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ABSTRACT 

In modern networks, network visibility is of utmost importance to network operators. Accordingly, granular network 

traffic classification quickly rises as an essential technology due to its ability to provide high network visibility. 

Granular network traffic classification categorizes traffic into detailed classes like application names and services. 

Application names represent parent applications, such as Facebook, while application services are the individual 

actions within the parent application, such as Facebook-comment. Most studies on granular classification focus on 

classification at the application name level. Besides that, evaluations in existing studies are also limited and utilize 

only static and immutable datasets, which are insufficient to reflect the continuous and evolving nature of real-

world traffic. Therefore, this paper aims to introduce a granular classification technique, which is evaluated on 

streaming traffic. The proposed technique implements two Adaptive Random Forest classifiers linked together using 

a classifier chain to simultaneously produce classification at two granularity levels. Performance evaluation on a 

streaming testbed setup using Apache Kafka showed that the proposed technique achieved an average F1 score of 

99% at the application name level and 88% at the application service level. Additionally, the performance 

benchmark on ISCX VPN non-VPN public dataset also maintained comparable results, besides recording 

classification time as low as 2.6 ms per packet. The results conclude that the proposed technique proves its 

advantage and feasibility for a granular classification in streaming traffic.    

 

Keywords: Network Traffic Classification, Streaming Traffic, Network Management, Incremental Learning, 

Classifier Chain, Granular, Encrypted 

 

1.0  INTRODUCTION 

 

According to a recent white paper by Huawei, the giant technology company forecasted that network operators 

would experience a substantial hike up to ten times in network traffic volume by 2025 [1]. Similarly, Cisco echoed 

the statement by highlighting the explosive growth of global IP traffic, which had grown 189% from 96.1 Exabytes 

per month in 2016 to 278.1 Exabytes per month in 2021 [2]. Additionally, the same report also forecasted the 

number of next-generation applications to hit nearly 300 billion by 2023, effectively changing the network 

landscape in the years to come. Consequently, network management tasks, particularly monitoring and security, 

become more complex for network operators. For example, network operators need to have solid apprehension of 

the network traffic flowing through their networks to carry out appropriate actions, such as quality-of-service (QoS) 

and security implementation. The efficacy of these actions largely depends on the network visibility level acquired 

by network operators. In other words, as the network visibility increases, network operators gain a significant 

advantage to manage their network at a more granular level. Network operators acquire network visibility through a 

process known as network traffic classification. Network traffic classification is extremely crucial in modern 

networks as it allows network operators to know the original application which generated any particular traffic. Due 

to its crucial importance, there have been numerous research efforts to produce network traffic classifiers using 

various innovative techniques [3, 4]. 

 

Among the available network traffic classification techniques include using the port and payload (i.e., deep packet 

inspection (DPI)) information [5]. Although these techniques have succeeded in the past, their effectiveness is 
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continuously diminishing in modern networks. For example, dynamic port allocation leads to non-standard port 

assignment, making the port-based technique obsolete on its own [6]. At the same time, the increasing adoption of 

encrypted protocols, such as the transport layer security (TLS) protocol, encrypts the payload, reducing the 

effectiveness of DPI solutions. As a result, machine learning classifiers emerge as the most promising technique to 

overcome these challenges [7-9]. This is due to its capability to intelligently learn and generalize the model to fit 

various use cases relating to the network domain [10, 11]. Machine learning classifiers mostly utilize statistical 

properties from network packets or flows, such as the average packet and payload sizes, as input features to 

discriminate between different traffic classes [12]. For instance, Cao, et al. [8] and Gómez, et al. [13] utilized 

support vector machines and decision trees, while Lotfollahi, et al. [14] utilized the more advanced deep learning 

algorithm to classify network traffic into various classes. Despite achieving superior performance, existing studies 

portray several limitations, especially in classification granularity and strategy. 

 

Classification granularity generally consists the coarse (i.e., application protocol and type) and fine-grained (i.e., 

application name and service) classification [15]. Although recent studies have started focusing on fine-grained 

classification, most focus on classifying traffic only at the application name level instead of application service [14, 

16]. Application name classification is becoming insufficient to support today's increasingly complex network, with 

numerous applications offering multiple services, such as chatting and video streaming. On the other hand, the 

classification strategy considers offline and online classification. Most studies only consider offline classification, 

which utilizes readily available static data to evaluate the proposed techniques. Although efforts on offline 

classification have shown tremendous progress, they fail to address the practical limitations, such as implementation 

feasibility in a more realistic online classification setting. Indeed, it is more challenging to classify a continuous 

stream of network traffic with high volume and velocity than static data [17]. 

 

Therefore, this paper addresses the two limitations mentioned above by proposing an innovative technique to 

classify streaming network traffic with the highest granularity. To classify network traffic with the highest 

granularity, the proposed technique improvises on the classifier chain approach, which is well known for multi-label 

classification. It is also worth noting that this paper extends from our earlier study, utilizing the classifier chain but 

with batch learning and static data [18]. A classifier chain links multiple classifiers, with each classifier 

incrementally extending its input feature space by taking the output of the preceding classifier, effectively 

maintaining label interdependency between classifiers. Label interdependency is important as it narrows down the 

decision space when classifying similar services (e.g., video streaming) from different applications, such as 

Facebook and Youtube. In this paper, the classifier chain links two incremental classifiers, which are the App and 

Service-Classifier, to classify streaming traffic at both application name and service levels. Additionally, the 

incremental classifier implements the adaptive random forest (ARF) algorithm, which allows it to learn and classify 

continuously whenever new network packets arrive (i.e., streaming). As a result, it removes the need to store any 

static data, as demonstrated in existing studies. Furthermore, this paper also utilizes a highly scalable event 

streaming platform, Apache Kafka, to handle streaming traffic more efficiently.  

 

To evaluate the performance of the proposed technique at both granularity levels, this paper used the ISCX VPN-

nonVPN public dataset [19] and private ground truth. The ground truth process collected the traffic of 43 different 

application services across ten applications from four different locations: a campus network and three home 

networks. The ground truth collection process spanned six months using Grano-GT, a specialized tool to create a 

reliable granular ground truth [20]. Additionally, the experiments conducted in this paper replayed the dataset using 

tcpreplay [21] to simulate streaming traffic. The prequential evaluation showed that the proposed incremental 

technique achieved more than 88% average F1 scores across all granularity levels. In addition, this paper also 

benchmarked the performance against a conventional non-hierarchical classifier (i.e., a flat classifier) and the public 

dataset. In summary, the main contributions of this paper are as follows: 

 

a) A focused performance evaluation on streaming traffic classification to reflect a more realistic scenario in a 

real-world deployment. 

b) A new approach to classify streaming traffic at the application name and service levels using incremental 

learning and classifier chain. 

 

The remainder of the paper is organized as follows. Section 2 discusses the related works and our contribution 

positioning. Section 3 discusses the proposed technique and provides comprehensive interpretations of the overall 

architecture. Section 4 outlines the experimental analysis, and Section 5 discusses the current issues in the domain 

and how to move forward. Finally, Section 6 concludes the paper. 
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2.0  RELATED WORK AND CONTRIBUTION POSITIONING 

 

Network traffic classification has been in the constant spotlight over the last decade. As such, there are numerous 

works to produce the most accurate and reliable network traffic classifier. This section presents a comprehensive 

overview of existing and related works focusing on network traffic classification using incremental learning and 

streaming traffic. This section also outlines our contributions to highlight the key improvements compared to 

existing works. 

 

2.1  Network Traffic Classification Using Incremental Learning 

 

Among the drawbacks of conventional machine learning paradigms, such as supervised and unsupervised learning, 

is the assumption of a complete and readily available dataset. However, a network traffic dataset is seldom complete 

as it is continuous and infinite by nature. Therefore, incremental learning emerges as a promising approach. It 

removes the need for a complete training dataset and enables the classifier to adapt to evolving network traffic 

through partial retraining in the future. Despite that, the implementation of incremental learning for network traffic 

classification is scarce. For example, Loo and Marsono [22] proposed the incremental k-means algorithm to classify 

network traffic into coarse-grained classes with more than 90% accuracy even when utilizing only 10% of labelled 

input flows. The authors also evaluated the proposed technique with streaming traffic and classified 25 thousand 

flows per second. Despite the excellent results, the proposed technique only considered application protocol and 

type granularity, which is insufficient in modern networks. 

 

Besides that, Sun, et al. [23] and Punitha and Mala [24] utilized the incremental adaptation of support vector 

machines (SVM). Incremental SVM largely reduces the algorithm complexity by maintaining the prior support 

vectors during retraining, avoiding a full retraining procedure. In [23], the authors further improvised the initial 

implementation by introducing an attenuation factor to retain valuable information from prior training data and 

recorded more than 90% average accuracy and significant speedup compared to conventional SVM. On the other 

hand, the authors in [24] focused on detecting network attacks, such as denial of service. However, both discussed 

works were also limited to coarse-grained granularity despite demonstrating superior performances. Realizing the 

need for granular classification, Bovenzi, et al. [25] and Chen, et al. [26] proposed incremental learning using deep 

learning algorithms to classify traffic at the application name level. Another crucial advantage of deep learning 

algorithms is that they provide automatic feature representation, eliminating the reliance on manually handcrafted 

features in conventional machine learning algorithms. Besides that, [25] and [26] also demonstrated class 

incremental learning, allowing easy adding of new and unseen classes. However, both studies showed a steady 

decline in performance as new classes increased and only focused on mobile traffic classification. 

 

2.2  Streaming Network Traffic Classification 

 

Most of the proposed techniques mentioned in the previous section utilized static and immutable datasets for 

evaluation. Indeed, besides the scarcity of incremental learning for network traffic classification, evaluating network 

traffic classifiers using streaming traffic also receives little attention and remains a challenge [27]. For example, 

besides the work in [22], Carela-Español, et al. [17] was the only work that focused on using incremental learning 

and evaluated it in a stream setting. The authors utilized the prequential evaluation approach and achieved more than 

95% average accuracy. Prequential evaluation measures the performance of streaming algorithms by monitoring the 

learning evolution over time [28]. In brief, the approach uses the data to test the model first before reusing the same 

data to train the model. It closely resembles the stream setting where an incremental learner classifies the newly 

arrived and unseen data before using them to carry out the training process. Similarly, this paper utilized the 

prequential evaluation approach to measure the performance of the proposed technique. However, this paper also 

simulated streaming traffic using tcpreplay to allow variations in the streaming speed, allowing a more thorough 

evaluation. 

On the other hand, Labayen, et al. [29] proposed a hierarchical classifier consisting of two layers of k-means 

classifier and a random forest layer. Each layer corresponds to hierarchical windows proposed by the authors, which 

are behavioural, flow and classification. These windows allowed the authors to filter multiple user activities in 

network traffic. The proposed technique recorded 97% average accuracy with a classification time of 50 ms per 

classification window. Similarly, our work also proposed a hierarchical classifier by utilizing a classifier chain to 

achieve a more granular classification at the application name and service levels. In [30], the authors proposed using 

a convolutional neural network (CNN) to classify streaming traffic. The proposed technique recorded an impressive 

classification time at approximately 2 ms per packet with more than 90% F1 scores across multiple granularity 
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levels (i.e., protocol, type and name). However, both [29] and [30] used non-incremental algorithms, thus facing 

limitations in addressing evolving network traffic with progressive training. 

Table 1 summarizes the related works discussed previously based on several criteria, such as whether they utilized 

incremental learning and evaluated streaming traffic, the number of features, classifier, number of output classes and 

output granularity level. Moreover, Table 1 also compares the differences between the related works and this paper, 

thus highlighting its significance. For example, most works that utilized incremental learning only produced coarse-

grained classification. This paper extends the output granularity achieved through incremental learning by producing 

a more granular classification (i.e., at the application name and service levels) to address the increasing need for 

network visibility in modern networks. On the other hand, based on Table 1, there is also a clear lack of attention for 

streaming traffic evaluation and even more so for works that combine incremental learning and streaming traffic 

evaluation. This paper takes advantage of such a gap to propose a solution that combines both factors to produce a 

more practical network traffic classification solution that closely represents a real-world use case. 

 

Table 1: Summary of related works 

 

Columns and acronyms are as follows: Incremental learning (IL). Feature dimension (FD). Classifier; + sign 

indicates classifier combinations. Number of output classes (NC). 

Reference IL Streaming FD Classifier NC Granularity 

[22]   11 Incremental k-means 10 Protocol, Type 

[23]   256 Incremental SVM 11 Type 

[24]   9 Incremental hybrid (SVM + 

Unsupervised classifier)  

2 Protocol 

[25]   N/A Incremental deep learning 40 Name 

[26]   N/A Incremental OnevRest neural network 16 Name 

[17]   16 Hoeffding Adaptive Tree 10 Protocol 

[29]   11 Multi-layer classifier (k-means + 

random forest) 

5 Type 

[30]   N/A Convolutional neural network 6 Protocol, Type, 

Name 

This Paper   7 
Adaptive Random Forest with classifier 

chain 
43 Name, Service 

 

2.3  Contribution Positioning 

 

Accordingly, we position our work against similar works in the domain discussed above as follows: 

 

 This paper focuses on the most granular classification levels, which are application name and service. The 

granular classification is crucial to address the increasingly complex modern network that requires more 

network visibility.  

 This paper proposes an innovative technique that handles streaming network traffic instead of readily available 

static datasets to represent a more realistic scenario in a real-world deployment. The proposed technique also 

utilizes the prequential evaluation approach to ensure a fair performance evaluation.    

 This paper takes advantage of the classifier chain to produce a multi-label classification and maintain label 

interdependency between classifiers. Maintaining label interdependency offers a significant advantage in 

narrowing down the decision-making when classifying similar services from different applications. 

 This paper utilizes a novel feature set based on payload length statistics to discriminate traffic at the application 

name and service levels. The improved feature set includes moving statistics (i.e., moving averages) that 

capture the changing dynamics in fine-grained traffic flows. 

 This paper validates the proposed technique on a self-collected dataset and the well-known ISCX VPN-

nonVPN public dataset. Using a public dataset allows for a fair evaluation to prove the effectiveness of our 

work. 
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3.0 METHODOLOGY 

 

In this paper, our proposed technique implements two Adaptive Random Forest (ARF) classifiers linked together 

using a classifier chain to produce a granular network traffic classification at the application name and service 

levels. An ARF classifier is a reliable incremental learner which improvises from the conventional random forest 

and Hoeffding tree. Additionally, this paper evaluates the classifier on a streaming testbed using Apache Kafka. This 

section breaks our implementation into three main phases: dataset and feature extraction, model design with ARF 

and classifier chain and model evaluation on Apache Kafka to better elaborate our methodology. Fig 1 illustrates the 

phases as a workflow where each phase builds progressively to serve the subsequent phases. For example, the first 

phase outputs a base feature set that serves as the second phase's input. 

 

Fig 1: Workflow of the proposed methodology 

 

3.1  Data collection and Feature Extraction 

 

A reliable dataset is crucial for a fair and trustworthy classifier performance evaluation. Therefore, this paper utilizes 

two datasets, namely the public ISCX VPN-nonVPN dataset and our private dataset. The ISCX VPN nonVPN 

dataset is the most used dataset in recent studies [29, 30] and is accessible by request to the authors. It is also among 

the most updated dataset in capture time and granularity levels, making it suitable for this paper. The dataset 

contains raw network traffic captured in a controlled environment, in which synthetic user accounts were created to 

generate traffic from target applications based on predetermined tasks. In addition, the dataset preparation process 

utilized an isolated environment to ensure reliability by shutting unnecessary services and filtering only packets 

bearing the client’s source or destination IP. The 28 GB dataset contains two main categories: traffic with standard 

encryption and encrypted traffic tunnelled through a VPN. Table 2 shows the dataset contents, in which both 

categories have seven application types: browsing, email, chat, streaming, file transfer, VoIP and P2P, totalling 14 

traffic classes for both VPN and non-VPN settings. 

Table 2: ISCX VPN-nonVPN dataset 

Application type Application name 

Browsing Firefox and Chrome 

Email SMPTPS, POP3S and IMAPS 

Chat ICQ, AIM, Skype, Facebook and Hangouts 

Streaming Vimeo and Youtube 

File Transfer Skype, FTPS and SFTP using Filezilla and 

an external service 

VoIP Facebook, Skype and Hangouts voice calls 

P2P uTorrent and BitTorrent 
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Besides the public dataset, this paper also uses a private dataset containing raw browser-based traffic from 43 

different application services across ten applications. The capture process utilized Grano-GT, a specialized tool 

developed to ensure the highest reliability in the collection process spanning six months, from July 2020 to January 

2021. In addition to temporal differences, the dataset also introduced spatial differences by capturing the traffic at 

four different locations, namely three home networks and a campus network. Table 3 lists the different applications 

and services in the dataset, including other details such as the network environment and the generic type. All the 

datasets that make up the private dataset contain the same applications as listed in the application name and service 

column. For example, the USJ-20 dataset was collected at a private 300 Mbps home network and contained ground 

truth traffic traces from various applications and services, such as Facebook, Facebook-comment and Youtube-

video. 

Table 3: Private dataset 

 

Dataset Network Application name and service Application type 

USJ-20 
300 Mbps home 

network 

Facebook: comment, post, video, chat, react Social media 

Twitter: tweet, retweet, upload, video, react Social media 

Youtube: browse, comment, upload, video, 

react 

Video streaming 

KCS-20 
30 Mbps 

home network 

Netflix: video, react Video streaming 

Lazada: browse, buy, chat, react eCommerce 

Shopee: browse, buy, chat, react eCommerce 

AI-20 
30 Mbps 

home network 

Telegram: chat, image, document, video, 

audio 

Messaging 

Web-Whatsapp: chat, image, document, 

video, audio 

Messaging 

WISMA-20 
100 Mbps 

campus network 

Medium: browse, comment, post, react Publishing 

Reddit: browse, comment, post, react Publishing 

 

Another important factor that contributes to the classifier performance is the input features used to discriminate 

between different traffic classes. Table 4 lists the base feature set with the respective details for each feature. The 

base feature set contains seven lightweight features based on payload length. Using features based on payload length 

maintain user privacy as they avoid any payload content inspection. Also, the base feature set requires 100 packets 

at most. Although 100 packets seem relatively large, it produced the best performance considering the complexity of 

distinguishing fine-grained traffic. In the event of a flow containing less than 100 packets, the proposed technique 

still computes the feature statistics, however potentially resulting in sub-optimal performance. Therefore, this paper 

considers the 100-packet requirement a slight limitation in the proposed technique. 

Table 4: Base feature set 

No. Feature Description 

1 protocol Layer 4 protocol, i.e., TCP or UDP 

2 max_avg_payload 
The maximum of average payload length in either 

direction, i.e., source to destination or vice versa 

3 mss_count_100 

The count of packets in the first 100 having the 

payload length equalling the maximum segment 

size 

4 range_10 
The range of payload length for the first ten 

packets, i.e., maximum – minimum 

5 std_10 
The standard deviation of payload length for the 

first ten packets 

6 ma_5 The five-packet moving average for payload length 

7 ma_40_avg_5 
The average of the first five entries of 40-packet 

moving average for payload length 
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3.2 Model Design with ARF and Classifier Chain 

The base feature set listed in Table 4 serves as the input feature to two ARF classifiers: the App-Classifier and 

Service-Classifier. In order to classify at two granularity levels simultaneously, this paper utilizes the classifier chain 

to link both classifiers together. In brief, a classifier chain appends the output from the App Classifier to the initial 

base feature set and becomes the input for the Service Classifier. A classifier chain is ideal for producing an optimal 

granular multi-label classification as it maintains the label dependency between the application names and services. 

Additionally, the proposed framework modifies the original implementation of a classifier chain [31]. The proposed 

technique chains only two ARF classifiers, equalling the target granularity levels (i.e., application name and service) 

instead of creating binary classifiers based on the total traffic classes as in the original implementation. Fig 2 

illustrates the classifier chain implementation, highlighting the feature space extension to introduce the label 

dependency in the Service-Classifier. In more detail, the input of Classifier 2 contains the initial features from 

Classifier 1 together with its output as an extended feature. 

 

Fig 2: Proposed classifier chain implementation 

 

3.3 Model Evaluation on Apache Kafka 

 

Furthermore, we build our testbed setup using Apache Kafka to simplify evaluation in a stream setting. Apache 

Kafka is an open-source distributed event streaming tool for efficient stream processing through its topic-partition 

architecture. Apache Kafka processes streaming data by organizing them into topics. A topic is a user-defined 

collection that scales efficiently by using partitions. These partitions are capable of spanning across multiple 

machines, making them ideal for real-time processing. 

 

In general, the Apache Kafka setup consists of four main modules: Stream Producer, Flow Broker, Flow Consumer 

and Feature Extractor and Classification Broker. Fig 3 shows the overall architecture of the proposed technique. The 

Stream Producer accepts the input data (i.e., PCAP files) and utilizes tcpreplay and PyShark for streaming and 

preprocessing. Tcpreplay takes PCAP files from the dataset and replays them through the network interface in the 

exact order to simulate live network traffic flow. Then, PyShark captures the replayed traffic and extracts the 

payload length and protocol (i.e., the raw features) and 5-tuple information. Both tcpreplay and PyShark serves as 

the message producer to feed the Flow Broker. The Flow Broker accepts the extracted raw features and 5-tuple as 

streams and efficiently splits them into separate partitions based on the 5-tuple. In other words, the Flow Broker 

effectively extracts the flows from the streaming traffic and passes the flows to the Flow Consumer. 
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Fig 3: Overall architecture of Apache Kafka testbed 

The Flow Consumer receives the flows from each partition. The number of partitions in the consumer equals the 

previous broker. Therefore, the Flow Consumer handles each partition (i.e., flow) separately, thus maintaining 

perfect isolation for further flow processing. In the processing phase, the consumer rapidly extracts the base feature 

set, as discussed earlier. Once done, it passes the extracted features, which is now ready for classification to the 

Classification Broker. The Classification Broker consists of multiple partitions that represent separate classification 

processes. All classification processes generated by the partitions go through the App-Classifier and Service 

classifier mentioned in the previous section to produce the granular classification output at the application name and 

service levels. 

 

4.0  RESULTS AND DISCUSSION 

 

This paper conducted two main experiments to evaluate the proposed approach. Namely, the first experiment 

evaluated the proposed technique when classifying traffic using private datasets. We combined all the private 

datasets to introduce spatial and temporal variabilities in the data. In addition, this paper also compared the 

classification performance with the baseline classifiers. The second experiment focused on evaluating the robustness 

of the proposed technique when tested on a public dataset. Furthermore, the evaluation also includes measuring the 

proposed technique's performance in terms of its latency and classification time in a stream setting.  

 

4.1 Performance on private dataset 

Regular classifier updates are critical to ensure that the classifier remains reliable over time. Therefore, this paper 

compared the App-Classifier and a conventional batch learner (i.e., random forest) performance over multiple 

updates using the prequential evaluation technique. The technique divides the dataset into batches and attempts to 

classify them before reusing them to train the model. This experiment tested various batch sizes (i.e., 1000, 10000 

and 100000 packets) to analyze the effects on both classifiers’ performance. Fig 4 illustrates the effect of different 

batch sizes on the F1 scores using prequential evaluation. The horizontal axis represents the packet counts, while the 

vertical axis represents the corresponding F1 scores. From the figure, the incremental App-Classifier recorded a 

lower F1-score in the first iteration (i.e., cold start) but steadily increased and maintained F1-scores higher than 0.9 

throughout the evaluation. On the other hand, the batch learning random forest model recorded decreasing and 

inconsistent F1-scores. This is because batch learning creates a new model from scratch in each iteration, dismissing 

all prior knowledge. In contrast, incremental learning retains prior knowledge and updates progressively. However, 
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the random forest model demonstrated improved performance when using larger batch sizes. Larger batch sizes 

allowed the random forest model to learn more information about the data, hence recording better F1-scores. Unlike 

the random forest, the App-Classifier showed marginal impact on varying batch sizes, thus omitted from Fig 4. 

Despite that, the limitation with batch learning still holds, which explains its inability to surpass App-Classifier in 

the evaluation. The result demonstrated a clear advantage of incremental learning (i.e., knowledge retention), which 

corresponds closely to a real-world use case where the network traffic constantly evolves and requires periodic 

updates. 

 

Fig 4: Prequential evaluation on App-Classifier and Random Forest by batch size 

Table 5 dives into details on the classification results per application for App-Classifier. Based on the results, App-

Classifier demonstrated superior performance at the application name level, achieving perfect accuracy. Generally, 

we expected this outcome as the distinct characteristics of different applications were significant. In other words, 

application classification is a more straightforward task because each application is considerably unique compared 

to higher granularity classification, such as at the application service level. However, we observed a fairer classifier 

evaluation using precision, recall, and F1-score metrics. For example, Shopee, a well-known eCommerce 

application in the Southeast Asia region, recorded lower recall when compared to its precision, indicating higher 

false negatives than false positives. Nonetheless, the recorded performance strongly instantiates the proposed 

technique's strength, including the payload-based features and classifier, to classify at the application name level.
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Table 5: App-Classifier classification results per application 

Application Precision Recall F1-score 

Facebook 1.00 1.00 1.00 

Web-Whatsapp  1.00 1.00 1.00 

Telegram  0.99 0.99 0.99 

Lazada  1.00 1.00 1.00 

Shopee 1.00 0.91 0.95 

Twitter  1.00 1.00 1.00 

Youtube  1.00 1.00 1.00 

Medium  1.00 1.00 1.00 

Reddit  1.00 1.00 1.00 

Netflix 1.00 1.00 1.00 

Macro Average 1.00 0.99 0.99 

On the other hand, Table 6 details Service-Classifier performance per application service. The classification process 

in this stage was more complex than application name classification due to higher granularity and feature similarity 

between the services. As such, Table 6 portrays the effect of such complexity where the Service-Classifier recorded 

a lower overall F1-score at 88%, compared to App-Classifier previously. Table 6 also details the macro average per 

application to highlight application services that were more complex to classify. For example, Youtube recorded 

lower than average scores, especially with Youtube-react. Besides that, Shopee, a leading eCommerce application in 

the Southeast Asia region, also performed poorly. All intra-application services within Shopee recorded F1-scores 

lower than the overall average. Further analysis indicated that some applications utilized the same network flow to 

carry multiple intra-application services. As a result, it affected the classification performance because most of the 

input features were flow-related. For example, based on our experiments, Facebook-comment and Facebook-post 

were generated from a single network flow. Accordingly, Szabó, et al. [32] also highlighted that a traffic flow could 

be used for multiple purposes throughout its lifetime, echoing our findings mentioned previously. Despite that, 

Service-Classifier still managed to produce a commendable performance at the application service level, considering 

the low complexity of the proposed features. 

Table 6: Service-Classifier classification results per application service 

Applications Service Precision Recall F1-score 

Facebook 

comment 0.43 0.23 0.30 

post 0.82 0.92 0.87 

video 1.00 1.00 1.00 

chat 1.00 1.00 1.00 

react 1.00 1.00 1.00 

Macro Average  0.85 0.83 0.83 

Web-Whatsapp 

chat 1.00 1.00 1.00 

image 0.98 0.93 0.95 

document 1.00 0.99 0.99 

audio 1.00 1.00 1.00 

video 1.00 1.00 1.00 

Macro Average  0.99 0.98 0.98 

Telegram 

chat 1.00 0.86 0.93 

image 0.89 1.00 0.94 

document 0.92 1.00 0.96 

audio 1.00 0.90 0.95 

video 1.00 0.99 0.99 

Macro Average  0.96 0.95 0.95 
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Lazada 

browse 1.00 1.00 1.00 

buy 1.00 1.00 1.00 

chat 1.00 0.92 0.96 

react 1.00 1.00 1.00 

Macro Average  1.00 0.98 0.99 

Shopee 

browse 0.75 1.00 0.86 

buy 1.00 0.25 0.40 

chat 0.60  0.67 0.63 

react 0.73 1.00 0.84 

Macro Average  0.77 0.73 0.75 

Twitter 

tweet 1.00 1.00 1.00 

retweet 0.60 0.58 0.59 

upload 1.00 0.98 0.99 

video 1.00 1.00 1.00 

react 1.00 1.00 1.00 

Macro Average  0.92 0.91 0.91 

Youtube 

browse 1.00 1.00 1.00 

comment 0.51 0.75 0.61 

upload 1.00 1.00 1.00 

video 1.00 1.00 1.00 

react 0.44 0.22 0.29 

Macro Average  0.79 0.79 0.79 

Medium 

browse 1.00 0.93 0.96 

comment 0.50 0.33 0.40 

post 0.78 0.84 0.81 

react 1.00 1.00 1.00 

Macro Average  0.82 0.78 0.79 

Reddit 

browse 1.00 1.00 1.00 

comment 0.90 0.95 0.93 

post 0.76 0.70 0.73 

react 0.86 1.00 0.92 

Macro Average  0.88 0.91 0.89 

Netflix 
react 1.00 1.00 1.00 

video 1.00 1.00 1.00 

Macro Average  1.00 1.00 1.00 

Overall Macro 

Average 
 0.89 0.88 0.88 

4.2  Performance on public dataset 

The ISCX VPN-nonVPN dataset is the most widely used in recent works. The evaluation combined application 

services from the same application in the dataset in order to allow evaluation at the application name level. For 

example, the evaluation combined Facebook-audio, Facebook-chat and Facebook-video into a single Facebook 

application. Table 7 shows the classification results. App-Classifier achieved a 0.98 average F1-score, recording F1-

scores higher than 0.8 for all individual applications. The AIM application recorded a 0.89 F1-score, which was the 

lowest score in the evaluation. The result was within expectation as AIM constituted less than 1% of the dataset, 

thus providing little information to App-Classifier during the training process. 
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Table 7: App-Classifier classification results on ISCX VPN-nonVPN dataset 

Applications Precision Recall F1-score 

AIM 0.88 0.90 0.89 

Email 1.00 1.00 1.00 

Facebook 0.98 0.97 0.98 

Gmail 1.00 1.00 1.00 

Hangouts 1.00 1.00 1.00 

ICQ 0.96 0.93 0.95 

Netflix 1.00 1.00 1.00 

Skype 1.00 1.00 1.00 

Spotify 1.00 1.00 1.00 

Vimeo 1.00 1.00 1.00 

Youtube 1.00 0.99 1.00 

Macro Average 0.98 0.98 0.98 

 

Similarly, the Service-Classifier also maintained the superior performance achieved by the App-Classifier when 

evaluated at the application service level. Table 5.24 presents the detailed classification results for the proposed 

approach. Service-Classifier recorded perfect classification for ten out of 14 application services. In addition, the F1 

scores for most application services were more than 0.95, except AIM-chat, which caused an anomaly in the F1-

score range. AIM-chat obtained an inferior recall score of 0.07, indicating substantial false negatives. Further 

inspection revealed that AIM-chat had the lowest samples in the ISCX VPN-nonVPN dataset, causing the classifier 

to underfit the class considerably. 

 

Table 8: Service-Classifier’s classification results on ISCX VPN-nonVPN dataset 

 

Applications Precision Recall F1-score 

AIM-chat 1.00 0.07 0.14 

Email 1.00 1.00 1.00 

Facebook-audio 1.00 1.00 1.00 

Facebook-chat 1.00 0.96 0.98 

Facebook-video 1.00 1.00 1.00 

Gmail-chat 0.98 1.00 0.99 

Hangouts-audio 0.97 1.00 0.98 

Hangouts-chat 1.00 1.00 1.00 

ICQ-chat 1.00 1.00 1.00 

Netflix 1.00 1.00 1.00 

Skype-chat 1.00 1.00 1.00 

Spotify 1.00 1.00 1.00 

Vimeo 1.00 1.00 1.00 

Youtube 1.00 1.00 1.00 

Macro Average 1.00 0.93 0.94 

Fig 5 shows the confusion matrix for the proposed Service-Classifier, highlighting the false negatives in the 

classification. For example, Facebook-chat was slightly misclassified as Gmail-chat, explaining the recall and 
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precision scores for Facebook-chat and Gmail-chat, respectively. Furthermore, the confusion matrix clearly shows 

how the Service-Classifier misclassified the majority of AIM-chat samples as Hangouts-audio (i.e., darker purple-

shaded box at predicted class hangouts-audio) due to underfitting.  

 

Fig 5: Confusion matrix for Service-Classifier on ISCX VPN-nonVPN dataset 

4.3  Latency and Classification Time 

 

The request latency represents the time delay between the Stream Producer and brokers. The evaluation utilized five 

streaming speeds: 10, 30, 100, 500 and 1000 Mbps, based on common speeds offered by local ISPs. In addition, the 

evaluation also considered different partition sizes to analyze their effect on the latency. Table 9 lists the request 

latencies at different speeds and partition sizes, with the lowest recorded times for each partition in bold. The request 

latency ranged from 700 ms to 1000 ms. Interestingly, although the initial expectation was to observe higher 

latencies with increasing streaming speeds, the opposite situation occurred. Based on the table, the average latencies 

across all partition sizes decreased slightly with faster streaming speeds, except at 1000 Mbps. Despite that, the 

latencies were generally consistent at all streaming speeds. The consistency came as an advantage as the increasing 

speeds had minimal effect on the request latencies. Hence, it shows the potential and feasibility of the proposed 

technique to operate in high-speed networks. 

 

Table 9: Request latencies 

 

Speed 

(Mbps) 

Latency (ms) 

Average Partition size 

1 5 10 20 40 

10 900 931 963 1000 981 955 

30 856 863 913 913 960 901 

100 860 873 851 870 893 869 

500 876 870 870 1000 716 866 

1000 889 986 900 982 997 951 

On the other hand, smaller partition sizes generally exhibited lower request latencies. The reason for this situation 

was because of the higher overheads when generating more partitions. However, larger partition sizes translate to 
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better concurrency and scalability as they allow better load distribution in Apache Kafka. Fig 6 illustrates the 

resulting latencies discussed above for better comprehension. From the figure, the request latency exhibited an 

anomaly when using 40 partitions at 500 Mbps streaming speed. The request latency dropped to less than 800 ms, 

well below the 866 ms average latency. The anomaly could be due to several reasons, such as packet drops. 

 

Fig 6: Request latencies at different streaming speeds 

 

The previous evaluation highlighted how smaller partition sizes demonstrated lower request latencies. However, 

Apache Kafka relies on partitions to induce concurrency and scalability in load distribution. In other words, bigger 

partition sizes produce faster classification times as more consumers utilize the partition in parallel. Therefore, it 

presents an interesting trade-off between latency and classification time. The partition size in this evaluation was 

selected arbitrarily with a two-fold sequence starting at the second partition size. Table 10 shows the classification 

time for 1000 packets at different partition sizes. The table shows a significant decrease in classification time where 

a single partition setup recorded 98.4 seconds to classify 1000 packets while a 40 partition setup took only 2.6 

seconds. 

Table 10: Classification time 

Partition Classification time (seconds) 

1 98.4 

5 21.4 

10 11.0 

20 5.2 

40 2.6 

Fig 7 illustrates the results for easier understanding. It was evident that bigger partition sizes resulted in faster 

classification times, depicted by the exponential curve. Recalling the findings from the previous evaluation where 

bigger partition caused higher latencies, the evaluation found that the average cost incurred due to increased latency 

was 10.6%. However, in this evaluation, the improvement in classification time recorded was more than 97% (i.e., 

comparing percentage decrease from a single partition to 40 partitions). On average, the classification took only 2.6 

ms per packet when using 40 partitions, making it feasible for real-time classification implementation. Therefore, 

the evaluation clearly shows the advantage of partitioning in Apache Kafka to reduce the classification time without 

incurring a high cost. As such, it is better to choose bigger partition sizes to improve the classification time of 

streaming traffic significantly. 
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Fig 7: Classification speed on different numbers of partitions 

 

5.0  CONCLUSION 

 

This paper addressed the core issue in network traffic classification for modern networks where granular network 

traffic classification is needed while at the same time being evaluated in a streaming setting to showcase the 

feasibility and reliability of the proposed technique. The issue came to light as most existing works only managed to 

produce up to application name level classification at most, besides being evaluated using a static and immutable 

dataset. In response to the issue, this paper presented a technique to classify network traffic with high granularity at 

the application name and service levels. To achieve this objective, this paper utilized two ARF classifiers linked 

together using a classifier chain. The classifiers also took advantage of seven statistical features based on payload 

length to discriminate between applications and the different services available within the application. 

 

Our experiments demonstrated the reliability and feasibility of our proposed technique. Evaluation on our private 

dataset showed that the App-Classifier achieved a 99% average F1 score at the application name level. The 

impressive performance reflected the effectiveness of the base feature set to differentiate between different 

applications accurately. On the other hand, our proposed technique also maintained commendable performance at 

the application service level. Interestingly, by using the extended feature set that included the output of the App-

Classifier, the Service-Classifier managed to record an average F1 score of 88% despite the greater similarity 

between characteristics of the application services. Furthermore, we also evaluated the latency and classification 

time incurred at different streaming speeds. Our evaluation found that the latency generally remained consistent 

while recording classification time as low as 2.6 seconds per 1000 packets at higher partition sizes. On the same 

note, our proposed technique also achieved significant results when benchmarked against the ISCX VPN-non VPN 

public dataset. 

 

However, our work is currently constrained to a limited number of applications and services because it is highly 

challenging to provide coverage to the massive range of available applications and services. A possible solution for 

future work is to explore unsupervised learning to classify unknown traffic without predefining the data. 

Alternatively, future works are open to improving the proposed technique with class incremental learning to add 

new and unseen classes easier. On the other hand, future works should also focus on producing practical real-time 

traffic classifiers as it is highly likely to be an invaluable technology in the future. Therefore, researchers should 

invest more effort in feature and algorithm optimizations to produce a highly optimized classifier capable of 

handling enormous real-time network traffic streams. We firmly believe the output from these researches would 

pave the way to many other exciting applications, such as real-time network profilers and more efficient network 

management systems. 
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