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ABSTRACT 

 

The overwhelming number of Application Programming Interfaces (APIs) and the lexical gap between novices’ 

programming task descriptions in their search queries and API documentations deter novice programmers from 

finding suitable API methods to be used in their code. To address the lexical gap, this study investigated novice 

programmers’ descriptions of their programming tasks and used the found insights in a novel approach (APIFind) 

for recommending relevant API methods for the programming tasks. Queries written by novice programmers were 

collected and analysed using term frequency and constituency parsing. Four common patterns related to the return 

type of an API method and/or API class that provides an implementation for the API method were found and captured 

in the Novice Programming Task Description Model (NPTDM). APIFind uses NPTDM that was operationalised in a 

rule-based module, a WordNet map of API word-synonyms, a programming task dataset comprising the collected 

queries, a Java API class and method repository, a Stack Overflow Q&A thread repository, and the BM25 model in 

Apache Lucene, to produce the top-5 API methods relevant to a search query. Benchmarking results using mean 

average precision @ 5 and mean reciprocal rank @ 5 as the evaluation metrics show that APIFind outperformed 

BIKER and CROKAGE when the novice queries test dataset was used. It performed slightly better than BIKER but 

slightly worse than CROKAGE when the reduced BIKER test dataset was used. In conclusion, common patterns exist 

in novice programmers’ search queries and can be used in API recommendations for novice programmers. 

 

Keywords: API Recommendation, Novice Programmer, Novice Programming Task Description Model, Rule-

Based, Best Match 25. 

 

1.0 INTRODUCTION 

The use of software libraries or frameworks in software development has become more and more inevitable. The 

functionalities provided by these libraries and frameworks are exposed through application programming interfaces 

(APIs) [1]. Some key benefits of using APIs and the underlying software libraries or frameworks are shorter 

development time and better software quality [2], code reuse, and access to system resources such as graphics, 

networking, and the file system [3]. 

 

APIs are growing in quantity and complexity to provide advanced functions in applications [4]. However, it has been 

found that APIs are difficult to use for all levels of programmers [3]. Novice programmers, in particular, struggled 

with using software libraries [5]. They face a selection barrier, where they find it hard to know which APIs to use for 

their programming tasks [6]. Existing studies used the term “novice programmers” to refer to first-year undergraduate 

computer science students [2, 5, 7]. 

 

To apply a functionality exposed by an API, a programmer typically searches an electronic copy of the official 

documentation of the API for the relevant method to be used in his/her code. With APIs having a huge number of 

classes and an even greater number of methods, finding the correct method of the correct class to be used is difficult, 

even for experienced developers [8]. The success of such a search is very much dependent on the terms the 

programmer uses in his or her search query (also known as a user query). Studies have found that programmers 
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describe their programming tasks using terms different from the terms used in the API documentation, causing a 

lexical gap between programming task descriptions in search queries and API documentation [9], which is also known 

as a vocabulary problem [8]. The mismatch between the terms used in search queries and API descriptions leads to a 

futile search.  

 

Novice programmers seem to experience a more prominent lexical gap compared to more expert programmers. For 

instance, a novice programmer stated the term “form” in his/her search query to find out how to create a window in a 

Java application [10] instead of the term “window” typically used in Java programming and by more experienced Java 

programmers. In addition, a study targeting novice programmers found that, although having the specific name of a 

relevant API element (such as a package, class, data type, or method) as a keyword in a search query is effective in 

finding relevant code examples, novice programmers fail to provide such an element’s name in their search queries 

[2]. For example, when given a programming task to verify whether the structure of an XML file conforms to a given 

XML schema, a novice programmer started with the search query “java xml processing tutorials”, but the search query 

failed to return any relevant code examples. The novice programmer then resorted to reading the API documentation, 

and discovered that the Schema class is relevant to the programming task. Finally, the novice programmer stated the 

API class Schema in his or her reformulated search query “java xml validation against schema”, and found relevant 

code examples [2]. 

 

The lexical gap problem is mainly caused by the inability of programmers to use suitable or domain-specific terms in 

their search queries. On the other hand, API documentations that aim at helping programmers understand and learn 

the structure and functionalities of APIs [1] also have limitations. They typically exhibit a number of content and 

presentation issues, such as incompleteness and insufficiency of information, lack of usage examples, ambiguous, 

unclear, and verbose descriptions [1]. These weaknesses of API documentations greatly affect the usability of the 

APIs. 

 

In the last decade, several studies have developed code search or API recommendation tools to return more relevant 

results to user queries that are related to programming tasks. These API recommendation studies, namely, RACK [11, 

12], NLP2API [13, 14], BIKER [9, 15], CROKAGE [16] [17], and APIRecJ [18], used Stack Overflow (SO) threads 

[19] for training models or mining associations that would be used in their approaches. SO was used in these studies 

as a source of crowdsourced documentation since many programming questions have been posted and answered on 

this Community Question and Answer site. Except for RACK, all the studies mentioned earlier in this paragraph 

constructed word embedding models (such as Word2Vec, FastText, Doc2Vec) from the SO threads and used the 

models in their approaches. All studies (except RACK and APIRecJ) used term weighting techniques such as inverse 

document frequency (IDF), term frequency-inverse document frequency (TF-IDF), and Best Match 25 (BM 25). 

Details of other techniques used by each of the studies can be found in Section 9.0 of this paper. 

 

None of the API recommendation studies mentioned above has any technique, approach, vocabulary, or data in API 

recommendation that caters to the queries from novice programmers, who may describe their programming tasks using 

terms and phrases different from those used in the respective domain. This motivated this study to address the 

aforementioned lexical gap by investigating novice programmers’ descriptions of their programming tasks in search 

queries and how the outcomes of the investigation could be used to recommend desired and relevant API methods for 

programming tasks, to break the API method selection barrier faced by novice programmers. Similar to some existing 

API recommendation studies [9] [12] [16], this study used API search queries as programming task descriptions to 

search for relevant API methods or classes.  

 

This study collected novice programmers’ descriptions of their programming tasks in the form of natural language 

(NL) search queries that they wrote to look for API methods that are relevant to some pre-defined programming tasks. 

The collected queries were analysed to identify common patterns that might exist in novice programmers’ descriptions 

of their programming tasks. The analysis was done using two natural language processing (NLP) techniques, namely, 

term frequency and constituency parsing. Four common patterns related to the return type of an API method and/or 

the API class that provides the implementation for the API method were discovered and captured in Novice 

Programming Task Description Model (NPTDM). 

 

This study also developed a novel API recommendation approach, APIFind. APIFind utilises the collected novice 

programmer queries (in the form of a programming task dataset) and NPTDM that has been operationalised in a rule-

based module (RBM). APIFind expands a search query by appending it with API words found from the WordNet map 
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of API word-synonyms; calculates cosine similarity between the expanded query and the novice programmer queries 

in the programming task dataset to identify relevant API phrases (refer to Section 2.6 of this paper); extracts API 

methods that correspond to the identified API phrases and extracts the descriptions of these API methods from the 

Java API class and method repository (derived from official Javadoc documentation); ranks the relevant API methods 

based on cosine similarity between the expanded query and API methods’ descriptions; filters the ranked list of API 

methods using the return type and/or the API class identified by the RBM; and finds the hyperlinks to related SO 

threads from the SO question and answer (Q&A) thread repository. APIFind uses the BM25 model to calculate cosine 

similarity where applicable. The benchmarking results of the performance of APIFind against two state-of-the-art 

studies using two test datasets show the potential of APIFind in recommending relevant API methods. 

 

This study also developed APIFind into a recommender tool comprising an Eclipse plug-in as the front-end and a 

server component that implements the recommendation phase of APIFind. Novice programmers were recruited to 

evaluate the recommender tool. 

 

The key contributions of this paper are: 

● A novice queries dataset with ground truth Java API methods (Section 2.0 of this paper). It can be used by 

other studies that focus on novice programmers. 

● NPTDM, which distills four common patterns that exist in novice programmers’ descriptions of their 

programming tasks in NL search queries. NPTDM provides some insights on how novice programmers 

compose their search queries and can be used as a reference for further research in NLP of novice programmers’ 

search queries. In addition, NPTDM can be operationalised for actual use in API recommendation tools, as 

exemplified by our RBM. 

● APIFind, a novel approach for recommending relevant Java API methods for novice programmer queries. 

The rest of the paper is organised as follows: Section 2.0 describes the construction of the novice queries dataset. 

Section 3.0 describes the construction of NPTDM. Section 4.0 gives an exemplar use case of NPTDM. Section 5.0 

explains the proposed approach, APIFind. Section 6.0 presents the benchmarking of the performance of APIFind. 

Section 7.0 outlines the implemented recommender tool. Section 8.0 discusses the threats to the validity of results. 

Section 9.0 compares this study with existing related work. Section 10.0 provides the conclusion and future work. 

 

2.0 CONSTRUCTION OF NOVICE QUERIES DATASET  

This study employed a questionnaire survey to collect programming task descriptions in the form of search queries 

written by novice programmers. This section details the survey instrument design, participant selection criteria, pilot 

test, participant recruitment and administration of the survey, survey results, programming tasks, API methods, API 

phrases, API classes, and the novice queries dataset constructed from the collected queries. 

2.1 Survey Instrument Design 

The survey instrument, or form, consists of a cover page and two main sections. The cover page includes a brief 

overview of the study, participant selection criteria, instructions for each section of the survey form, the expected 

participation duration of about an hour, a participation honorarium of RM15, terms and conditions of participation, 

and contact details of the researchers. 

 

In Section 1 (Programming Tasks) of the survey form, participants were presented with some programming tasks. 

Refer to Section 2.6 of this paper for details. Each programming task was given as an executable, partially-completed 

Java program which contains the main method public static void main(String[] args). The main method invokes a 

methodX with specific value(s) passed as the argument(s) for the parameter(s) of methodX and displays the output of 

the invocation of methodX in the console. The main method also provides comments that state the expected output of 

the invocation of methodX. methodX is defined with a specific return type and specific types of parameter(s). The 

participants were asked to write the search queries that they would use in search engines or websites to find the Java 

API method(s) that they would need to use inside methodX. They were also asked to state whether they had previously 

encountered a programming problem that is similar to the given programming task. Each programming task was 

described in the form of a partially-completed Java program instead of in NL sentences so that the task description 

would not influence the participants’ choices of the words or terms to use in their search queries. 
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Section 2 of the survey form contains two parts. Section 2 Part A (Participant details) asks for the participant’s name, 

degree, year of study, programming experience, Java programming experience, and level of English proficiency. 

Section 2 Part B (Participant Experience and Preferences) asks about the difficulties the participant faced while 

learning to program, and the type of information that would help him or her carry out the programming tasks given in 

Section 1 of the survey form.  

 

2.2 Participant Selection Criteria 

As mentioned earlier, existing studies have used the term “novice programmers” to refer to first-year undergraduate 

computer science students [2, 5, 7]. The recruitment of novice programmers for our survey followed stricter participant 

selection criteria as stated here: First-year undergraduate computer science students with less than nine months of 

programming experience, learning Java as their first programming language and have not mastered the Java methods 

or classes in java.io, java.lang, and java.util packages.  

2.3 Pilot Test 

Two participants took part in a pilot study to test the suitability of the survey instrument. Both participants were first-

year undergraduate students pursuing a Bachelor of Computer Science (Information Systems) degree with less than 

nine months of programming and Java programming experience. The participants completed the survey in a face-to-

face meeting.  

 

The participants’ feedback shows that the survey was too long and some instructions were ambiguous. As a result, the 

number of programming tasks in Section 1 of the survey was reduced from 27 to 17. The instructions in Section 1 of 

the survey were also rewritten to be clearer. 

2.4 Participant Recruitment and Administration of the Survey  

After improving the survey instrument, this study managed to recruit 17 participants to participate in the survey. The 

participants were recruited through announcements made by lecturers teaching programming classes at Universiti 

Malaya and Universiti Putra Malaysia. Although the call for participation was advertised several times and an 

honorarium of RM15 was offered for participation, only 17 participants were interested and recruited for the survey. 

This could be due to the long participation duration of about an hour.  

 

Fourteen participants used their laptops to complete the survey in softcopy in front of the researcher. Due to the long 

distance, three participants were unable to meet face-to-face, so they completed the survey in softcopy remotely. The 

researcher briefed all the participants on the purpose of the study and the instructions in the survey instrument before 

they started the survey.  

2.5 Survey Results 

In Section 1 (Programming Tasks) of the survey, 17 search queries were collected for each of the 17 programming 

tasks. Apart from the search queries, the data collected from this section of the survey shows that the participants had 

encountered programming problems that are similar to the given programming tasks before. More than half of the 

participants (ranging from 52.9% to 100%) had come across tasks that are similar to 15 of the given programming 

tasks. 31.4% and 41.2% of the participants had come across tasks that are similar to programming Task 16 (hasNext(), 

next(), nextLine()), and Task 10 (clear()), respectively. This shows that all the given programming tasks are at the 

level of novice programmers, fulfilling the scope of this study, which targeted novice programmers.  

 

The data collected from Section 2 Part A (Participant details) of the survey shows that all recruited participants were 

first-year undergraduate computer science students with less than six months of programming and Java programming 

experience. Therefore, all the participants are novice programmers, as outlined in the participant selection criteria. 

 

In terms of English proficiency, 13 students scored MUET Band 2 – 4 / IELTS Band 5.5 - 7.5 / TOEFL 46 – 109 and 

4 students scored MUET Band 5 – 6 / IELTS Band 8 – 9 / TOEFL 110 – 120. With these higher levels of English 
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proficiency, we assumed that the use of the English language in the survey would not impede these participants’ 

understanding of the tasks to be completed. 

 

In Section 2 Part B (Participant Experience and Preferences) of the survey, participants were asked about their 

programming experience and preferences. Question 1 asks about the difficulties that they faced while learning 

programming. The participants were allowed to choose more than one option.  Fig. 1 shows the participants’ responses 

to Question 1. The majority of the participants (12 out of 17) selected the option “I don’t know how to combine the 

methods”, indicating a coordination barrier. It was followed by a selection barrier where 10 participants chose “I don’t 

know which methods to use” and an understanding barrier where 10 participants chose “the methods did not work as 

expected”. These three barriers were described by Ko et al. [6]. The results show that the API method selection barrier 

is among the top barriers faced by novice programmers. This provides additional justification for this study’s aim to 

mitigate the API method selection barrier by addressing the lexical gap through the recommendation of relevant API 

methods.  

 

Question 2 states “For the search queries you have written in Section 1, which of the following information would 

help you to carry out the respective programming task?”. The participants could choose more than one option. Fig. 2 

shows the participants’ responses to Question 2. The number of participants who chose the Java API method (12 

participants) doubled the number who chose the Java API class (6 participants). This indicates a general preference 

for a method-level recommendation over a class-level recommendation. This supports this study’s focus on the 

recommendation of API methods. The responses from the participants also indicated that the following information 

would help them to carry out the respective programming tasks: the URLs or links to relevant web pages (13 

participants), similar questions asked by others (12 participants), related code snippets (11 participants), the official 

documentation for the method (10 participants), the parameters of the method (6 participants), and other related 

methods (4 participants). We took the findings here into consideration when designing the information to be returned 

together with the API methods recommended by our approach, APIFind.  
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2.6 Programming Tasks, API Methods, API Phrases, and Implementation API Classes 

In the Java Development Kit (JDK), a number of Java classes might implement methods or provide implementations 

for methods that have the same name and the same parameter(s). The java.lang.StringBuilder, java.lang.String, and 

java.lang.StringBuffer classes, for example, all provide a charAt(int index) method. The three versions of the 

charAt(int index) method perform the same functionality of retrieving the character at position index, but for different 

types of strings. We leveraged this characteristic and derived what we termed “API phrases” from the actual Java API 

methods. Following that, an API phrase is used in this study to represent a set of methods with the same name and the 

same parameter(s) that are implemented by different classes. It consists of the name and parameter(s), but not the 

return type of the respective Java API method(s). For instance, the API phrase charAt(int index) is used to represent 

the set of charAt(int index) methods provided by java.lang.StringBuilder, java.lang.String, and java.lang.StringBuffer 

classes. Except for the API phrase parse(String s), which is used to represent the parseInt(String s), 

parseDouble(String s), parseFloat(String s), and parseLong(String s) methods of the respective Wrapper classes, all 

of the API phrases in this study resemble the Java API method(s) that they represent.  

 

By using API phrases, search queries could be collected for an API phrase instead of for each version of the same 

method. For example, search queries could be collected for the API phrase charAt(int index) instead of collected 

separately for each charAt(int index) method provided by the java.lang.StringBuilder, java.lang.String, and 

java.lang.StringBuffer classes. As API phrases contain the names of the respective API methods, which are essential 

verbs that denote actions, they could be used to represent core functionalities provided by Java APIs.  

 

We referred to the list of Java API methods and classes covered in the College Board’s Advanced Placement Computer 

Science A Exam (Java Subset) [20], as outlined in the Java Quick Reference [21], to decide on the Java API methods 

to be covered by this study. The College Board is an educational organisation that prepares students to pursue college-

level education through programs mainly in the United States and Canada. One such program is the Advanced 

Placement Computer Science A program which includes an introductory college-level (undergraduate level) computer 

science course in the Java programming language.  

 

Covering all the API methods from the College Board's Advanced Placement Computer Science A Exam would 

require participants to spend a significant amount of time completing Section 1 (Programming Task) of the survey. 

This could cause a decline in participation and also respondent fatigue, which would reduce the quality of the data 

provided by participants. To avoid that, we excluded API methods whose names are exact terms that are generally 

used outside of the programming domain. For example, sqrt(double x) and abs(double x) were excluded from the 

survey because the term sqrt is commonly used as the symbol or abbreviation for square root, whereas the term abs is 

commonly used to represent the operation to obtain the absolute value of a number. random() was also excluded 

because the method name is the same term used in English to mean “out-of-pattern” or arbitrary. We excluded abstract 

methods but included concrete methods because concrete methods but not abstract methods provide the 

implementations for the functionalities required. 

 

Thirty API phrases were derived based on the remaining API methods. Initially, 27 programming tasks were defined 

to cover the 30 API phrases in the survey instrument. However, the number of programming tasks was reduced to 17 

(covering 22 API phrases) following the feedback from the pilot study’s participants that the survey was too long. We 

removed those programming tasks where both participants in the pilot study stated the method name of the 

corresponding API phrase in the search queries they wrote for the task. For example, the two participants wrote the 

search queries “How to convert string to upper case” and “convert lower case letter to upper case letter” for the 

programming task related to the API phrase toUpperCase(). This task was removed because the words in the API 

phrase toUpperCase() appeared in the search queries written by both participants, indicating there is no lexical gap 

between the API phrase and the queries. The programming tasks related to the following API phrases were removed 

from the final survey instrument: toUpperCase(), toLowerCase(), equalsIgnoreCase(String anotherString), add(E e), 

add(int index, E element), remove(Object o), remove(int index), and indexOf(Object o).  

 

Table 1 shows the 17 programming tasks, their corresponding 22 API phrases, and the API classes that provide 

implementations for the corresponding API methods. For simplicity’s sake, these API classes will be termed 

“implementation API classes” from this point onwards. The 22 API phrases cover 598 actual Java methods in JDK 

13. Some API phrases are closely related and are covered in the same programming task. In particular, programming 

tasks 4, 8, and 17 cover two API phrases each, and programming task 16 covers 3 API phrases.  
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2.7 Novice Queries Dataset 

Since 17 novice programmers participated in the survey, 17 search queries were collected for each of the 17 

programming tasks. The search queries for a programming task that covers more than one API phrase were duplicated 

for each of the API phrases covered by the programming task.  

 

The search queries were mapped to their respective ground truth API phrases. This resulted in 22 sets of search queries, 

namely, one set of 17 search queries for each of the 22 API phrases, which is 374 search queries in total.  

 

We termed the above sets of search queries as the novice queries dataset. We divided the novice queries dataset into 

a novice queries training dataset for use in our APIFind approach and a novice queries test dataset for use in evaluating 

the performance of APIFind. Five queries from each set of queries were selected randomly to populate the novice 

queries test dataset (110 queries = 5 queries × 22 API phrases). The remaining 264 queries were used as the novice 

queries training dataset.  

 

Table 1: Programming tasks, API phrases and implementation API classes 

 

Programming 

Task 

API Phrases Number of Implementation API Class (Class name) 

 

Task 1 charAt(int index) 3 (java.lang.StringBuilder, java.lang.String, 

java.lang.StringBuffer) 

 

Task 2 parse(String s) 4 (java.lang.Integer, java.lang.Double, java.lang.Float, 

java.lang.Long) 

 

Task 3 length() 10 (java.lang.String, java.lang.StringJoiner, java.io.file, etc.) 

 

Task 4 substring(int 

beginIndex);  

1 (java.lang.String); 

 substring(int 

beginIndex, int 

endIndex) 

 

1 (java.lang.String) 

 

Task 5 contains(CharSeque

nce s) 

1 (java.lang.String) 

 

Task 6 replace(CharSequen

ce target, 

CharSequence 

replacement) 

 

1 (java.lang.String) 

 

 

Task 7 split(String regex) 1 (java.lang.String) 

 

Task 8 isLetter(char ch); 1 (java.lang.Character); 

 isDigit(char ch) 1 (java.lang.Character) 

 

Task 9 addAll(Collection<

? extends E> c) 

 

21 (java.util.ArrayList, java.util.HashSet, java.util.LinkedList, 

etc.) 

 

Task 10 clear() 40 (java.util.ArrayList, java.util.HashMap, java.util.Hashtable, 

etc.) 

 

Task 11 contains(Object o) 22 (java.util.ArrayList, java.util.HashSet, java.util.LinkedList, 

etc.) 

 

Task 12 size() 39 (java.util.ArrayList, java.util.HashMap, java.util.Hashtable, 

etc.) 
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Task 13 get(int index) 5 (java.util.ArrayList, java.util.Stack, java.util.LinkedList, etc.) 

 

Task 14 set(int index, E 

element) 

5 (java.util.ArrayList, java.util.Stack, java.util.LinkedList, etc.) 

 

Task 15 nextInt(int bound) 3 (java.util.Random, java.util.SplittableRandom, 

java.util.concurrent.ThreadLocalRandom) 

 

Task 16 hasNext(); 1 (java.util.Scanner); 

 next(); 1 (java.util.Scanner); 

 nextLine() 1 (java.util.Scanner); 

 

Task 17 equals(Object o); 40 (java.util.TreeMap, java.util.Vector, java.util.Properties, 

etc.); 

 clone() 396 (java.util.Base64, java.io.File, java.lang.Double, etc.) 

 

3.0 CONSTRUCTION OF NOVICE PROGRAMMING TASK DESCRIPTION MODEL (NPTDM) 

This section explains the analysis performed on the novice queries dataset, the use of NLP techniques (namely, term 

frequency and constituency parsing) for identifying common patterns in the queries collected, and how the patterns 

are represented in NPTDM.  

3.1 Preliminary Analysis of the Novice Queries Dataset 

A preliminary analysis of the novice queries dataset shows that 88% of the queries contain terms that represent either 

the return types of the ground truth API methods or the implementation API classes. The return types and the 

implementation API classes stated in a search query can be used to narrow down the API methods the user is searching 

for.  

 

The preliminary analysis also shows that 98% of the queries are in the form of sentences. For example, “How to 

combine array lists”. Only 2% of the queries are not in the form of sentences. For example, “clear list, clear set” and 

“method true=false, false=true”. As a result of this finding, we analysed the collected queries at the sentence level 

using constituency parsing in addition to at the word level using term frequency.  

3.2 Finding Common Patterns using Term Frequency 

This study employed term frequency to find common patterns in the novice queries training dataset. Term frequency 

is the frequency of a term or word in a document [22]. In the context of this study, a “document” refers to the set of 

queries collected for a particular API phrase. Following that, term frequency in this study refers to the number of times 

a term appears in the set of queries collected for a particular API phrase.  

 

As mentioned earlier, our preliminary analysis of the novice queries dataset shows that 88% of the queries contain 

terms used to indicate the return type of the sought API methods or the implementation API classes. Therefore, we 

used the return type of API method and the implementation API class to group queries together before analysing them 

to find the common terms in Steps 5 and 6 below. 

 

The steps for finding common patterns in the collected queries by using the term frequency are: 

 

1. Remove all the stop words (such as "a", "an", "and", and "are") from the queries. 

This is to reduce the noise in the calculation of the frequencies of the terms that appeared in the queries (or 

terms’ frequencies). 

2. Calculate and record the frequencies of each remaining term that appeared in the set of queries collected for 

an API phrase.  
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This was done for each of the 22 API phrases’ query sets. For example, it was found that the term “combine” 

appeared 10 times in the set of queries collected for the API phrase addAll(Collection<? extends E> c) and 

this was recorded. 

3. Remove uncommon terms, namely terms that appeared only once in the set of queries collected for an API 

phrase.  

This was done for each of the 22 API phrases’ query sets. Uncommon terms were removed because they are 

not representative of words that were commonly used by different novice programmers to describe the 

programming task related to the respective API phrase. 

4. Remove terms that appeared in more than half of the 22 API phrases’ query sets. 

Common terms (such as “Java”, “method”, and “use”) that novice programmers frequently used in most of 

the queries, regardless of the API phrase the queries were for, were removed. The reason is that terms that 

occur frequently across the entire collection are less useful in discriminating among the documents [22]. This 

study arbitrarily chose half of the API phrases’ query sets as the threshold value because there is no existing 

work available as a reference.  

5. Identify common terms in the queries for the API phrases that correspond to the API methods that have the 

same return type. 

For example, the API phrases equals(Object o), contains(Object o), contains(CharSequence s), isLetter(char 

ch), isDigit(char ch), hasNext(), and addAll(Collection<? extends E> c) all correspond to API methods that 

produce a return value of the boolean data type. The terms that appeared in this group of seven API phrases’ 

query sets were pooled together, and the total frequencies for each term were calculated by adding the 

frequencies of the same term from the seven API phrases’ query sets. 

If a term appears in the queries for more than half of the group of the API phrases, it is a common term for 

this group. For the example above, the terms “check” and “whether” appeared in queries for more than half 

of the seven API phrases, i.e., 5 and 6 of the API phrases, respectively. Therefore, they were the common 

terms for this group of API phrases. 

6. Identify common terms in the queries for the API phrases that correspond to the API methods that have the 

same implementation API classes. 

For example, API phrases contains(CharSequence s), substring(int beginIndex), substring(int beginIndex, 

int endIndex), replace(CharSequence target , CharSequence replacement), and split(String regex) 

correspond to API methods that have the same implementation API class java.lang.String. The terms that 

appeared in this group of five API phrases’ query sets were pooled together, and the total frequencies for 

each term were calculated by adding the frequencies of the same term from the five API phrases’ query sets.  

If a term appears in the queries for more than half of the group of API phrases, it is regarded as a common 

term for this group of API phrases. 

Common terms and the respective pattern found using term frequency: While identifying common patterns using 

term frequency, the terms “check”, “whether”, “boolean”, “true”, or “false” were found exclusively in the queries of 

the group of seven API phrases that correspond to API methods having a boolean return type. The term “check” 

recorded the highest term frequency (49) in the group and appeared in queries for 6 out of 7 API phrases in the group. 

It was followed by the term “whether”, with a term frequency of 14 and appeared in queries for 5 out of 7 API phrases 

in the group. Even though the terms “boolean”, “true”, and “false” scored lower term frequencies, which were 8, 9, 

and 6, respectively, these terms are closely related to the boolean return type, and appeared in queries for most of the 

API phrases in the group.  

 

As a result, the first pattern established is the use of common terms “check”, “whether”, “boolean”, “true”, or “false” 

in queries to look for API methods with a boolean return type. For example, the term “check” appears in the query 

“check if input is part of string”, written by one of the novice programmers to search for the API method 

contains(CharSequence s) that has a boolean return type. This pattern links non-API terms such as “check” and 

“whether” to API methods having a boolean return type. Refer to Pattern 1 in Section 3.4 of this paper for further 

details. 

 

Apart from the above, there was no common term found in queries with respect to API classes and other return types. 
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3.3 Finding Common Patterns using Constituency Parsing 

Constituency parsing analyzes a sentence in groups of words that may behave as a single unit or phrase (aka 

constituent) [22], such as a noun phrase (NP), a prepositional phrase (PP), a verb phrase (VP), and a conjunction 

phrase (CP). An NP refers to a sequence of words surrounding a central noun. A PP has a preposition (such as “to” 

and “into”) followed by an NP. A VP consists of a verb and several other constituents. A CP consists of a word that 

connects words, phrases, or clauses, such as “whether”. 

 

The data type of the value returned by a Java API method is in the form of a noun. It can be either one of the primitive 

data types (such as float and boolean), void, an API class, an API interface, or a collection of one of these (such as an 

array of type float, float[]). The name of an implementation API class of a Java API method is typically a noun as 

well, for example, String and ArrayList. Nevertheless, our preliminary analysis of the novice queries dataset found 

that there are many occurrences where the return type of API methods and the implementation API classes were 

expressed in the form of a phrase, in particular PP or NP, instead of a single noun word in the collected queries. For 

example, most of the queries collected for programming task 12 (related to the size() method) contain the phrases 

“number of elements” or “number of value” which is essentially a PP.  

 

Due to that, constituency parsing was performed to break the collected query sentences into phrases or constituents 

and classify the phrases. The identified phrases were then analysed to find common patterns that are related to the 

return type of API method and/or the implementation API class. This was done for those API phrase groups with no 

common terms found in their corresponding queries when term frequency was applied in the previous step (Section 

3.2 of this paper).  

 

The steps for using constituency parsing to find common patterns in the collected queries are: 

 

1. Identify the types of phrases in the queries by performing constituency parsing on the queries using the 

Stanford CoreNLP API [23]. For example, “get a single character from a string” is one of the queries 

collected for the API phrase charAt(int index). The word “get” forms a VP, the phrase “a single character” 

is an NP, and the phrase “from a string” is a PP. The result of constituency parsing on this query is VP NP 

PP. 

2. Identify the positions of phrases that contain the return type and the implementation API class found in the 

queries. 

For example, in the query “get a single character from a string”, the NP “a single character” contains the 

return type char, and the PP “from a string” contains the implementation API class String. The phrase 

containing the return type was positioned as the first noun phrase (NP1), and the phrase containing the 

implementation API class was positioned as the first prepositional phrase (PP1) in the query sentence. The 

numbering of the phrases was given because more than one occurrence of the same type of phrase might 

appear in a query, for example, there are NP1 and NP2 in the third pattern discovered (refer to Pattern 3 in 

Section 3.4 of this paper).  

3. Identify common patterns of queries. 

Firstly, by analysing the types and positions of phrases containing the return type and the implementation 

API class in the queries, it was found that the return type and the implementation API class were mostly in 

either NP1 or PP1. Secondly, the frequently occurring words found in these phrases were identified. For 

instance, the prepositions “to”, “into”, “in”, “inside”, “from”, and “of” were found in PP1 in most of the 

queries. Thirdly, the relative positions of these phrases were analysed and NP1 was mostly found positioned 

before PP1 in most of the queries. For the example given in step 2, NP1 contains the return type, PP1 contains 

the implementation API class, and NP1 is positioned before PP1. 

 

Common patterns found using constituency parsing: It was found that 63% of the queries for the remaining 15 

API phrases (other than queries for API phrases that correspond to API methods with a boolean return type) contain 

the return type or implementation API class in the first prepositional phrase (PP1) of the queries. Specifically, the 

return types were found in PP1, which contains the prepositions “to” and “into”. Refer to Pattern 2 in Section 3.4 of 

this paper.  

 

56% of the queries for the remaining 15 API phrases have PP1 containing the prepositions “of”, “in”, “inside”, or 

“from”. A slightly more complicated pattern was found for this group of queries. This third pattern is based on the 
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combination of NP1 followed by PP1. The return type can be found as NP1, and the implementation API class can be 

found as NP2 inside PP1, which contains the prepositions “of”, “in”, “inside”, or “from”. Refer to Pattern 3 in Section 

3.4 of this paper. 

 

The remaining 37% of queries for the remaining 15 API phrases were covered in the fourth pattern. If the queries do 

not contain any of the prepositions specified above, NP1 contains either a return type or an implementation API class. 

Refer to Pattern 4 in Section 3.4 of this paper. 

3.4 Novice Programming Task Description Model (NPTDM) 

The patterns discovered from analysing the collected queries using term frequency and constituency parsing are 

captured in NPTDM. Since NPDTM focuses on the terms and constituent structures used in queries, it could cater to 

other programming languages with constructs similar to Java. 

 

NPTDM captures four common patterns that exist in novice programmers’ descriptions of their programming tasks in 

NL search queries written to look for API methods that are relevant to the programming tasks described. These 

common patterns are related specifically to the return type of the API method sought and the implementation API 

class. 

 

The four patterns are described below. These patterns are stated in bracketed notation [22] that is used to represent a 

parse tree of sentences or, specifically, queries in the context of this study.  

 

Pattern 1: [VP check] | [CP whether] | [NP boolean | true | false] 

 

If query S is for finding an API method with a return type of boolean value, S contains either the verb phrase (VP) 

term “check”, the conjunction phrase (CP) term “whether”, or the noun phrase (NP) term “boolean”, “true”, or 

“false”. 

 

The common terms novice programmers used in search queries to look for API methods with a return type of 

boolean value are “check”, “whether”, “boolean”, “true”, or “false”.  

 

This study did not find any common terms that novice programmers use in search queries to look for API methods 

with other return types (such as int, char, and so on) and in search queries that contain implementation API classes. 

 

Pattern 2: [PP1 [TO to | IN into] [NP returnType]] 

 

If query S has its first preposition phrase (PP1) in the form above, i.e., PP1 contains the prepositions “to” or “into”, 

the noun phrase (NP) after the preposition is the return type (returnType) of the sought API method. “TO” is the 

part-of-speech tag for “to”. “IN” is the part-of-speech tag for “into”.  

 

The common pattern novice programmers used to state the return type of the sought API method is to precede it 

with the preposition “to” or “into”. 

 

Pattern 3: [NP1 returnType] [PP1 [IN of | in | inside | from] [NP2 APIclass]] 

 

If query S has its first noun phrase (NP1) followed by its first preposition phrase (PP1) in the form above, i.e., PP1 

contains either the preposition “of”, “in”, “inside”, or “from”, then NP1 is the return type (returnType) of the sought 

API method and/or the noun phrase (NP2) after the preposition is the implementation API class (APIclass). “IN” is 

the part-of-speech tag for “of”, “in”, “inside”, and “from”. 

 

The common pattern used by novice programmers to state the return type of the sought API method and/or the 

implementation API class is to succeed the return type with either the preposition “of”, “in”, “inside”, or “from”, 

or to precede the implementation API class with either one of these prepositions, or to connect the return type and 

the implementation API class with either one of these prepositions. 

 

Pattern 4: [NP1 returnType | APIclass] 



 

 

159 

Malaysian Journal of Computer Science, Vol. 36 (2), 2023 

Recommending Java API Methods Based on Programming Task Descriptions  

by Novice Programmers, pp., 148 - 172  

 

If none of the first 3 patterns is found in query S and query S has its first noun phrase (NP1) in the form above 

where NP1 does not contain the prepositions “to”, “into”, “of”, “in”, “inside”, or “from”, NP1 is either the return 

type (returnType) of the sought API method or the implementation API class (APIclass). 

 

The common pattern used by novice programmers to state the return type of the sought API method or the 

implementation API class is to simply state the return type or the implementation API class. 

 

 

NPTDM provides some insights into how novice programmers compose their search queries. In particular, NPTDM 

shows some common patterns that exist in their queries. NPTDM can be used as a reference for further research in 

NLP on novice programmers’ search queries.  

 

In addition, NPTDM can be operationalised for use in API recommendation tools to analyse search queries submitted 

to these tools and improve the recommendations they produce for novice programmers. In particular, the 

operationalised NPTDM can be used to identify the return type of the sought API method and/or API class that 

provides the implementation for the method. These two pieces of information are important and can be used to narrow 

down API methods that are found relevant to the programming tasks described in the queries. 

 

4.0 EXEMPLAR USE CASE OF NPTDM – THE RBM 

The following presents an exemplar use case of NPTDM. The four common patterns in NPTDM were translated into 

the following if-then rules that were implemented in a rule-based module (RBM) that would be used in our APIFind 

approach: 

 

Rule 1: IF the query contains any of the terms ‘check’, ‘whether’, ‘boolean’, ‘true’, and ‘false’, THEN the return 

type of the sought API method should be boolean. 

 

Rule 2: IF the query contains prepositions, either ‘to’ or ‘into’ in PP1, THEN the noun phrase in PP1 should be the 

return type of the sought API method. 

 

Rule 3: IF the query contains prepositions, either ‘of’, ‘in’, ‘inside’, or ‘from’ in PP1, THEN it should be either 

NP1 is the return type of the sought API method, or NP2 is the implementation API class, or both. 

 

Rule 4: IF none of the rules above applies to the query, THEN NP1 should be either the return type of the sought 

API method or the implementation API class. 

 

The RBM performs the following: checks the terms or words that appear in a user query (or expanded user query) 

against those terms that appear in Rule 1. If none of the terms in Rule 1 is found, the RBM then performs constituency 

parsing on the user query using the Stanford CoreNLP API and analyses the results of the parsing using the remaining 

three rules. The output of the RBM would be the return type of the sought API method and/or the implementation API 

class. 

 

Our APIFind approach produces an initial list of ranked API methods found relevant to a user query. APIFind then 

uses the return type and/or implementation API class identified by the RBM as filters to remove API methods not 

having the identified return type or implementation API class from the initial ranked list of relevant API methods. If 

RBM does not identify any return type or implementation API class, APIFind will accept all the API methods in the 

ranked list without filtering them. 

 

5.0 THE PROPOSED API RECOMMENDATION APPROACH (APIFIND) 

The proposed approach, APIFind, consists of a preparation phase and a recommendation phase. In the preparation 

phase, the following were constructed: a programming task dataset, a WordNet map of API word-synonyms, a Java 

API class and method repository, and a SO Q&A thread repository. During the recommendation phase (Fig. 3), after 
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a user query is expanded using the WordNet map, API phrases relevant to the expanded query are determined from 

the programming task dataset by using the BM25 model in Apache Lucene [24]. Then, API methods (and their 

descriptions) that correspond to these API phrases are extracted from the Java API class and method repository and 

ranked. The ranked list of API methods is then filtered by removing those that do not have the return type or do not 

belong to the implementation API class identified by the RBM. SO Q&A thread repository is then used to find the 

hyperlinks to related SO threads for the top-5 of the filtered API methods. Finally, the top-5 API methods, together 

with the descriptions of the methods’ functionality, parameter(s), and return type, the similar methods, and the 

hyperlinks to the related SO threads, are returned to the user. 

5.1 The Preparation Phase 

The purpose of the preparation phase is to pre-process and construct data that would be used in the recommendation 

phase. This includes the construction of a programming task dataset, a WordNet map of API word-synonyms, a Java 

API class and method repository, and a SO Q&A thread repository. 

5.1.1 The Programming Task Dataset 

The programming task dataset was constructed from the novice queries training dataset. All the queries collected for 

a particular API phrase were extracted from this dataset and stored in a text file dedicated to the API phrase. This was 

done for the 22 API phrases, resulting in a text file for each API phrase. The stop words in the queries in each text file 

were removed. The resulting 22 text files were stored in a folder, and these “documents” were indexed using the BM25 

model in Apache Lucene. The indexing process involved identifying the unique terms or the “vocabulary” of the 

queries for each API phrase, and computing and storing the term frequency (TF) score and inverse document frequency 

(IDF) score for each term in the vocabulary. A correction factor by the length of the text in a file was also computed 

to address the significance of a term in a short text over a longer text [25]. 

 

The resulting programming task dataset is essentially a dataset that contains the terms that novice programmers used 

in the queries that they wrote for finding API methods that are relevant to the respective programming tasks. During 

the recommendation phase, the programming task dataset is used to identify API phrases that are relevant to an 

expanded query. 

5.1.2 The WordNet Map of API Word-synonyms 

As mentioned in the Introduction section, programmers face a “lexical gap”, where they write search queries using 

terms that are different from the ones used in the API documentations. As a result, searching techniques based on term 

matching produce incorrect search results. To alleviate this limitation, this study constructed a WordNet map of API 

word-synonyms to enable the conversion of the terms used in search queries to terms that are used in the API 

documentations. 

 

To construct the WordNet map of API word-synonyms, tokens (specifically words in this case) that appear in each 

API phrase were extracted from the API phrase. This was done by tokenizing the API phrase based on camel case and 

special characters “<”, “>”, “(“, and “)”. The reason for using camel case is that it is a common naming convention 

used in coding [26]. The resulting tokens were converted to lowercase letters. This study calls these tokens “API 

words” since they are words found in an API phrase. As an example, the API words derived from the add(E e) API 

phrase are “add”, “E” and “e”.  

 

Using the Extended Java WordNet Library (extJWNL) [27], the API words found for each of the API phrases were 

then fed to the WordNet lexical dictionary to obtain their synonyms from the synsets (i.e., sets of synonyms) found in 

the WordNet. The API words were stored together with their corresponding synonyms as pairs of API word-synonyms 

in what we called WordNet map of API word-synonyms. 

 

The synset for a particular API word contains possible NL terms programmers might use in the queries they write to 

search for API methods that correspond to the API word. During the recommendation phase, the WordNet map of 

API word-synonyms is used to identify the API word(s) that correspond to the terms used in the user query. The API 

word(s) found will be appended to the user query so that the query will contain words or terms used in the API 

documentation. Refer to Section 5.2.1 of this paper for an example. 
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5.1.3 The Java API Class and Method Repository 

The Java API class and method repository was constructed to store the Javadoc descriptions of API classes and 

methods covered in the scope of this study. The JDK 13 documentation was downloaded in the form of the Javadoc 

HTML files [28]. jsoup was used to identify and extract concrete API classes that cover the API phrases of this study 

from the respective Javadoc HTML files. A total of 598 concrete API classes were extracted. For each concrete API 

class, all its methods and descriptions were extracted by identifying the HTML elements using jsoup. The extracted 

descriptions include the functions of the Java class; the functions of the methods; the parameters, return type, and 

name of the methods; the similar methods; and the related method suggestions. The similar methods were extracted 

from the “See Also” section of a method’s description in the Javadoc HTML file. The descriptions extracted for each 

Java API method were stored in a separate text file. All the text files were then indexed using the BM25 model in 

Apache Lucene. 

 

The Java API class and method repository is used to provide the API classes’ and methods’ descriptions needed in the 

recommendation phase. 

5.1.4 The Stack Overflow Q&A Thread Repository 

As mentioned in Section 2.5 of this paper, the results for Section 2 Part B Question 2 of the survey conducted to collect 

search queries from novice programmers show that novice programmers perceive that the following types of 

information would help them carry out the respective programming tasks described in their search queries: links to 

relevant web pages, similar questions asked by others, and code snippets. To provide this additional information 

together with the API methods recommended for a user query by our APIFind approach, a SO Q&A thread repository 

was constructed. 

 

The SO Q&A threads (posts) were obtained from the Stack Exchange data dump in the form of an XML file. These 

threads were filtered to include only threads with questions that are annotated with a <java> tag and have a positive 

score. Non-Java threads were removed as they were not related. A positive score for a question is the number of 

upvotes given by other SO users for the question. It gives a positive indication of the usefulness or quality of the 

question. Threads with negative scores were discarded to exclude threads with poorly-described questions. 

 

The next step was to identify SO Q&A threads that are related to those API methods that appear in the Java API class 

and method repository constructed earlier. This was done by checking the body text of the accepted answers of the 

SO Q&A threads against the list of API methods that appear in the Java API class and method repository. If the body 

text of the accepted answer of a SO Q&A thread contains any of the API methods that appear in the Java API class 

and method repository, the question ID, question description, corresponding API method(s), and accepted answer of 

the thread were extracted and saved in a text file. This was done for all such SO Q&A threads. The final text file was 

indexed using the BM25 model in Apache Lucene. 

 

In the recommendation phase, the SO Q&A thread repository is used after the top-5 relevant API methods have been 

found for a user query.  

5.2 The Recommendation Phase 

The recommendation phase takes a user query as the input and produces a list of the top-5 API methods that are 

relevant to the user query, together with the descriptions of the methods’ functionality, parameter(s) and return type 

of the methods, similar methods, and hyperlinks to related SO threads. This phase consists of six steps, labelled (1), 

(2), (3), (4), (5), and (6) in Fig. 3, which are explained in the respective sub-sections below.  
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Fig. 3.  The recommendation phase of the proposed approach 

 

5.2.1 Step 1: Expanding the Query using the WordNet Map of API word-synonyms 

This step expands a user query by appending it with API word(s) found in the WordNet map of API word-synonyms. 

Each word in the user query is checked against the WordNet map to see whether the word exists as a synonym for any 

API word in the WordNet map. If it does, the corresponding API word is appended to the user query. For example, 

for a user query “Replace target in a list by position number”, the word “target” exists as a synonym for the API word 

“Object” in the WordNet map. The API word “Object” is then appended to the end of the user query, resulting in an 

expanded query “Replace target in a list by position number object”. 

5.2.2 Step 2: Identifying Relevant API Phrases for the Expanded Query based on Cosine Similarity 

This step identifies relevant API phrases for the expanded query by computing cosine similarity between the expanded 

query and those queries in the programming task dataset by using the BM25 model in Apache Lucene. The cosine 

similarity for the BM25 model used in Apache Lucene is the product of the TF, IDF, and correction factor (CF) scores. 
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𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝐵𝑀25 =  𝑇𝐹𝐵𝑀25 × 𝐼𝐷𝐹𝐵𝑀25 × 𝐶𝐹𝐵𝑀25 

 

An API phrase is taken as relevant to the expanded user query if the value of the cosine similarity is greater than zero 

and irrelevant if the value of the cosine similarity is zero. If relevant API phrases are found, they will be passed to the 

next step. Otherwise, the expanded user query will be passed to the next step instead. 

5.2.3 Step 3: Extracting Relevant API Methods and Their Descriptions 

This step extracts relevant API methods and their corresponding descriptions from the Java API class and method 

repository. The corresponding descriptions include information about the respective classes. 

 

a) If relevant API phrases are found in the previous step, this step identifies the API methods which contain these 

relevant API phrases from the API methods in the Java API class and method repository, and then extracts the API 

methods’ descriptions from the repository.  

 

b) If no relevant API phrases are found in Step 2, this step makes use of the expanded user query instead and computes 

the cosine similarity values between the expanded user query and API methods’ descriptions in the repository by using 

the BM25 model in Apache Lucene. This step then identifies API methods relevant to the expanded user query and 

extracts these API methods’ descriptions from the repository. An API method is taken as relevant to the expanded 

user query if the value of the cosine similarity between the expanded user query and the method’s description is greater 

than zero and irrelevant if the value of the cosine similarity is zero.  

5.2.4 Step 4: Ranking Relevant API Methods 

This step ranks the relevant API methods found in Step 3 based on cosine similarity values between these API 

methods’ descriptions and the expanded user query. The relevant API method with the highest cosine similarity value 

is given the first position in the ranking, the relevant API method with the second highest cosine similarity value is 

given the second position in the ranking, and so on. 

 

If relevant API phrases are found in Step 2, the cosine similarity values between the expanded user query and API 

methods’ descriptions (extracted in Step 3.a) will be calculated first by using the BM25 model in Apache Lucene 

before the ranking of the relevant API methods is performed. 

5.2.5 Step 5: Filtering Ranked List of API Methods using the Rule-Based Module (RBM) 

This step filters the ranked list of API methods obtained from the previous step by removing those API methods with 

return types that are different from the return type identified by the RBM for the expanded user query. It also removes 

from the ranked list those API methods implemented by API classes that do not match the implementation API class 

identified by the RBM. The top-5 methods of the resulting ranked list of API methods (together with the methods’ 

descriptions) are passed to the next step. 

5.2.6 Step 6: Finding Hyperlinks to Related SO Threads 

This step finds hyperlinks to SO threads related to the top-5 relevant API methods discovered in the previous step. It 

uses the BM25 model in Apache Lucene to compute the cosine similarity values between the expanded user query 

and question descriptions of SO threads that are in the SO Q&A thread repository. A SO thread is considered related 

to the expanded user query if the value of the cosine similarity between the expanded user query and the SO thread’s 

question description is greater than zero, and not related if the value of the cosine similarity is zero.  

 

This step then checks the API methods extracted from the accepted answers of the related SO threads against the top-

5 relevant API methods produced by the previous step. If the accepted answer of a related SO thread has one of the 

top-5 relevant API methods, this step then extracts the question ID of the SO thread and uses the ID to construct a 

hyperlink to the original web page of the SO thread. The hyperlink is returned together with the respective top-5 

relevant API method to the user. With the hyperlinks to the related SO threads, the user will be able to navigate to the 

SO threads where the user may find questions that are similar and code snippets that are relevant to the user query. 



 

 

164 

Malaysian Journal of Computer Science, Vol. 36 (2), 2023 

Recommending Java API Methods Based on Programming Task Descriptions  

by Novice Programmers, pp., 148 - 172  

6.0 PERFORMANCE AND BENCHMARKING OF THE PROPOSED APPROACH 

The benchmarking of APIFind was done by comparing its performance with that of BIKER [9, 15] and CROKAGE 

[16] which are state-of-the-art API recommendation approaches. Just like APIFind, they also produce method-level 

recommendations instead of class-level recommendations. Mean Average Precision (MAP@K) and Mean Reciprocal 

Rank (MRR@K) were used as the performance metrics.  

6.1 Test Datasets 

The performance of APIFind was evaluated using two test datasets, which are, the novice queries test dataset and a 

third-party test dataset obtained from the BIKER study [9]. The original test dataset used in the BIKER study was 

constructed by two researchers who manually screened the SO question titles collected in the BIKER study. They 

included those question titles that are related to searching APIs for programming tasks in their test dataset. Out of the 

413 queries in the BIKER’s test dataset, 48 queries are related to the API methods covered by the scope of our study. 

We took the 48 queries as a reduced BIKER test dataset and used it to evaluate the performance of APIFind.  

6.2 Performance Metrics 

This study used MAP and MRR for top-K recommendations as the metrics to evaluate the performance of APIFind. 

These metrics were used in both the state-of-the-art studies, BIKER and CROKAGE. BIKER produced the top-5 

recommendation, and CROKAGE produced the top-1, top-5, and top-10 recommendations. To establish a common 

ground for comparison, K was set to 5 in this study. 

 

MAP@K – Precision is calculated at the occurrence of every single relevant item in the ranked list [12]. Average 

precision is the average of the precision for all relevant items within the top-K results for a given query [12]. In this 

study, “item” refers to an API method. 

 

𝑨𝑷@𝑲 =  
∑ 𝑷𝒌×𝒓𝒆𝒍𝒌

𝑲
𝒌=𝟏

|𝑹𝑹|
         

                  

 

where  

 

AP@K = Average precision for all relevant items within the top-K results 

K = Number of top results considered 

Pk = The precision at the kth result 

relk = Relevance function of the kth result in the ranked list that returns either 1 (i.e., relevant) or 0 (i.e., non-relevant) 

RR = Set of relevant results for a query 

 

When there is no relevant item retrieved in the top-K results (RR = 0), AP is taken to be 0 [29].  

 

Mean average precision is the mean of the average precisions for all the queries in the test dataset, as in the formula 

below [12]. 

 

𝑴𝑨𝑷@𝑲 =  
∑ 𝑨𝑷@𝑲(𝒒)𝒒∈𝑸

|𝑸|
                 

 

where  

 

MAP@K = Mean average precision for all queries from the test dataset 

Q = Set of all queries in the test dataset 

 

 

MRR@K - Reciprocal rank is the multiplicative inverse of the rank of the first relevant item in the top-K results for 

a particular query [12]. Mean reciprocal rank averages reciprocal ranks for all queries in the test dataset, as in the 

formula below [12]. 
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𝑴𝑹𝑹@𝑲(𝑸) =  
𝟏

|𝑸|
∑

𝟏

𝒓𝒂𝒏𝒌(𝒒, 𝑲)
𝒒∈𝑸

 

 

            

       

where  

 

MRR@K = Mean reciprocal rank within the top-K results for all queries in the test dataset. 

rank(q, K) = Rank of the first correct API or the correct code segment from a ranked list of size K. 

 

 

Since APIFind recommends API methods, rank(q, K) in this study refers to the rank of the first correct API method 

and not code segment, from a ranked list of size K. Rank(q, K) is taken as infinity if there is no relevant item returned 

in the top-K results for query q, resulting in the inverse of rank(q, K) to become zero. 

6.3 Benchmarking using the Novice Queries Test Dataset 

The queries from the novice queries test dataset were fed into APIFind, BIKER, and CROKAGE, and the 

recommended results were compared with the corresponding ground truth API methods in terms of MAP@5 and 

MRR@5. Table 2 shows the results, where APIFind outperformed both BIKER and CROKAGE, with a MAP@5 of 

0.777 and a MRR@5 of 0.791 when the novice queries test dataset was used. 

 

Table 2: Benchmarking results 

 

Approach 

Novice queries test dataset Reduced BIKER test dataset 

MAP@5 MRR@5 MAP@5 MRR@5 

APIFind 

 

0.777 0.791 0.520 0.527 

BIKER 

 

0.205 0.205 0.477 0.474 

CROKAGE 

 

0.351 0.353 0.602 0.613 

 

A higher MAP@5 value indicates that, on average, the top-5 API methods produced by an approach for the set of 

queries in the test dataset are of higher precision. Following that, with APIFind achieving the highest MAP@5, the 

results show that, on average, APIFind was able to suggest more ground truth (or correct) API methods as the top-5 

API methods for the set of queries in the test dataset compared to BIKER and CROKAGE. 

 

A higher MRR@5 indicates that the respective approach on average returns ground truth API methods at higher 

positions in the top-5 API methods found for the set of queries in the test dataset. Following that, with APIFind 

achieving the highest MRR@5, the results show that APIFind was able to return ground truth API methods at higher 

positions (or ranks) in the top-5 API methods found for the set of queries in the test dataset compared to BIKER and 

CROKAGE. 

 

APIFind uses the queries in the programming task dataset, which were written by novice programmers. As novices, 

the queries that they wrote may contain terms or phrases that differ from the actual specific terms used in the particular 

domain. On the other hand, the queries used in BIKER and CROKAGE came from SO, and the queries might not be 

written by novice programmers. SO queries tend to be written using terms that are closer to the specific terms used in 

the respective domain. The reason is that SO users are expected to “search and research” first before posting any 

questions [30].  

 

When all three approaches were evaluated using the novice queries test dataset, which consists of queries written by 

novice programmers, it is not surprising that APIFind which uses novice programmers’ queries, performed better than 

BIKER and CROKAGE which use queries that are not novice-specific. 
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6.4 Benchmarking using the Reduced BIKER Test Dataset 

The evaluation was repeated on APIFind, BIKER, and CROKAGE using the reduced BIKER test dataset. When the 

reduced BIKER test dataset was used, one would expect BIKER to achieve better performance compared to the other 

two approaches. The results in Table 2 show otherwise, where CROKAGE performed better than APIFind, which 

performed slightly better than BIKER. 

 

One reason for APIFind to perform better than BIKER could be that the 48 queries in the reduced BIKER test dataset 

are related specifically to the API methods covered by the scope of APIFind, whereas BIKER was built using SO 

queries for any Java API methods. One possible reason for CROKAGE to perform better than APIFind, which was 

built using novice programmers’ queries, is that CROKAGE was built using SO queries that were not specifically 

written by novice programmers, and the queries in the reduced BIKER test dataset were also not specifically written 

by novice programmers, even though the ground truth API methods for these queries are methods that are more at the 

level of a novice programmer. As mentioned in Section 2.6 of this paper, these API methods were selected from the 

list of Java API methods covered in the College Board’s Advanced Placement Computer Science A Exam (Java 

Subset). 

 

As both CROKAGE and BIKER were built using non-novice queries, we could not think of a plausible reason for 

CROKAGE to perform better than BIKER when they were evaluated using the reduced BIKER test dataset.  

 

The evaluation results using the reduced BIKER test dataset show that APIFind, which does not use any data from 

SO as input in finding API methods that are relevant to a user query, was able to achieve quite comparable performance 

to those of BIKER and CROKAGE that use SO data as input. Recall that APIFind uses its SO Q&A thread repository 

in its final step just to get additional information (i.e., hyperlinks to SO threads that are related) for the top-5 relevant 

API methods after these methods are found by the earlier steps.  

 

In summary, the evaluation using the two test datasets shows the potential of APIFind in finding API methods that are 

relevant to novice programmers’ queries (as in the novice queries test dataset) and that are relevant to SO queries or 

questions (as in the reduced BIKER test dataset).  

7.0 ECLIPSE PLUG-IN AND THE BACK-END RECOMMENDER 

APIFind was implemented in a recommender tool comprising an Eclipse plug-in that serves as the front end and a 

server component running at the back end. A user evaluation study was conducted where novice programmers were 

recruited to evaluate the usability of our recommender tool, BIKER and CROKAGE tools, using effectiveness, time-

based efficiency, overall relative efficiency, and System Usability Scale (SUS) scores as evaluation metrics. In 

general, the evaluation results show that our recommender tool performed better than the BIKER and CROKAGE 

tools in terms of effectiveness and efficiency but slightly worse in terms of user satisfaction measured using SUS. 

Further details are given below. 

The APIFind tool achieved 0.82 for effectiveness, 0.0108 for time-based efficiency, 0.808 for overall relative 

efficiency, and 66.0 for SUS. The BIKER tool achieved 0.44, 0.0049, 0.366, and 70.0 for the four metrics, respectively. 

The CROKAGE tool achieved 0.52, 0.0048, 0.533, and 69.5 for the four metrics, respectively.  

The APIFind tool was able to achieve the highest effectiveness (where the participants were able to give the most 

correct answers by using the APIFind tool) and the highest overall relative efficiency (where the participants were 

able to get the correct API methods most of the time), probably because the information provided by the APIFind tool 

for each of the API methods it recommended is sufficient to help a novice programmer in identifying the most suitable 

API method to be used in his or her programming task. This information covers the implementation API class; the 

descriptions of the API method’s functionality, parameter(s), and return type; the similar methods; and the hyperlinks 

to the related SO threads. One of the participants who evaluated the APIFind tool commented that “It makes me know 

more API methods, especially when solving problems. There are explanations that help me identify which methods 

are suitable for the question given.”  

On the other hand, the BIKER tool lacks information that could help a novice programmer find the most suitable API 

method for his or her programming task. This was pointed out by a participant who evaluated the BIKER tool: “I think 
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it needs more explanation on the API method instead of just showing relevant questions and code snippets. Because 

someone like me, who is not very good at programming, does not really understand the code snippets. I need to guess 

whether this method is relevant to what I am searching for based on the relevant questions section. Perhaps it could 

also include some input and output examples for better understanding.” A participant who evaluated the CROKAGE 

tool made a similar observation: “The explanation could be improved, and the user interface will be much more 

comfortable if it is enhanced.” 

The APIFind tool also achieved the highest time-based efficiency (where the participants used the least time to find 

the correct API method for each task). The clean layout of the APIFind tool could have contributed to that. One 

participant who evaluated the APIFind tool stated that the APIFind tool is a “clean and neat tool for searching API 

methods for Java. A quick and useful tool for Java beginners.” On the other hand, one of the participants who evaluated 

the CROKAGE tool commented that “the interface can be more attractive.” This might be because the CROKAGE 

tool provides explanations and code snippets of all suggested solutions on a single web page, causing the page to 

become clustered and long. The BIKER tool has a similar interface, with the descriptions of the suggested API 

methods and the code snippets displayed on a single web page. 

 

The APIFind tool achieved a slightly lower SUS score (66.0) compared to the BIKER (70.0) and the CROKAGE 

(69.5) tools, probably because the participants who evaluated the APIFind tool were required to download and install 

it as a plug-in for the Eclipse IDE. The participants who evaluated the BIKER and CROKAGE tools assessed them 

on their websites. 

8.0 THREATS TO THE VALIDITY OF THE RESULTS 

Internal validity: The following measures were taken to reduce the threats to the internal validity of the results. As 

mentioned earlier, the queries in the novice queries dataset were divided into a novice queries training dataset and a 

novice queries test dataset, and only the novice queries training dataset was used to construct the programming task 

dataset used in APIFind. The novice queries test dataset that was used for benchmarking the performance of APIFind 

was not used in APIFind so that the benchmarking could show how well APIFind would perform when given new 

queries.  

 

The benchmarking of APIFind was also done using a second test dataset, namely, the reduced BIKER test dataset, to 

get a fairer comparison between APIFind, BIKER, and CROKAGE approaches. The quality of the queries in the 

reduced BIKER test dataset remained intact as these queries originated from the BIKER test dataset used in the 

evaluation of BIKER approach [9]. 

 

In addition, for performance benchmarking, this study evaluated the performance of BIKER and CROKAGE by using 

the tools implemented by BIKER and CROKAGE. This ensured that the BIKER and CROKAGE approaches 

evaluated are exactly the same as in their published papers.  

 

External validity: The main threat to the external validity of this study is the use of small datasets in APIFind and in 

the benchmarking of APIFind. There was difficulty in recruiting novice programmers to write search queries. The 

novice queries training dataset used in the construction of the NPTDM and the construction of the programming task 

dataset employed by APIFind comprises 264 queries written by novice programmers. The novice queries test dataset 

used in the benchmarking comprises a different set of 110 queries written by novice programmers. Even though the 

datasets used are small, they are of high quality. A rigorous procedure was designed and followed in collecting the 

queries from the novice programmers and segregating the queries into the novice queries training and test datasets. In 

addition, the benchmarking of APIFind was also done by using a third-party test dataset, i.e., the reduced BIKER test 

dataset that comprises 48 queries. 

 

Another threat is that the novice programmers’ queries collected and used in this study cover only 598 methods in the 

JDK 13 API. Following that, the benchmarking results are not generalizable to other Java API methods not covered 

in this study. However, novice programmers’ queries for more Java API methods can be included in APIFind using 

our current preprocessing code without affecting the core implementation of APIFind. This can be part of our future 

work. 
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Construct and conclusion validity: The performance of APIFind was benchmarked against BIKER and CROKAGE 

using MAP@K and MRR@K. Both MAP@K and MRR@K are established metrics that have been used in a number 

of existing API recommendation studies to measure the performance of their approaches or techniques [9, 13, 16]. 

The use of these reliable metrics aided in mitigating the threats to our study’s construct and conclusion validity. 

 

9.0 RELATED WORK 

Bajracharya and Lopes analysed the usage log of Koders, a commercial code search engine, in terms of the usage data 

(such as duration and activities in each usage session) and the user queries [26]. They analysed the length of queries, 

the distribution and the types of the term (NL term versus code term) in the queries. They found the queries to be very 

short, and the terms used in them were quite diverse. To study the ways in which users express their queries, they did 

a qualitative analysis on 150 randomly selected search sessions from the query log. They discovered 5 different forms 

of lexical structure in the queries that show the different levels of verbosity queries can exhibit: 1) a verbose NL 

phrase; 2) a set of a few NL words; 3) a single word resembling a name used in the source code; 4) an acronym; and 

5) a few lines of code. From the result types expressed in the queries, they found that users seek results at different 

levels of granularity, ranging from an entire system, feature, or entity (such as a class or method) to a certain line in 

code.  
 

Our study differs from Bajracharya and Lopes’ study [26] in that we analysed novice programmer queries, while they 

analysed non-novice queries. In addition, we analysed the novice programmer queries at the syntactic and semantic 

levels, and took the types and positions of the phrases in the queries into consideration when identifying the common 

patterns in the novice programmer queries, and we discovered more specific patterns compared to Bajracharya and 

Lopes’ discovery of the different forms of the lexical structure and the different levels of granularity of results sought 

in queries. 

  

The following presents the main existing studies on recommending relevant API methods or classes for NL queries.  

 

RACK recommends the top-K relevant API classes for an NL query by using the token-/keyword-API associations 

mined from SO threads [11, 12]. RACK uses 3 heuristics to obtain API classes from its token-API pairs database. The 

heuristics are Keyword-API Co-occurrence (KAC) [11, 12], Keyword-Keyword Coherence (KKC) [11, 12], and 

Keyword Pair–API Co-occurrence (KPAC) [12]. The RACK study also derived API Co-occurrence Likelihood and 

API Coherence metrics based on the 3 heuristics. The top-K API classes are ranked based on the aggregated scores of 

the two metrics calculated for each API class. RACK was later outperformed by NLP2API [13, 14] and BIKER [9, 

15]. 

 

Two of the researchers of RACK, Rahman and Roy, proposed the NLP2API [13, 14]. NLP2API used Apache Lucene 

to index SO threads as its corpus. Given a user query, NLP2API retrieves the top-K threads from its corpus and takes 

them as pseudo-relevance feedbacks that are further analysed to identify candidate API classes that will be used to 

reformulate the user query. NLP2API also applies TF-IDF and PageRank to produce four ranked lists of candidate 

API classes and calculates Borda scores for each candidate API class in the four ranked lists. It then uses a FastText 

word2vec word embedding model to calculate the similarity proximity between a query and each candidate API class. 

The similarity proximity score is added to the normalised Borda score to produce a final similarity score for the 

respective candidate API class. The candidate API classes are then ranked based on their final similarity scores.  

 

The work on BIKER used SO Java threads to train a word2vec model, and construct a word IDF vocabulary and a 

knowledge base of API-related SO questions [9, 15]. BIKER identifies the top-50 question titles similar to a query 

from its knowledge base by using the word2vec model and the word IDF vocabulary. It also uses 2 heuristics to extract 

the API methods from the answers to these question titles. It then uses a harmonic mean of SimSO (similarity between 

the user query and SO threads in its knowledge base) and SimDoc (similarity between the query and the API 

description in the official API documentation) to rank the API methods. It returns the top-K API methods with the 

implementation API classes, the full path to the classes’ packages, the official method descriptions, the top-3 similar 

question titles, and the code snippets as the results for a query. 

 

CROKAGE recommends programming solutions (comprising code examples and explanations for the code examples) 

for a programming task query [16][17]. CROKAGE uses the BM25 to select the candidate answers for a query from 
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its Lucene-indexed knowledge base of SO question-answer pairs. It then calculates 4 similarity scores (i.e., semantic, 

API class-based, TF-IDF, and API method similarity) by making use of a FastText model, an IDF Map (containing 

pairs of word and the corresponding IDF value); a combined ranked list of API classes recommended by RACK, 

NLP2API, and BIKER tools; TF-IDF; and the frequency of API methods appearing across multiple candidate answers. 

CROKAGE calculates a final relevance score for each answer to a query by normalising the 4 similarity scores and 

summing the normalised values. It then uses the part-of-speech (POS) structure to compose an NL explanation for 

each suggested code example. CROKAGE was found to be better than BIKER in terms of the relevance of the 

suggested code example, the benefit of the code explanations, and the quality of the overall solution that is made up 

of code and explanation. 
 

APIRecJ uses a Doc2Vec model and the Latent Dirichlet Allocation (LDA) topic modelling to recommend Java API 

classes for NL queries [18]. The Doc2Vec model was trained using SO question titles and is used to find question 

titles that are semantically similar to a query. LDA is applied to the Java API classes (found in the code snippets in 

the accepted answers to these similar questions) to extract a single topic comprising the top-10 Java API classes that 

are relevant to the query. APIRecJ is a less complex approach that makes use of some basic machine learning models, 

in particular, Doc2Vec and LDA. It was found to perform better than RACK and slightly better than NLP2API.  

9.1 Comparison of Studies 

This section explains how our study differs from the existing studies mentioned above in terms of the data and 

techniques used, the query reformulation, and the level of recommendation. 

 

In terms of the data used, all the aforementioned existing studies, RACK [11, 12], NLP2API [13, 14], BIKER [9, 15], 

CROKAGE [16] [17], and APIRecJ [18] used SO threads as the main source of data for API recommendation. They 

utilised SO as crowdsourced knowledge in the API domain to train models or mine associations that would be used 

in their approaches. Our study did not use SO threads for the same purpose because it focused on novice programmer 

queries, and so far there is no feasible way to identify which SO questions were posted by novice programmers. Our 

study used queries that we collected directly from novice programmers. Nevertheless, our study used SO threads for 

a different purpose, namely, to construct hyperlinks to SO threads that are related to the top-5 relevant API methods 

found by the earlier steps of our APIFind approach. 

 

The existing studies, including ours, used a mixture of techniques in their approaches. Techniques related to term 

weighting and word embedding were commonly used among the approaches. In terms of term weighting, NLP2API 

and CROKAGE used TF-IDF; BIKER and CROKAGE used IDF; CROKAGE and our APIFind used the BM25 

model; and RACK and APIRecJ did not use any term weighting technique. In terms of word embedding, NLP2API 

and CROKAGE employed FastText, BIKER used Word2Vec, and APIRecJ used Doc2Vec. RACK and our APIFind 

did not use word embedding. Our APIFind approach used WordNet, the BM25 model, and a novel solution, namely, 

the RBM with the NPTDM. 

 

RACK, NLP2API, CROKAGE, and our study all performed query reformulation, but BIKER and APIRecJ did not. 

 

In terms of the level of recommendation, RACK, NLP2API, and APIRecJ recommend API classes, while BIKER, 

CROKAGE, and our APIFind recommend relevant API methods for a user query. Hence, for RACK, NLP2API, and 

APIRecJ, the user has to go through the methods provided by the recommended API classes to determine a suitable 

method to be used in his or her programming task. For method-level recommendation, BIKER focused on presenting 

information from the API documentation, such as the functionalities and return types of the API methods, as well as 

code snippets for the recommended API methods. CROKAGE emphasised more on code snippets and explanations, 

and the relevant API methods can be found in the code snippets. Our APIFind recommends relevant API methods 

together with the description of the methods’ functionality, parameter(s), and return type, similar methods, and 

hyperlinks to the related SO threads.  

 

Our APIFind was benchmarked against BIKER and CROKAGE since they also produce method-level instead of class-

level recommendations.  



 

 

170 

Malaysian Journal of Computer Science, Vol. 36 (2), 2023 

Recommending Java API Methods Based on Programming Task Descriptions  

by Novice Programmers, pp., 148 - 172  

9.2 Other Studies 

The recent existing studies below are related to API recommendations in some ways, but they are not directly related 

to our work due to the differences in their main purposes and the nature of the techniques (i.e., neural network) used. 

 

Gu et al. proposed DeepAPI, an approach that is based on deep learning to generate API usage sequences, which are 

the sequences of API method invocation, for an NL query [31]. DeepAPI adapts the RNN Encoder-Decoder neural 

language model, encodes a user query into a fixed-length context vector, and generates an API method invocation 

sequence based on the context vector. DeepAPI uses data from GitHub instead of SO. 

 

DEEPANS is a neural network–based approach that addresses unresolved (no asker-accepted answer) and unanswered 

SO questions by finding the most relevant answer for them [32]. DEEPANS comprises three stages: 1) question 

boosting, where a clearer question generated (based on code snippets) using a trained sequence-to-sequence model is 

appended to the original question; 2) label establishment, where pairs of reformulated questions and corresponding 

answers are automatically labelled as either positive, neutral+, neutral−, or negative samples; and 3) answer 

recommendation, where a matching score between a question and an answer candidate is calculated for each of such 

pairs by using a weakly supervised neural network trained with the four groups of training samples. A higher matching 

score will have a higher chance of being chosen as the best answer. The same group of researchers also used the 

sequence-to-sequence model in the question-boosting phase of CODE2QUE [33], a web-based tool that generates 

question titles for code snippets entered by a user.  

 

The work on CCBERT focused on generating SO question titles that could better reflect the corresponding question 

body [34]. A high-quality question title could increase the likelihood of the question being answered by the SO 

community. CCBERT is a model based on deep learning that can address rare tokens and long-range dependencies in 

the bi-modal (text descriptions and code snippets) context of the entire question body. CCBERT uses a pre-trained 

CodeBERT model to encode a question body into hidden representations and a stacked Transformer decoder to 

generate predicted tokens for the question title. CCBERT also uses a copy attention layer to refine the output 

distribution. Both the encoder and decoder perform the multi-head self-attention operation to improve the capturing 

of the long-range dependencies. 

10.0 CONCLUSION AND FUTURE WORK  

This study investigated novice programmers’ descriptions of their programming tasks in search queries and used the 

discovered insight in recommending relevant API methods for the programming tasks to address the lexical gap 

between the novices’ programming task descriptions and the API documentation, and subsequently the API method 

selection barrier faced by novice programmers. Queries written by novice programmers were collected and analysed 

using term frequency and constituency parsing to identify common patterns in the queries. Four common patterns 

related to the return type of an API method and/or API class that provides an implementation for the API method were 

discovered and captured in the NPTDM. 

 

This study also developed a novel API recommendation approach, APIFind, that utilises the NPTDM, which has been 

operationalised in the RBM. APIFind uses the return type and/or implementation API class identified by the RBM to 

filter the API methods found relevant to a search query. APIFind also uses the WordNet map of API word-synonyms 

to expand a search query, a programming task dataset comprised of the collected novice programmers’ queries, a Java 

API class and method repository derived from the official Javadoc documentation, a SO Q&A thread repository, and 

the BM25 model in Apache Lucene to produce the top-5 API methods relevant to a search query.  

 

The benchmarking results show that APIFind with a MAP@5 of 0.777 and a MRR@5 of 0.791 performed much better 

than BIKER and CROKAGE when the novice queries test dataset was used. With a MAP@5 of 0.520 and a MRR@5 

of 0.527, APIFind performed slightly better than BIKER but slightly worse than CROKAGE approaches when the 

reduced BIKER test dataset was used. The evaluation using the two test datasets shows the potential of APIFind in 

finding API methods that are relevant to novice programmers’ queries (as in the novice queries test dataset) and that 

are relevant to SO queries or questions (as in the reduced BIKER test dataset). APIFind was built into a recommender 

tool, and evaluation by novice programmers shows that it exhibited better effectiveness and efficiency but slightly 

lower user satisfaction compared to the BIKER and CROKAGE tools. 
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In conclusion, common patterns exist in novice programmers’ queries and can be used in API recommendations for 

novice programmers. Future work includes collecting more novice programmers’ queries for more API methods, 

preferably by constructing a mechanism to identify and mine novice programmers’ queries automatically from SO. 

With a larger dataset, more common patterns that exist in novice programmers’ queries may be discovered and then 

used to expand the NPTDM. The larger dataset can also be used to improve APIFind.  
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