), and its ED is the
lowest (close to zero).
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In order to describe this complex simulation involving 42
concepts, we discuss the learning profile of just four
concepts-‘dog’, ‘juice’, ‘dad’ and ‘cow’ out of the 42
concepts to be learnt.  The learning period spanned 8000
iterations.  To provide a learning profile we noted the
amount of learning achieved after intervals of 500 iterations
by taking a snapshot of the evolving concept memory.  The
learning profile of the concept memory is given in Table 3.

Table 3 shows that at the very first iteration, the ED
between the (random) weight vector of all the units and the
input stimulus is computed.  The unit that has the minimal
distance to the stimulus is ‘assigned’ the stimulus label.
Subsequent iterations involve the computation of the ED
and the reassigning of concepts to the units.  After 500
iterations when the stimulus ‘dog’ was presented to the
concept memory, it retrieved the concept ‘pig’ - the
Kohonen map has not yet learnt to discriminate between a
‘dog’ and a ‘pig’ and can easily confuse the two.  This
‘confused’ behaviour of the Kohonen map can be explained
as follows: the semantic feature representations of both
concepts – ‘pig’ and ‘dog’, share a number of features.  The
retrieval of the proximate concept ‘pig’ instead of the
concept ‘dog’ clearly indicates that, at this stage, the
Kohonen map has acquired an understanding of a category
structure, i.e., the defining features have been learnt.
However, the Kohonen map is still not able to discriminate
amongst the individual features of the concepts ‘dog’ and
‘pig’ (since both concepts belong to the same category) and
therefore confuses the stimulus ‘dog’ with the relatively
close concept ‘pig’.

At the end of 1000 iterations, the stimulus ‘dog’ retrieves
the unit labelled ‘dog’, but the value of the ED is quite large
(0.372) and the activation level is negative (-0.29): this
retrieval may yet turn out to be a ‘fluke’.  This is justified at
the end of 1500 and 2000 iterations; the Kohonen map now
confuses the concept ‘dog’ with ‘duck’.  But after 2500
iterations, one sees a positive activation and a reduction of
the ED in the learning profile for the concept ‘dog’.
Subsequent iterations do show that the network is
becoming more ‘stable’ in its response to the stimulus
‘dog’.  At iteration 4000, the criteria for adequate learning
have been satisfied, i.e., the activation level has approached
unity and the ED has decreased to zero.

Table 3: Learning profile showing the development of
concepts – ‘juice’, ‘dad’ and ‘cow’.  RU indicates the
‘Retrieved Unit’ in response to a specific concept

Iteration Dog
RU

Juice
RU

‘Dad
RU

Cow
RU

1 - 500 pig -- dad cow
501 - 1000 dog juice mum horse
1001-1500 duck juice mum horse
1501-2000 duck juice mum horse
2001-2500 dog juice mum

dad
cow
horse

2501-3000 dog -- dad
mum

cow
horse

3001-3500 dog -- dad
mum

cow
horse

3501-4000 dog cokie dad
mum

cow
--

4001-4500 dog juice dad cow
4501-5000 dog juice dad cow
5001-5500 dog juice dad cow
5501-6000 dog juice dad cow
6001-8000 dog juice dad cow

The learning profile for the other three concepts – ‘juice’,
‘dad’ and ‘cow’ follow a similar trend as noted in the
development of the concept ‘dog’.  Note that for the
concepts ‘dad’ and ‘cow’ during the iteration range 2000-
4000 (shaded grey in Table 3) an interesting behaviour is
observed.  When presented with the semantic feature vector
for the concept ‘dad’, two concepts are retrieved: the
concept ‘dad’ and another close concept – ‘mum’.  This
rather a typical behaviour predicates the fact that the
Kohonen map is not able to differentiate between close
concepts in a category.  The retrieval of all the close
concepts clearly indicates that at this stage the Kohonen
map has learnt a category structure and is exploiting this
information when deciding what concepts are to be
retrieved.

Fig. 2b shows the organisation of the concept memory after
a learning session of 8000 iterations, where each concept is
represented by a unique unit.  It is interesting to compare
how the concept memory has originated from the randomly
initialised concept memory, shown in Fig. 2a.
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(a) (b)

Fig. 2:  (a) The concept memory before learning. (b) The concept memory after learning.  The concept memory is divided into
seven broad concept categories - objects, agents, locations, attributes, prepositions, events and function words

5.0 A SIMULATION OF THE DEVELOPMENT OF THE
'WORD LEXICON'

One significant manifestation of the development of
language amongst children is their ability to comprehend
and produce spoken language.  One can model this aspect
of language development by arguing that children can
analyse acoustic input in terms of its constituent phonemes.
The ability to ‘spot’ words in continuous speech can be
compared with the development of the so-called ‘similarity
neighbourhoods’. - “a set of words that differ from a given
target by a phoneme substitution, addition or deletion” [15:
p. 207].  The concept of similarity neighbourhood relates to
the fact that similar sounding ‘words’ would be represented
in a cluster or ‘category’.  For instance, the similarity
neighbourhood for the word pit would include the words
bit, pot, pig, spit, and it, amongst others.

From a neural network standpoint, then, one can argue that,
given phonetic input to a Kohonen map (the so-called word
lexicon), the output from it construes to be a set of words
corresponding to different phonetic inputs.  Also, the
organisation of these words in the word lexicon predicates a
discrimination of phonetic information leading to a
‘similarity neighbourhood’ that seems analogous to the
categorisation of the word lexicon, which results as a
consequence of the temporal organisation of phonetic
information.

For the development of the word lexicon, we ‘train’ a 121-
unit Kohonen map to initially learn and then to recognise
‘words’ given their phonetic representations.  The phonetic
representation of each word is taken from the Oxford
Advanced Learner’s Dictionary.  To represent words, we

have devised an encoding scheme which assigns each
phoneme a numerical value within the range of 0-1.

The phonemic representation for a word, i.e. its ‘phonemic
feature vector’, is formed by concatenating the encoded
value of its constituent phonemes in a vector notation.  For
illustration purposes, the phonemic feature vector for some
words is given in Table 4.

Table 4: Phonemic representation of words in terms of a
phonemic feature vector

Word Phonemic Feature Vector
dog [0.45, 0.60, 0.65, 0.0, 0.0]
bag [0.25, 0.40, 0.65, 0.0, 0.0]
pig [0.15, 0.20, 0.65, 0.0, 0.0]
dad [0.45, 0.40, 0.45, 0.0, 0.0]

The simulation of the developing word lexicon is performed
in a manner similar to that of the developing concept
memory.  Starting with a random Kohonen map, phonemic
feature vectors of words are presented in a random order.
The learning profile of the word lexicon follows a similar
trend as that of the concept memory, and again the criterion
is the activation level approaching unity and the ED being
reduced to zero.

Fig. 3a shows the initially random word lexicon, whereas Fig.
3b shows the word lexicon after the learning session.  In Fig.
3b it can be seen how the word lexicon has evolved from a
random organisation of words to an ordered organisation
that reflects categorisation of words on the basis of the
length of the phonemic feature vectors.  Again, as we did
for the learnt concept memory, we have marked
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(a) (b)

Fig. 3:  (a) Word Lexicon before Learning. (b) Word Lexicon after learning. Words are arranged into four categories on the
basis of their phonetic length, i.e. words constituting 2, 3, 4, and 5 phonemes

regions of the Kohonen map that store words of similar
phonetic lengths.  It is these regions that resemble the
‘categories’ or ‘similarity neighbourhoods’ argued by
researchers [15].  Note that the ‘learnt’ word lexicon clearly
discriminates words on the basis of their phonetic content,
and also within categories similar sounding words are
stored in proximity, for instance note that the similar
sounding words – ‘bag’, ‘dog’, ‘pig’, ‘big’, ‘dad’ and ‘duck’
are stored close to each other.

6.0 A SIMULATION OF THE DEVELOPMENT OF THE
‘NAMING CONNECTIONS’ – CONCEPT
LEXICALISATION

In child language, lexicalisation or ‘naming’ of concepts is
regarded as the mapping of children’s linguistic knowledge
on to their conceptual knowledge [16,17].  Lexicalisation of a
concept can loosely be regarded as either learning by
instruction or learning from examples.  We believe that there
are at least two ‘ostensive naming’ situations that can be
simulated by neural networks conducting ‘unsupervised
learning’.  The first situation relates to the assignment of a
word to a ‘known concept’ where the child has a concept of
an object or event but lacks the appropriate word to express
it.  The second situation relates to the assignment of a word
to a ‘novel concept’:  The child hears a novel word referring
to an novel object or event, then the child relates the novel
word to the new concept.

In both the above situations the child needs to identify the
category of the input concept and retrieve it from the
concept memory.  Also during word perception the demand

on the child is to analyse the phonetic constituents of the
word and retrieve the correct word, if present, from the word
lexicon.  The lexicalisation of concepts then is a viable
simulation to further explicate and operationalise ‘learnt’
categories within the concept memory and word lexicon.

6.1 Impetus for the Simulation Architecture

We have simulated concept lexicalisation as the
development of an association between a lexical label (word)
with the corresponding concept.  In a neural network
parlance such an association would be achieved by learning
associative naming connections between a concept unit in
the concept memory with the corresponding word unit in
the word lexicon.  Simulation of concept lexicalisation
involves each unit in the concept memory to be connected,
with varying connection strengths, to all units in the word
lexicon and vice versa.  This establishes a many-many
relationship between concept units and word units, as
shown in Fig. 4.

Word LexiconConcept Memory

Hebbian Connections

Fig. 4: Naming connections between the Concept Memory
and the Word Lexicon
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The naming connection network, simulating concept
lexicalisation, employs Hebbian Learning which provides a
simple mechanism for associating two units by weighted
connections, where the strength of the connection is based
on the activation levels of the two connecting units - the
greater the collective activation level of the two units the
stronger the ‘Hebbian connection’ between them.  The
naming connection network, comprising two layers,
employs the output layers of both the concept memory and
the word lexicon which are then connected by 14641 (121 *
121) Hebbian connections of varying strengths.  The
‘learnt’ Hebbian connections provide a medium to transmit
the activation level of the output units of the concept
memory to the output units of the word lexicon and vice
versa.  The strength of the Hebbian connection determines
the amount of activation received by the recipient output
unit – the greater the connection weight between two units
the magnified the activation level of the sending unit would
be when it is received by the recipient unit.

6.2 Simulation Scheme for Developing Naming
Connections

Two types of stimuli were used in this simulation: (1) a
perceptual stimuli, i.e. a 20-dimensional semantic feature
vector representing a concept, and (2) a phonemic stimuli,
i.e. a 5-dimensional phonemic feature vector representing
the corresponding word.  The entire training set comprises
Bloom’s 42 concepts and words learnt earlier.

The development of naming connections can be simulated
in a developmental manner by simultaneously presenting a
concept (the perceptual stimuli) to the concept memory and
the corresponding word (phonemic stimuli) to the word
lexicon.  Presentation of the respective stimuli to each
Kohonen map results in a group of units to become highly
active due to the information retrieval mechanisms
employed by Kohonen maps.  Naming connections can then
be established between these highly active units, in each
Kohonen map, based on the Hebbian learning algorithm.

Here we discuss the lexicalisation of the concept ‘dog’.
Consider an exemplar situation for concept lexicalisation: an
adult points towards a ‘dog’ and utters the sentence ‘That
is a dog’, thus both the verbal and perceptual stimuli
corresponding to ‘dog’ are presented to the learner.almost
at the same instance.  The information retrieval mechanism
of the Kohonen maps ensures that the presentation of the
perceptual stimuli to the concept memory forms a localised
pattern of activity around the learnt ‘dog’ concept unit.  In
this scenario similar concepts are more activated than less
similar concepts.  In a similar

manner, the presentation of the verbal stimuli ‘dog’ to the
word lexicon results in the learnt word unit ‘dog’ acquiring
the highest activation level.  At this stage, we apply the
Hebbian learning algorithm to establish inter-map naming
connections amongst all units in both Kohonen maps.  The
strength of the Hebbian connection established is
proportional to the current activation of two connecting
units.  Therefore, a strong connection is established
between the highly active concept and word units, i.e. the
‘dog’ concept and word units.

Concept lexicalisation is carried out in an iterative manner,
where in each iteration a concept-word pair is presented to
the naming connection network and learning involves slight
increments to the strength of the Hebbian connections
between the concept and word units.  In this way, over a
period of several iterations strong naming connections are
established between concepts and their corresponding
lexical labels (words).  A concept is deemed to be lexicalised
when a ‘perceptual’ stimuli representing a concept is
presented at the concept memory and in response the lexical
label – ‘word’ unit corresponding to the concept is highly
active in the word lexicon.

Table 5 presents the learning profile of the lexicalisation of
four concepts – ‘dog’, ‘cow’, ‘juice’ and ‘dad’ which are
represented in the ‘learnt’ word lexicon by units 76, 88, 55
and 86, respectively (Recall that each unit in Kohonen map
has been assigned a number in the range 1 - 121).  For
instance, at iteration 500 the concept ‘dog’ is associated
with unit 2 in the word lexicon.  This turns out to be an
incorrect association since the actual word unit representing
‘dog’ is 76.  During subsequent iterations the neural
network is again incorrectly associating the concept ‘dog’,
first with word unit 36, and then later with word unit 114.  It
is only after 6000 iterations that the neural network has
learnt to lexicalise the concept ‘dog’, as now the concept
‘dog’ is associated with word unit 76, which represents the
word ‘dog’.  The learning profile for the other three
concepts show a similar trend where first incorrect
associations are established between concept and word
units in the concept memory and word lexicon, respectively.
However with increased experience the correct associations
are eventually ‘learnt’.

It may be noted (see Table 5) that during the lexicalisation of
a particular concept, say ‘dog’, not only the concept ‘dog’
is associated with the word ‘dog’ but also other similar
category members are associated with the word ‘dog’
though with a less strong connection.  This ensures that a
strong naming connection is established between the close
category members and less strong naming connections exist
among other not so close category members.
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Table 5: Learning profile for Concept Lexicalisation.
Finally, the words dog, cow, juice and dad are
represented by units numbered 76, 88, 55 and 86,
respectively

Iteration
Range

Dog
RU

Cow
RU

Juice
RU

Dad
RU

1 - 500 2 36 70 17
501 - 1000 36 88 56 17
1001-1500 36 88 56 17
1501-2000 36 88 91 17
2001-2500 114 88 91 17
2501-3000 114 88 56 17
3001-3500 114 88 56 17
3501-4000 114 88 91 17
4001-6000 114 88 91 119
6001-6500 76 88 91 119
6501-7000 76 88 91 119
7001-7500 76 88 55 86
7501-8000 76 88 55 86

7.0 EXPLICATING THE EVIDENCES OF CATEGORY
LEARNING – THE SIMULA-TION RESULTS

The aim of the paper is to demonstate the emergence of
human conceptual categories.  Our assumption, which is
psychologically motivated, is that it is best to investigate
the emergence of categories at the onset of concept
development as usually whilst learning new concepts
humans distinguish and discrimate various concepts;
grouping and subgrouping of dynamic concepts are made
and periodically refined with time and with increased
appreciation of existing concepts, thereby realising
categories of similar concepts.  In the absence of any direct
means to investiugate how categories are learnt we exploit
our three ‘learnt’ neural networks – the concept memory,
word lexicon and naming connection network to explicate
the subtle evidences implicit in category learning during the
processes of concept development, word acquisition and
concept lexicalisation.  We now explicate both direct and
indirect (by exploiting the three neural networks) evidences
of an underlying category structure that has been implicitly
learnt by the three neural networks during the simulations.

7.1 'Automatic' Categorisation of Concepts

The organisation of the concept units in the concept
memory reveals that concepts that have close semantic
feature representations are actually stored in proximity, thus
forming a global organisation into conceptual regions or,
more appropriately, ‘categories’ of concepts (see Fig. 2b).
Effectively, self-organisation in Kohonen maps demarcates
the possible input space into hierarchical sub-areas which
are then mapped on to the two-dimensional Kohonen map.
In Fig. 2b we have marked the Kohonen map to explicate the

emergent categories of concepts.  The reader may note that
the right side of the concept memory accommodates
concepts of the category ‘agent’, whilst ‘object’ concepts
are stored in the bottom left corner and similarly the
‘location’ category occupies the top left area of the concept
memory.

Note that the semantic feature representation of each
concept is based on a hierarchical structure: ‘defining
features’ (containing category information) and ‘individual
features’ (distinguishing individual concepts).  Whilst
learning the concepts, the Kohonen map exploited the
category information and collected concepts with similar
‘defining features’.  These semantically close concepts were
then stored in proximity to each other, resulting in clusters
of concepts that resemble ‘categories’.  In this way the
Kohonen map not only learnt the concepts, but also
simulated an ‘automatic categorisation’ of the concepts.

It is interesting to note that during learning the neural
network was not provided any category information nor
explicit definition of the semantic features and the possible
relationships among them.  Nonetheless, the Kohonen map
itself deduced the similarity among the ‘defining features’ of
various concepts and ‘automatically’ created clusters or
categories of close concepts.

7.2 Local Organisation Inside a Category - Presence of
Sub-Categories

The same categorising principle which earlier formed global
categories based on ‘defining features’ is again responsible
for creating a local organisation or ‘sub-categories’ of even
closer concepts within a category.  This local organisation
is a manifestation of the similarities among the ‘individual
features’ of various concepts belonging to the same
category (see Fig. 2b).  To put simply, the Kohonen map’s
learning algorithm analyses the finer distinctions in the
semantic feature vector of concepts belonging to the same
category and then organises close concepts in proximity.
For instance, in Fig. 2b the agent category includes
concepts dad, mum, Mary, and man that share a number of
‘individual features’ hence these concepts are stored in
proximity to each other thus forming a sub-category, say
‘humans’.  Also, within the same agent category, concepts
for animals such as dog, pig, cow and horse are in proximity
to each other, thus resembling another sub-category –
‘animals’.

Recall that a concept’s semantic feature vector encodes an
implicit hierarchy; the ‘defining features’ determine the
broad category and the ‘individual features’ distinguishes
concepts within categories.  It is interesting to note that the
Kohonen map, whilst learning the concepts, was able to
detect this implicit hierarchy in the feature representation of
the concepts, thus instigating two categorisation activities:
the ‘defining features’ were used to determine a broad
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category structure, whereas based on the ‘individual
features’, concepts belonging to the same category were
locally categorised.

7.3 Indirect Evidence of the Existence of Categories -
Concept Generalisation

Ward and Vela [18] have reported that the manner in which
children generalise from a novel or partially visible category
exemplar to other members of the category is influenced by
children’s prior knowledge of previously learnt categories.

To investigate the presence of categories within the
concept memory we tested the generalisation capabilities of
the ‘learnt’ concept memory.  This was achieved by
presenting the concept memory with (a) an incomplete
representation of a learnt concept and (b) a novel concept.
For case (a) we presented an incomplete semantic feature
representation of the concept ‘dog’.  In response the
Kohonen map completed the partial representation and
correctly retrieved the concept ‘dog’.  For case (b) we
presented a representation of a novel concept – ‘cat’.
Again the ‘learnt’ Kohonen map determined the possible
category of the novel concept, which is ‘agents’, and
subsequently generalised the novel ‘cat’ concept to the
closest learnt concept ‘dog’ in the ‘animal’ sub-category.

It may be noted that, much as what Ward & Vela [18] have
suggested, during generalisation the concept memory first
determined the appropriate conceptual category to which
the novel or partially represented concept may belong.
Then, from the candidate conceptual category one concept
that was most similar to the novel concept was selected.

7.4 Indirect Evidence of the Existence of Categories -
Addition of New Concepts

Child theorists have speculated that the categorisation of
concepts helps in the learning of new concepts as the new
concept can be perceived in terms of an existing concept.
For instance, the child may identify a new concept ‘cat’ in
terms of a known and similar concept ‘dog’, in that the new
concept ‘cat’ shares features such as ‘animal’, ‘has tail’,
‘has furry coat’, ‘roams in the house’, ‘is pet’, etc. with the
child’s existing concept of a ‘dog’.

Our neural network based concept memory verifies the
existence of such a behaviour, as is illustrated when
attempting to add a new concept ‘cat’ to the previously
learnt concept memory (shown in Fig. 5).  It may be noted
that the new concept ‘cat’ (shaded dark in Fig. 5) is learnt
and mapped (in the areas corresponding to the category
agent and the sub-category animals) in the immediate
proximity of the concept ‘dog’.  This indicates three things:
(a) the learning mechanism is aware of the existence of an
implicit category structure underlying the organisation of
the concept memory, (b) the learning mechanism not only

‘automatically’ determined the category of the new concept
but also determined the sub-category to which it belonged,
and (c) within the sub-category the concept ‘cat’ was
placed next to the concept which bears greatest
resemblance to it, i.e. the concept ‘dog’.
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more gone head

small no hand mum

dadmandirtyclean
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cookie

cup

truck bag

duckboxchairtowelblank

big

dog pig

horse

cow

cat

Fig. 5:  The concept memory with the newly added concept
‘cat’.  The shaded area represents the sub-category
‘animals’ within the category ‘agents’

7.5 Indirect Evidence of the Existence of Categories –
Retrieval of a Concept-Word Pair

Again, an indirect evidence of the presence of categories
within the learnt concept memory and the word lexicon is
available by simulating the retrieval of a word in response to
a given concept.  Here, the naming connection network is
used to demonstrate concept lexicalisation.

Retrieval of a ‘word’ therefore involves an interaction
among three neural networks - concept memory, naming
connection network and word lexicon.  The retrieval of a
word in response to a concept is simulated by presenting a
concept to the concept memory.  This initiates the
spreading of the activation of the concept units through the
‘naming connections’ to the word units.  If a strong naming
connection exists between a concept unit and its
corresponding word unit, then the presentation of the
concept to the concept memory enables the corresponding
word unit in the word lexicon to acquire the highest
activation level amongst all other word units.

We now demonstrate the retrieval of the word ‘dad’ when
given the concept ‘dad’ to the learnt concept memory.  To
begin with, the presentation of semantic feature vector for
the concept ‘dad’ is presented at the input layer of the
concept memory.  This brings into relief the information
retrieval mechanism of Kohonen maps - the learnt concept
unit ‘dad’ acquires the highest activation level and is
deemed as being retrieved in response to the input (shown
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in Fig. 6).  Next the naming connection network is used to
retrieve the lexical label of the retrieved concept ‘dad’.  By
employing the spreading activation mechanism the
activation level of all active concept units is spread through
the naming connections to the word-lexicon.  This flow of
activation results in the emergence of localised patterns of
activations on the word-lexicon, such that word units that
are strongly connected with the highly active concept units
acquire a high activation level.  In this case, the word unit
‘dad’ acquires the highest activation level and is deemed as
being retrieved (shown in Fig. 7) in response to the concept
‘dad’.

In Fig. 6, it may be observed that the presentation of the
concept ‘dad’s perceptual stimuli to the concept memory
has resulted in concepts belonging to the category ‘agents’
to acquire higher activation levels as compared to other
units in different categories, thereby suggesting the overall
selection of the ‘agent’ category.  It may therefore be
argued that during the retrieval of the concept first the
broad category was selected and subsequently the
selection was narrowed down to one category member that
best represented the perceptual stimuli, i.e. the concept
‘dad’.
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Fig. 6: State of the concept memory when presented the
concept ‘dad’.  The degree of activation level is depicted

by darker shades of grey.  Concept unit ‘dad’ has the
highest activation level

In Fig. 7, it may be observed that apart from the highly
active word unit ‘dad’ the word unit ‘mum’ is the next most
highly active unit.  This again explicates the network’s
knowledge of an implicit category structure; the neural
network has deduced that the concepts ‘dad’ and ‘mum’ are
very similar to each other, and this conclusion is validated
by the high activation level of words corresponding to
concepts belonging to the ‘agent’ category.
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Fig. 7: State of the word lexicon after activations are spread
from the concept memory.  Word unit ‘dad’ is
retrieved as it has the highest activation level

We argue that this concept-word retrieval simulation not
only demonstrates the information retrieval mechanisms
inherent in Kohonen maps but also validates the efficacy of
the Hebbian connections implemented in the naming
connection network, and in turn proves to be a good means
of explicating the category information learnt by the neural
networks - the concept memory and the word lexicon.

8.0 CONCLUDING REMARKS

We have demonstrated that neural networks provide a
basis for investigating human category learning.  Our
simulations showed effects of category learning during the
development of concepts, associated words and the
lexicalisation of concepts.  The emergent categories are
interpreted in terms of the neural networks partitioning or
discriminating the input stimuli in an unsupervised learning
environment.  We have shown that such self-organising
neural networks may have some parallel with human
(category) learning.

From a neural network standpoint we have demonstrated
the efficacy of a ‘hybrid’ neural architecture for simulating
aspects of human behaviour.  Recall that the neural
networks were subjected to unsupervised training, a
training regime that has empathy with the developmental
paradigm of language development.  Furthermore, the
connections between the two networks were established
fairly successfully, through what appears to be a training
regime based on neo-Hebbian ‘laws’, rooted in the
behaviouristic paradigm.  The fact that a number of
researchers in neurobiology, developmental psychology
and linguistics are interested in neural networks and neural
simulations leads us to believe that we have made a
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contribution towards some questions related to the
understanding of human behaviour.
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