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ABSTRACT 

 

Speech is an effective, quick, and important way for communicating and exchanging complex information between 

humans. Emotions have always been a part of normal human conversation which makes the speech more attractive. 

Because of this major role of both speech and emotion, many researchers are inspired by studying Speech Emotion 

Recognition (SER) which still has plenty of challenges. In this study, we proposed a novel reservoir computing 

approach with the initialization of random connection weights for the input weight by the truncated normal 

distribution. Furthermore, Population-Based Training (PBT) is adopted to optimize the hyperparameters of the 

whole Echo State Network (ESN) model which have a significant impact on the model performance. The proposed 

model has adopted bidirectional reservoir input to increase the memorization capability, and Sparse Random 

Projection (SRP) was applied for dimensional reduction as a simple, unsupervised, and low complexity approach. 

The speaker-independent strategy was employed on EMODB and SAVEE datasets as an acted speech emotion 

dataset and Aibo as a non-acted dataset. The model achieved 84.8%, 65.95%, and 45.99% unweighted average 

recalls on the EMODB, SAVEE, and Aibo datasets respectively. The results show that the proposed model 

outperforms the recent state-of-the-art studies with a cheaper computational cost. 

 

Keywords: Reservoir Computing, Truncated Normal Distribution, Population-Based Training, Speech Emotion 

Recognition, Recurrent Neural Network 

 

1.0 INTRODUCTION 

 

There are many ways of communication among humans, but speech is one of the fastest, natural, and effective ways 

to communication. Speech with emotion makes communication more natural between humans and helps them 

understand each other. Recognizing emotions from speech is a great demand to improve the user experience 

between humans and machines. However, emotion recognition from the speech is a big challenging task in machine 

learning and still a challenging research topic to many vital applications. Speech Emotion Recognition (SER) system 

can be used in a variety of applications, such as in-car board for driver safety, call center services for customer 

satisfaction, and children in care to detect their emotional status.   

 

For any SER system, selecting the optimal emotion features from speech signals, a robust and cheap computational 

model is required to detect emotions in real-time. In the past decade, some common classification models have been 

adopted in SER systems, such as Support Vector Machine (SVM) [1], k-Nearest Neighbor (k-NN) [2], Gaussian 

Mixture Model (GMM) [2], and Hidden Markov Model (HMM) [3]. Additionally, the deep learning approach is 

also being paid extensive attention in the SER area to achieve better results compared to the traditional models, 

despite the complexity and expensive computations. Therefore, most of the traditional models for detecting 

emotions from the speech were using handcrafted global features that present each sample as one vector [4]. Some 

recent deep learning models such as Long Short-Term Memory (LSTM) and Recurrent Neural Network (RNN) are 

used for feeding temporal frame-based features from speech data. However, researchers in [5] concluded that deep 

learning models are not always the best option especially in real-world applications due to the noticed big gap 

between the theory and practical applications.  

 

Some studies prefer to use the Echo State Network (ESN) approach as a compatible model with multivariate time 

series features and overcome the computation complexity. The simplicity, the untrained nature, and the sparsely 

connected neurons in the reservoir layer make the ESN a good choice to deal with the sparse nature of emotion in 

speech [6]. Although the ESN has advantages, some problems still need to be solved, such as the instability with 

initializing fixed weights randomly and some hyperparameters which have a big impact on the ESN performance. 

The input weight and the reservoir weight that are generated randomly and fixed, are initialized in the reservoir layer 
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which has a vital impact on the ESN [7]. Additionally, tuning the ESN hyperparameters is a challenge that has a 

significant impact on the model performance. Some researchers choose the fixed optimal values based on experience 

[8] and others adopt various optimization methods [9].  

 

In this study, we propose a novel reservoir computing approach with truncated normal distribution [10] for 

initializing random connection weights for the input weight, in addition to optimizing the hyperparameters by 

Population-Based Training (PBT). Moreover, the handcrafted multivariate time series features are adopted as an 

input to the model which contains Mel-Frequency Cepstral Coefficients (MFCCs) and Gamma-Tone Cepstral 

Coefficients (GTCCs) features.  

 

The main contributions of this work are 1) the use of input weight initializing method in the reservoir layer that is 

able to minimizes the chance of having non-trainable and repeated weights due to the use of tanh activation 

function. 2) adopt an optimization method to train and optimize a sequence of networks parallelly with less 

computational cost.  

The rest of this work is sorted into the following sections: literature about the existing methods of SER and the 

different weight initialization are presented in Section 2. The proposed reservoir computing model is presented and 

explained in Section 3. In Section 4 the datasets and experimental setup are given, and in Section 5 the experiment 

results of the proposed method are shown and the results with the state of the arts are discussed. Lastly, conclusion 

and future work is presented in Section 6. 

2.0 LITERATURE REVIEW 

 

Emotion recognition from speech is a difficult task in the speech research area due to the complexity of emotion, 

consequently, classification method and discriminative emotion features selection are a key role to build a robust 

SER system. In recent years, many studies focus on finding a proper way to select the optimal emotion feature from 

speech and some researchers propose a different model design to take advantage to get the state-of-the-art 

recognition accuracy. 

 
Deep learning approaches are used in recent works for SER systems and robust features learning. Researchers in 

[11] used Convolutional Neural Network (CNN) to learn high-level distinguishing features from 3-D log Mel-

spectrogram. However, the classical way to extract the handcrafted features is still used by many researchers, Patni 

et al. [12] used energy, pitch, chromagram, MFCC, and Gammatone frequency spectrum coefficients (GFCC) 

handcrafted features and 2D CNN as a classifier.  

 

Typical approaches for supporting temporal data are LSTM and ESN. Authors in [13] used Bi-LSTM deep learning 

with two heterogeneous branches where the left side has two dense layers and the right side has a convolution layer. 

Additionally, the handcrafted time-series features with 512 frames are used in [14] for feeding CNN and Bi-LSTM 

model. However, the time complexity of LSTM has been reported to  to be more time consuming compared to the 

ESN (see Table 1). Limited studies have adopted ESN for detecting emotion from speech, Scherer et al. [15] 

explores the use of ESN for real-time emotion recognition from speech signals. The direct use of time series features 

from speech signals and avoiding a need for features extraction with the ESN model are proposed by [16].  

 

Table 1: The comparison of the training time between LSTM and ESN 

Method LSTM (sec.) ESN (sec.) 

Gallicchio et al. [17] 26175 677 

Jirak et al. [18] 88.9 2.6 

Variengien & Hinaut. 

[19] 

410 47.1 

 

Unlike the LSTM and RNN models, the weights in ESN are fixed and remain unchanged once initialized randomly. 

For this reason, both input weight and reservoir weight are unlikely to be ideal when they are generated inside the 

reservoir layer and later trained in the readout part [20]. The uniform distribution in the interval [-1,1] was adopted 

to initialize the input and the reservoir weights in the traditional ESN [21]. To evaluate the ESN performance with a 

different method, the singular value decomposition (SVD) is used in [22] to generate weight matrix, and the ESN-

DE proposed in [23], where differential evolution algorithm is used to improve the randomly initialized weights 
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inside reservoir layer for the possible improvement. Additionally, authors in [24] adopted Cauchy inequality to 

conduct an optimal state of initial weights. 

 

Regarding the selection of an optimal value for ESN hyperparameters, which significantly have a vital role in the 

model performance, some works were using optimization methods [9] and others were fixing the values based on 

experience [8]. Tuning hyperparameters by Grasshopper Optimization Algorithm (GOA) approach has improved the 

ESN performance in [25], and [26] adopted the Bayesian optimization approach to optimize and select the right 

value for ESN parameters. However, the Population-Based Training method for tuning ESN hyperparameters can be 

another option to select the optimal value quicker by training a sequence of networks at the same time with no 

computational overhead. 

 

3.0 PROPOSED SPEECH EMOTION RECOGNITION MODEL  
 

In this section, the ESN model is presented and explained in detail including the extraction of the handcrafted frame-

based features, reservoir computing weight initialization, dimension reduction, and the classifier used for 

performance evaluation. Fig. 1 shows general architecture of the SER model design which contains the input layer 

for extracting features, reservoir layer for general reservoir state, and readout layer for applying dimension 

reduction, multivariate time series representations, and model classifier. 

 
Fig. 1: The general design of the proposed model 

 

3.1 Input Layer 

 

The input layer contains bidirectional form of the extracted features with both backward and forward directions to 

feed the reservoir layer later.  
 

The most relevant emotion features and the way for extracting them are the important stage that impacts the 

complete model performance and is still a challenge in SER systems. In this study, two sets of handcrafted frame-

based features are extracted, which include 13 MFCCs features and 13 GTCC features. MFCC features are the 

commonly used features in many SER applications because of the capability of having significant emotional 

information and exhibiting remarkable results [27]. On the other hand, the GTCC features are better at handling 

noisy conditions than MFCC. Consequently, an overall of 26 features (13 GTCC and 13 MFCC) are used to feed the 

reservoir layer.  
 

The ESN model suffers from the randomness and the instability since the weights are randomly initialized only once 

and fixed in the reservoir layer [6]. The bidirectionality approach helps in overcoming this problem which feeds the 

data to the reservoir layer in both backward and forward directions to capture additional information independently 

of the input data and increase the memorization ability [28]. 
 

3.2 Echo State Network 
 

Echo State Networks (ESNs) as a simple type and powerful network structure of RNNs was first proposed by [21] to 

learn nonlinear systems. As a special type of RNN family, the modeling and learning procedures are different in 

ESN compared to the traditional RNN models. The ESN model contains three main layers, input layer, reservoir 

layer, and output layer as shown in Fig. 2. The main concept of ESN is that input time series data are fed into a fixed 
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nonlinear system called reservoir which randomly assigns weights without training. Only the output weights, the 

readout, are then trained by a ridge regression classifier.  

  

 
Fig. 2: Basic structure of the ESN model 

As shown by Fig. 2 the input layer contains multivariate time series data which will be multiplied by the input 

weight (W
in

) the output will be processed inside the reservoir layer based on the nodes and their consequent sparse 

weights 𝑊. The frame-based data from the input layer has L-dimensional size for each time step 𝑡 where 𝑡 =
1,2,3, … , 𝑇 and 𝑇 is the total number of frames (time steps) for each sample. Therefore, the 𝑥(𝑡) ∈ 𝑅𝐿  where 𝑥(𝑡) is 

a feature vector row from the 𝑡 time step and 𝑋 = [𝑥(1), 𝑥(2), . . . , 𝑥(𝑇 )]𝑇. The input weight 𝑊𝑖𝑛 ∈  𝑅𝑁×𝐿  where N 

is an internal unit size, and the reservoir weight 𝑊 ∈ 𝑅𝑁×𝑁 are randomly initialized once and remained fixed. The 

reservoir state output 𝑊𝑜𝑢𝑡 ∈ 𝑅𝑁 generated from the reservoir layer over time.  In our case, bidirectional data inputs 

to the reservoir, the two �⃗⃗⃗� 𝑜𝑢𝑡  and �⃗⃗⃗⃖�𝑜𝑢𝑡 are generated based on the following equations: 
 

𝑟𝑠⃗⃗  ⃗(𝑡) = 𝑓(𝑊𝑖𝑛 ∗ 𝑥 (𝑡) + 𝑊 ∗ 𝑟𝑠⃗⃗  ⃗(𝑡 − 1))  

𝑟𝑠⃖⃗ ⃗⃗ (𝑡) = 𝑓 (𝑊𝑖𝑛 ∗ �⃖�(𝑡) + 𝑊 ∗ 𝑟𝑠⃖⃗ ⃗⃗ (𝑡 − 1))      

( 1 ) 

where the 𝑟𝑠⃗⃗  ⃗(. ) and 𝑟𝑠⃖⃗ ⃗⃗ (. ) are the output reservoir state in time 𝑡 for forward and backward input data. To comput 

the 𝑟𝑠⃗⃗  ⃗(. ) and 𝑟𝑠⃖⃗ ⃗⃗ (. ), the generated input weight is multiplied by the current input 𝑥 (𝑡) and  �⃖�(𝑡), respectively, and 

added to the result of the reservoir weight multiplied to the their previous values 𝑟𝑠⃗⃗  ⃗(𝑡 − 1) and 𝑟𝑠⃖⃗ ⃗⃗ (𝑡 − 1), 
respectively.  The 𝑓(. ) is a non-linear activation hyperbolic tangent function. The 𝑡𝑎𝑛ℎ (. ) is a common activation 

function that is used on many ESN models, and it has been adopted in this study too. The overall output  �⃗⃗⃗� 𝑜𝑢𝑡 and 

�⃗⃗⃗⃖�𝑜𝑢𝑡 are the output states where �⃗⃗⃗� 𝑜𝑢𝑡 = [𝑟𝑠⃗⃗  ⃗(1), 𝑟𝑠⃗⃗  ⃗(2), … , 𝑟𝑠⃗⃗  ⃗(𝑇)]𝑇 and �⃗⃗⃗⃖�𝑜𝑢𝑡 = [𝑟𝑠⃖⃗ ⃗⃗ (1), 𝑟𝑠⃖⃗ ⃗⃗ (2), … , 𝑟𝑠⃖⃗ ⃗⃗ (𝑇)]𝑇.  

 

3.2.1 Weight Initialization 
 

Nontrainable weights in the reservoir layer have significant advantages because it makes it computationally cheap, 

which nominates ESN as an ideal suggestion for many real-time applications. Additionally, the applied approach for 

initializing weights is one of the important aspects to increase the learning speed and the performance of any neural 

network model. The traditional ESN models are mostly adopted uniform distribution in the interval [-1,1] to 

initialize the input weight and the reservoir weight.  

 
In this work, to initialize the input weight we proposed the use of truncated normal distribution as one of the most 

important distribution [29] to initialize the input weight. Truncated normal distribution was presented more than a 

century ago [30], however, it has not been used widely in academia until recent years because of the complexity of 

truncated normal distribution numeric characteristics [31]. A truncated normal distribution was proposed by [10] to 

examine trotting horse speeds in order to exclude records that were less than a definite known time. The truncated 

normal distribution helps for adjusting parameters to fit the data by selecting a standard probability distribution.  
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The truncated normal distribution function is presented in the equation below: 

 

𝑓(𝑥; 𝜇, 𝜎, 𝑎, 𝑏) =  

1
𝜎
 𝜙 (

𝑥 − 𝜇
𝜎

)

𝜑 (
𝑏 − 𝜇
𝜎

) − 𝜑 (
𝑎 − 𝜇
𝜎

) 
 

             ( 2 ) 

 

where 𝜇 is the mean value, 𝜎  is the standard deviation, and (a, b) are upper and lower limits of the truncated normal 

distribution. The  𝜙(. ) is a probability density function and 

𝜙(𝑥; 𝜇, 𝜎) =  
1

𝜎√2𝜋
𝑒
(𝑥−𝜇)2

2𝜎2   

and 𝜑(. ) is a cumulative distribution function and 

 

𝜑(𝑥) =  
1

2
(1 + 𝐸𝑅𝐹 (

𝑥

√2
)) 

 

In our study, the value of the mean is adopted to be zero while the standard deviation is fixed as one.  

 

One of the reasons for using the truncated normal distribution for initializing the fixed weights is that the use of the 

tanh activation function will flatten the outputs of values far from the mean which makes it not useful to be trained 

in the next readout. Truncated normal distribution minimizes the chance to have non-trainable weights.   

 

3.2.2 Reservoir Hyperparameters 
 

The reservoir layer has several parameters that have an important role in the model performance such as (1) the size 

of internal unit size 𝑁 where the output weight is based on the size of this parameter, (2) the spectral radius of the 

reservoir weight 𝑊 which helps the stability of the model [32] and affects the short-term memory as values close to 

one, provide a longer memory and the value should be between 0 to 1, (3) the input scaling of the input weight 

where the small value makes the reservoir act around the zero point of their hyperbolic tangent function, (4) the 

connectivity percentage of non-zero connection of the reservoir weight 𝑊 which helps remove the connection 

between neurons in the reservoir, (5) the leaking rate of the reservoir neurons which control the time-scale variance 

between the input weight and reservoir weight [33], (6) the number of drops remove a number of frames at the 

beginning which has little information, and (7) the level of noise as a Gaussian noise added in the state update 

function in Eq. ( 1 ) for regularization reasons [34]. To find the optimal values for all the reservoir parameters, a 

Population-based training method has been adopted. 

 

3.3 Output Layer 

 

Three stages are applied in this layer, firstly, the dimensionality reduction method is applied to reduce the high-

dimensional from output weight, secondly, the reservoir model space is adopted for feature representation and 

classification step to map the reservoir model space output into the emotion class labels y. 

 

3.3.1 Dimensionality Reduction  

 

The high-dimensional sparse reservoir output weights �⃗⃗⃗� 𝑜𝑢𝑡 and �⃗⃗⃗⃖�𝑜𝑢𝑡 are projected to adopt Sparse Random 

Project (SRP) as an unsupervised dimensional reduction approach. The sparse output weights from the reservoir 

layer lead to overfitting and high computational cost, therefore, the SRP method helps to transform the sparse data 

into a more compact representation and reduce the dimensionality of the reservoir output weights. The SPR is an 

unsupervised approach and has a low complexity while it deletes redundancies with minimal loss of information and 

it has nontrainable nature. Additionally, SPR is considered as a powerful approach for dimension reduction in 

machine learning areas [35]. With a focus on developing the efficiency of the projection phase, authors in [36] 

proposed SRP matrix which is defined by: 
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𝑟𝑛.𝑚 = √𝑠

{
 
 

 
 +1  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦   

1

2𝑠

0  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦   1 −
1

𝑠

−1  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦   
1

2𝑠

 

( 3 ) 

 

where 𝑠 can be 1 or 3, but in our work 𝑠 =
1

√𝐷
 and 𝐷 is the size of the original feature from the reservoir output 

weight. For instance, if 𝑠 = 3 means one-third of the data are sampled at random and two-thirds of the whole data 

are removed. Therefore, the low-dimensional multivariate time series output from SRP has a significant impact on 

the next stage of the proposed model which is the feature representations from the reservoir model space.  

 

3.3.2 Feature Representations and Readout 

  

The multivariate time series classification aims to assign a label to sequence data. Some studies tried to find a 

suitable representation for time series data and fed it to classification models. Other studies have adopted a 

traditional distance metric for sequences, Dynamic Time Warping (DTW), from the raw time series data and used a 

suitable learning model. To deal with the multivariate time series output weights from the dimension reduction 

stage, we adopted the reservoir model space as proposed by [8]. Reservoir model space is trained for each time 

series as one-step-ahead prediction before readout to produce a timeless representation of the time series data by 

accounting for all the weight output from SRP. The backward and forward data from SRP are fed to the reservoir 

model space separately. For each time series, ℎ(𝑡) is trained to predict the next data input ℎ(𝑡 + 1) from the 𝑢(𝑡) as 

a current data from SRP output as shown in the equation below: 

 

ℎ⃗ (𝑡 + 1) =  𝑈ℎ⃗⃗ ⃗⃗   ℎ⃗ (𝑡) + 𝑢ℎ⃗⃗ ⃗⃗  

ℎ⃖⃗(𝑡 + 1) =  𝑈ℎ⃖⃗ ⃗⃗ ⃗ ℎ⃖⃗(𝑡) + 𝑢ℎ⃖⃗ ⃗⃗⃗ 
( 4 ) 

and 𝑅ℎ = [�⃗� ℎ; �⃖⃗�ℎ] where �⃗� ℎ = [𝑣𝑒𝑐(�⃗⃗� ℎ); �⃗� ℎ)]  ∈  ℝ
𝑀(𝑀+1), and �⃖⃗�ℎ = [𝑣𝑒𝑐(�⃗⃗⃖�ℎ); �⃖⃗�ℎ)]  ∈  ℝ

𝑀(𝑀+1), 𝑀 is the size 

of the SRP output feature size, and  �⃗� ℎ and �⃖⃗�ℎ can be learned by minimizing a ridge regression loss function. The 

final feature representations from both directions are concatenated as 𝑅ℎ and fed to the classifier which shows in the 

below equation: 

 

𝑦 = 𝑔(𝑅ℎ) 
( 5 ) 

The linear readout is the last step to perform the classification based on 𝑅ℎ which maps into the emotion class labels 

y. 

 

3.4 Hyperparameter optimization 

 

Selecting a significant value for ESN hyperparameters is still a challenge that has a huge impact on the model 

performance. In this study, we adopted Population Based Training (PBT) [37] algorithm in the Sherpa library [38] 

for optimizing hyperparameters in the proposed model. The PBT method is a fusion of the two widely used 

algorithms for hyperparameter optimization which are random search and hand-tuning. It trains and optimizes a 

sequence of networks parallelly and with no computational cost as quickly as traditional methods. The PBT has the 

capability to an automatic finding of hyperparameter schedules, which leads to better performance and stable 

training. In this work, the PBT has been used for optimizing ten hyperparameters, seven from the reservoir layer, the 

dimension size of SRP, regularization parameter of the ridge regression in both reservoir model space and ridge 

regression classifier as shown in Table 2. 
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Table 2: The list of the parameters that have been optimized in the ESN model 

Part Parameters 

Reservoir Internal unit size, spectral radius, connectivity, input scaling, leak, dropout, 

and noise level. 

Sparse Random Projection The dimensionality of the target projection space.  

 

Reservoir model space Regularization parameter of the ridge regression in feature representation. 

Readout Regularization parameter of the ridge regression classifier (readout). 

 

 

4.0 DATASETS AND EXPERIMENTAL SETUP 

 

In this section, the three most common speech emotion datasets are presented which they used to evaluate the 

performance of our proposed model and the experimental setup of implementing the proposed ESN model. 

 

4.1 Datasets 

 

The proposed ESN model is evaluated on two acted datasets EMODB [39] and SAVEE [40] and one non-acted Fau 

Aibo Emotion Corpus [41]. 

 

Berlin Database of Emotional Speech (EMODB) is the most widely used speech emotion dataset for validating SER 

models. It is an acted German speech emotion dataset that involves 7 emotion states 1) anger; 2) boredom; 3) 

anxiety; 4) happiness; 5) sadness; 6) disgust; and 7) neutral. Five professional speakers (5 females and 5 males) 

from the Institute of Communication Science, at Technical University are recorded with a total of 535 utterances. 

All 7 emotions and 10 speaker samples are involved to evaluate our proposed model. 

 

Surrey Audio-Visual Expressed Emotion (SAVEE) is a multimodal emotion dataset that was recorded by four 

English native postgraduate students and researchers from the University of Surrey. SAVEE dataset involves 7 

emotion states such as anger, disgust, fear, happiness, sadness, surprise, and they added a neutral class to provide 7 

emotion categories, and each speaker recorded 120 utterances. 

 

Fau Aibo Emotion Corpus (Aibo) is a non-acted speech emotion dataset that contains 18216 spontaneous and 

emotional German speech samples. A total of 51 samples are recorded from children at ‘Ohm’ and ‘Mont’ schools 

where they interacted with Sony’s pet robot Aibo. First, the dataset had 10 labels and later they mapped it to five 

emotion classes such as anger, emphatic, neutral, positive, and rest. Our work, followed by the protocol of the 

interspeech09 challenge [42], we adopted the ‘Ohm’ samples (9959) as a training set and ‘Mont’ samples (8257) as 

a testing set. 

 

4.2 Experimental setup 

 

The speaker-independent Leave-One-Speaker-Out (LOSO) has been adopted for EMODB and SAVEE datasets and 

speaker-independent based on the protocol of the interspeech09 for the Aibo dataset. The number of samples per 

emotion class in the Aibo dataset is extremely unbalanced. To overcome this problem, the random under-sampling 

[43] approach is applied on the majority classes by randomly picking the fixed number of samples. Meanwhile, the 

test set classes are imbalanced, the performance of all adopted datasets are reported as unweighted average recall 

(UAR). 

 

The Aibo dataset is trained on a PC with 64GB RAM and the other two datasets are trained on Google Colab with 

12GB RAM. Since ESN has a simple architecture without any training in the reservoir layer, it does not need GPU 

or high PC resources, and all experiments are carried out on the CPU. 

 

5.0 RESULTS AND DISCUSSION 

 

In this section, we present the results of this study in terms of precision, recall, and F1 score, in addition to the 

model weighted and unweighted accuracy for each emotion class. All results in this work are shown as unweighted 

accuracy which is more realistic for accurate measurement especially when the test set of datasets are imbalanced. 
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Fig. 3: The confusion matrix of proposed model 

for EMODB dataset. 

Fig. 4: The confusion matrix of proposed model 

for SAVEE dataset. 

Additionally, the match and mismatch between predicted and truth labels are presented as a confusion matrix for all 

experiments. Finally, the results are compared with the recent state of the arts. 

 

5.1 Proposed model results 

 

For the EMODB dataset, the LOSO approach is applied by setting 9 speakers as a train set and one speaker out as a 

test set and repeating the same procedure to assure the contribution of all speakers in the test set. Table 3 shows the 

percentage performance for the EMODB dataset for each emotion class.  

 

 

Table 3: The performance of the proposed model using the 

EMODB dataset. 

Emotion Precision Recall F1 Score 

Anger 77.44 100 87.29 

Boredom 92.50 91.36 91.93 

Disgust 100 84.78 91.76 

Fear 89.29 72.46 80.00 

Happiness 87.23 57.75 69.49 

Sadness 90.62 93.55 92.06 

Neutral 87.06 93.67 90.24 

Unweighted 89.16 84.80 86.11 

Weighted 87.44 86.54 86.06 

 

 

 

The anger emotion class has the highest accuracy where all anger samples were recognized correctly, however, in 

the happiness class almost half the samples were recognized correctly. Fig. 3 presents the EMODB dataset 

confusion matrix between true labels and predicted labels. The 35% of the happiness class were recognized as anger 

which may be a sign that the happiness expressed in high arousal shares similarities with the anger class.  

 

The classification result for each emotion class for the SAVEE dataset is shown in detail in Table 4, where the result 

of each class are shown in terms of F1 Score, recall, and precision, in addition to weighted and unweighted 

classification accuracy. The gap between weighted and unweighted accuracy shows that the test set from the 

SAVEE dataset is unbalanced where unweighted accuracy is 4.05% less than the weighted accuracy. Additionally, 

Fig. 4 presents the confusion matrix for the SAVEE dataset, which clearly shows that the disgust emotion samples 

are mostly recognized as neutral and 40% of the neutral emotion class is recognized as sadness. The neutral emotion 

recorded the highest accuracy, which may contain the doubled samples compared to other classes. 

 

Table 4: The performance of the proposed model using the 

SAVEE dataset. 

 Emotion Precision Recall F1 Score 

Anger 76.81 88.33 82.17 

Disgust 71.88 38.33 50.00 

Fear 78.05 53.33 63.37 

Happiness 72.41 70.00 71.19 

Neutral 66.29 98.33 79.19 

Sadness 63.16 40.00 48.98 

Surprise 68.75 73.33 70.97 

Unweighted 71.05 65.95 66.55 

Weighted 70.46 70.00 68.13 
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Fig. 5: The confusion matrix of proposed model 

for Aibo dataset. 

Table 5 lists the detailed classification results based on precision, recall, and F1 score for the Aibo dataset. We 

notice that the gap between the weighted and unweighted in Aibo is almost doubled compared to the SAVEE dataset 

due to the high imbalance of data in the Aibo dataset. The low accuracy in Aibo dataset compared to EMODB and 

SAVEE reflects that recognizing emotion from speech in a spontaneous dataset is still a big challenge. The 

confusion matrix of the Aibo dataset shows that 33% of the rest class are recognized as positive and 24% as anger, 

where only 17% of samples were recognized correctly, which may be due to having different labels which are 

grouped under the same class (see Fig. 5). 

 

Table 5: The performance of the proposed model using the 

Aibo dataset. 

Emotion Precision Recall F1 Score 

Anger 19.28 67.59 30.00 

Emphatic 38.08 48.41 42.63 

Neutral 82.05 28.57 42.38 

Positive 08.99 68.37 15.88 

Rest 13.48 17.03 15.05 

Unweighted 32.38 45.99 29.19 

Weighted 62.94 35.35 39.01 

 

 

5.2 Comparison with the State-of-the-Art 

 

The use of truncated normal distribution to initialize the input weight, population-based training for optimizing the 

whole 10 hyperparameters, adopting SRP for reducing the high dimensional output weight, and a bidirectional 

approach for capturing more information in our proposed ESN model has helped improve the classification 

accuracy. 

 

The overall results are shown as an unweighted accuracy (UA) which is more realistic than weighted accuracy when 

the datasets are imbalanced. Our proposed model for the EMODB dataset achieved 84.8%, SAVEE dataset 65.95%, 

and Aibo 45.99% UA which outperforms the recent state-of-the-art models that are applying the LOSO approach 

and unweighted accuracy. 

 

Table 6: The Comparison of unweighted accuracies (UA%) of the proposed model for EMODB, SAVEE, and FAU 

Aibo datasets with recent works 

Dataset Method UA% 

EMODB 

[13] Heterogeneous Parallel Convolution Bi-LSTM 84.65 

[11] Parallelized convolutional recurrent neural network 84.53 

[44] Random Deep Belief Networks 82.32 

[45] 3-dimensional attention-based convolutional recurrent neural networks 82.82 

[46] SVM-RBF 71.02 

 [47] GEBF 76.81 

 Proposed Model 84.80 

SAVEE 

[13] Heterogeneous Parallel Convolution Bi-LSTM 56.50 

[47] GEBF 55.00 

[44] Random Deep Belief Networks 53.60 

Proposed Model 65.95 

Aibo 

[48] Deep learning eResNe 41.3 

[49] Bi-LSTM 45.4 

[50] SVM,NN,DNN 45.3 
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[51] MRA+SVM 45.2 

Proposed Model 45.99 

 

The comparison between our work with various new studies that have been conducted recently for classification UA 

speaker-independent experiments are shown in Table 6. Some studies that used deep learning obtained remarkable 

results, for example researchers in [11] [13] [44] [45] have used the EMODB dataset to evaluate the deep learning 

approach and they achieved distinguished results. However, the proposed ESN model is able to outperform these 

deep learning models by achieving 84.80% UA. Authors in [13] adopted the Heterogeneous Parallel Convolution 

Bi-LSTM model and applied speaker-independent for SAVEE dataset and they achieved 56.5% of UA, and Random 

Deep Belief Networks model [44] performed 53.60% UA for SAVEE, however, our method obtained 65.95% UA. 

Unlike EMODB and SAVEE, one can notice the big challenge to gain higher accuracy for the Aibo dataset. The 

highest UA (45.4%) was achieved by using Bidirectional LSTM with attention enhanced FCN [49], however, once 

again our proposed model outperforms the mentioned work by obtaining UA of 45.99%. 

 

6.0 CONCLUSION AND FUTURE WORK 

 

In this study, we proposed a novel ESN architecture for multivariate time series classification by adopting truncated 

normal distribution for generating random connection weights for the input weight and a population-based training 

approach for optimizing the model hyperparameters. Furthermore, the handcrafted frame-based features are adopted 

as input to the model which contains 13 MFCC features and 13 GTCC features. The proposed model used the 

bidirectional reservoir input to increase the memorization capability, and SRP was applied for dimensional reduction 

as a simple, unsupervised, and low complexity approach. Because of the nontrainable nature of ESN, adopting a 

small size of features, applying a fast optimizer, and using the truncated normal distribution to minimize the chance 

of having non-trainable weights, our model is fast and more robust to achieve better performance. The proposed 

model is validated by adopting a speaker-independent approach and the most widely used speech emotion datasets, 

such as EMODB and SAVEE as acted datasets and Aibo as a non-acted dataset. For future work, the parameters of a 

truncated normal distribution which may affect the model performance can be optimized using the same adopted 

optimizer. Additionally, the reservoir model space for feature representations which suffers from producing high 

dimension representation, need to be more investigated to be replaced with model that can produce more convenient 

representation for the classification models. 
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