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ABSTRACT 

Cardio Vascular Diseases (CVD) are most common medical abnormalities in modern times. According to World 

Health Organization (WHO), the CVD related deaths spot is higher and increased due to chronical reasons such 

as unhealthy lifestyle, food habits, geographical changes and comorbidities from genetic history. The studies are 

focused on one particular causes as it trends to eliminate the comorbidities influencing the secondary causes. 

Hence a large unbalanced prediction and independent datasets are created and customized. In this research, the 

authors have aimed to propose dataset standardization on CVD. The proposed standardization is based on 

attribute interdependency mapping and indexing. The attribute interdependency from one influencing parameter 

is aligned and coordinated with secondary attributes from relationship/dependency evaluation. Further, the 

dependency mapping is simplified by layering and customizing the data attributes. The multi-dimensional CVD 

datasets extracted in this process is mapped and tracked from feature engineering process. The dataset 

standardization of CVD is novel and first of its kind in data analytics and processing.  

Keywords: Cardio Vascular Diseases (CVD); dataset standardization; machine learning; CVD; data 

processing; multidimensional datasets. 

1.0  INTRODUCTION 

Cardiovascular disease (CVD) encompasses a spectrum of pathologies affecting the cardiovascular 

system and ranks as a prominent global health concern. The historical evolution of CVD elucidates the progression 

of medical knowledge. Ancient civilizations demonstrated recognition of cardiac disorders, while the 19th century 

initiated the establishment of systematic cardiology. Substantial strides in CVD diagnosis and treatment emerged 

during the 20th century, exemplified by the creation of the electrocardiogram and landmark investigations like the 

Framingham Heart Study, elucidating key risk factors. Surgical advancements, including coronary artery bypass 

grafting and angioplasty, marked the late 20th century. In the 21st century, cutting-edge imaging modalities and 

the implementation of personalized medical approaches have enriched our comprehension and therapeutic 

strategies for CVD. Nevertheless, persistent challenges arise, notably the escalating prevalence of CVD attributed 

to sedentary lifestyles and dietary choices. As such, the battle against CVD retains its pivotal status within modern 

healthcare. 

Cardiovascular Diseases (CVD) represent the prevailing health disorders in contemporary society, a fact 

substantiated by the World Health Organization (WHO) and corroborated by data [1] indicating a concerning rise 

in CVD-related mortality, which has surged from 2.26 million in 1990 to an alarming 4.77 million in 2020. This 

surge in mortality underscores the heightened gravity of the issue. Notably, the urban population with a 

metropolitan lifestyle is experiencing a significant increase in CVD mortality, reaching a striking 13.4%. The 

primary aim of this research is the establishment of a standardized dataset for the systematic evaluation and 

validation of chronic CVD occurrences. The research manuscript is constructed around the integration of three 

distinct and independent CVD datasets, thereby creating a comprehensive, multidimensional CVD dataset. This 

dataset's ambit extends to encompass multiple layers of attribute dependencies and features, ultimately facilitating 

early-stage CVD normalization and risk assessment. 

2.0  RELATED WORK 

Cardiovascular Diseases (CVD) and the corresponding challenges they present have become prominent 

focal points of contemporary research. One of the primary limitations hindering such research efforts is the scarcity 

of comprehensive datasets. Typically, available datasets are tailored to address specific facets of CVD, neglecting 

the intricate interconnections among attributes and their collective impact on CVD decision-making processes. 
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The fundamental objective of this survey is to delve into the multitude of parameters and attributes that play a role 

in CVD validation, with the ultimate aim of establishing a robust foundation for informed decision support. In a 

noteworthy contribution, a study detailed in [1] has been introduced, focusing on CVD classification and prediction 

through the utilization of Machine Learning (ML) and Deep Learning (DL) techniques. This research relies on 

extensive data mining efforts to unearth meaningful patterns that aid in CVD classification. Yet, a significant 

research challenge persists, involving the accurate identification of CVD occurrences within the dataset. 

Addressing this concern, another study outlined in [2] has devised an enhanced preprocessing methodology, 

offering improved predictive capabilities and CVD classification. This approach represents a critical step toward 

more accurate and reliable CVD decision support systems. 

Machine learning models play a pivotal role in bolstering the reliability of decision support systems 

concerning Cardiovascular Disease (CVD) by enabling the meticulous mapping of CVD parameters and attributes 

while facilitating the extraction of interconnected features. This study, referenced as [3], contributes significantly 

to the discourse on advancing CVD modeling and monitoring through the integration of Machine Learning (ML) 

techniques. Notably, it addresses the persistent challenge of model overfitting and randomization, a hurdle 

mitigated by the work presented in [4][6]. In this endeavor, an enhanced validation technique is introduced, 

involving the construction of a multi-layer decision tree that takes into account the interdependencies among 

attributes. This approach facilitates the comprehensive indexing of attributes in conjunction with their correlated 

features, ultimately enhancing the accuracy of CVD prediction and classification. It is crucial to note that the 

validation process detailed in [4] is confined to a refined dataset, leading to the subsequent exploration presented 

in [5][6][7]. This latter study introduces an innovative approach aimed at customizing CVD prediction through a 

rigorous risk estimation framework. By doing so, it extends the frontiers of CVD research towards more tailored 

and effective decision support systems[8]. 

Datasets serve as a linchpin in the intricate realm of cardiovascular disease (CVD) research, and their role 

is inherently interwoven with the quality of results and predictive capabilities generated by the models. However, 

a prevalent limitation in the current landscape of CVD studies, often exemplified by references [9] and [10], is the 

utilization of datasets that are predominantly unidimensional or narrowly focused on specific attributes, such as 

isolated data on blood pressure, cholesterol levels, or a handful of isolated factors. This one-dimensional approach 

to dataset construction neglects the complex and interconnected nature of the various parameters associated with 

CVD, resulting in models that may lack comprehensive predictive power. Breaking away from this conventional 

approach, a pioneering study documented in [11] delves into the potential of cross-domain-based CVD prediction. 

This paradigm shift involves the integration of datasets from other medical domains, notably datasets pertaining 

to kidney-related health. By doing so, it enables the validation of the intricate interdependencies among attributes 

and influential variables that contribute to CVD prediction. This cross-domain approach heralds a more holistic 

understanding of CVD, as it acknowledges the multifaceted nature of the disease and its interactions with various 

aspects of health. 

Further, the research outlined in [12] and [13] [14] builds upon the foundation laid by this cross-domain 

strategy. These studies highlight the importance of cross-domain attribute mining and pattern extraction as 

essential components of CVD decision-making processes. Such approaches permit a more nuanced analysis of 

CVD by uncovering intricate patterns and relationships between variables from different domains, ultimately 

enhancing the precision of CVD prediction and decision support systems. [15] [16] Thus, the pressing need for 

multi-dimensional and customized standardized CVD datasets becomes abundantly clear in the context of higher-

order research and analysis. Such datasets act as a cornerstone for pioneering advancements in CVD research, 

affording researchers the tools necessary to comprehensively explore the multifaceted nature of CVD, extract 

meaningful patterns, and deliver more precise predictions and insights. 

3.0  PROBLEM STATEMENT 

The Cardio Vascular Diseases (CVD) datasets are retrieved, archived and managed via independent data 

repositories. This scenario makes the overall processing and computation a challenging task. Consider the scenario 

of computing CVD occurrence of age group (25 – 45 years), the typical considerations are bound to Electronic 

Health Records (EHR) based attributes (finite set) as {𝐴𝐷𝑀1, 𝐴𝐷𝑀2, 𝐴𝐷𝑀3 … 𝐴𝐷𝑀𝑛} and making a scenario 

of (𝐷𝑀𝜖𝐴𝐷𝑀𝑖)0
𝑛 and thus attributes associated to external source datasets (i.e.) (DS) is not compatible as 

(∀𝐴𝐷𝑀𝑖 ⊑ 𝐷𝑀)&(𝐷𝑀 ∉ 𝐷𝑆) ⟹ (𝐷𝑆 ∉ 𝐴𝐷𝑀𝑖). This theory of analysis complicates the processing as shown in 

below figure. 1. 
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Fig. 1: Independent computation of datasets with isolative attribute extraction and storage in centralized 

server (Cloud) 

Thus from Fig. 1, we can draw a conclusion for reflective processing and customization of datasets from 

centralized servers. Since cloud is a centralized platform for storage, the processing of feature engineering is 

aligning multi-source datasets is challenging task. Thus, the resultant computation of these independent datasets 

can generate multi-dimensional CVD datasets and standardization. 

4.0 MATERIALS AND MATHEMATICAL MODEL 
 

4.1 Methodology 

The proposed system is aimed to process and develop a multi-dimensional dataset on CVD. Thus the initial 

representation includes a series of datasets (𝑆1, 𝑆2,, 𝑆3 … . ) and aggregated in a single source of operation (i.e.) data 

aggregator. Typically, the dataset collected from these sources are independent and have not direct coordination’s 

from one attribute to another. The data aggregator collects datasets and provides a primary repository dataset for 

computation. This repository is treated as pre-trained source of this proposed system under initial cycle of training 

and labeling. The process is accompanied with attribute extraction and dependency mapping of the pre-trained 

CVD datasets such as (𝐴1, 𝐴2,, 𝐴3 … . ) are extracted. Each attribute value is summarized to the maximum isolation 

and hence the dependencies are mapped as shown in Fig. 2.   

The dependency mapping and attribute indexing is taken up as a next phase of computation. The dependency 

(𝐷1 , 𝐷2,, 𝐷3 … . ) is extracted from 1st layer to nth layer of mapping phases termed as layer mapping. Hence the 

resultant mapping values are customized and pre-trained labels are computed towards data standardization process. 

The generation of each layer and individual participations is demonstrated in Fig. 3 (Classification diagram). The 

phase includes a detailed multi-source dataset collection, dataset aggregation, attribute extraction unit and feature 

engineering phase for the generation of nth layer multi-dimensional CVD datasets. 

4.2 Data Aggregator 

The proposed system is developed with the objective to extract and evaluates the dataset from multiple 

sources and repositories. The CVD datasets are typically aligned and are codependent to include the relevance of 

parameters and attributes. The CVD datasets used in this research study are MIMIC – III (i.e.) Medical Information 

Mart for Intensive Care datasets, Framingham Heart Study (FHS), Cleveland Heart Diseases (CHD) datasets and 

Arthrodesis risk in communities (ARIC) datasets for the process of interdependency mapping and multi-

dimensionality dataset creation. The inclusiveness of these datasets are further corresponsive to the 

interdependency attribute and feature mapping for developing the complex interdependency maps of CVD datasets 

in general. Fig. 4 represents the attribute feature corelationship mapping. The attribute dependencies and 

complexity is evaluated with the minimal indexing ratio of each attribute with its parallel association to create a 

feature parameter. Thus according to Fig. 4, the computation of each independent dataset has a unique and 

unshared parameters of attributes. The attribute ratio of these are indexed to form an aggregator sum of 

interdependent datasets. The dependency formulation on the grounds of (𝐿1, 𝐿2) aggregator is limited to 

occurrence and causes complexity in evaluation. Typically, the dataset values are processed on a single stream of 



Design and Development of Feature Engineering Model for CVD Multi-Dimensional Datasets Standardization, 

pp., 99-106 

Malaysian Journal of Computer Science, Special Issue on Computing, Communication and Cyber Physical 

Systems (2023) 

102 

computational indexing as represented in Fig. 4 and further extending towards dependency processing stage for 

multi-dimensional CVD dataset creation.  

 

Fig. 2: Proposed system block diagram 

 

Fig. 3: Classification and stack-flow representation of multi-dimensional CVD dataset generation. 
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Fig. 4: Relationship representation diagram and index mapping of attributes towards CVD multi-

dimensional dataset creation. 

4.3 Dependency Processing 

The dependencies are typically associated with the formulation matrix evaluation of two or more 

independent datasets in computation. Consider the datasets as (𝐷𝑋) with (𝐷1, 𝐷2,, 𝐷3 … . ) are contributing datasets 

in the (𝐷𝑋) computation. Typically, (∀𝐷𝑋 ⟹ 𝐷𝑖/𝐷𝑖 ∈ Σ𝐴𝑖) where (Σ𝐴𝑖) are primary dependencies matrix 

associated with (𝐷𝑋). On considering the scenario of primary (𝐿1) dependency extraction, the (𝐷𝑖 ⟹

(𝐴1, 𝐴2, 𝐴3 … 𝐴𝑛)⨆(𝐴11, 𝐴12, 𝐴13 … 𝐴1𝑛)⨆(𝐴21,, 𝐴22, 𝐴23 … ) … ) at the ratio mapping. Typically the 

Σ(𝐴𝑖1, 𝐴𝑖2, 𝐴𝑖3 … ) are the associated attributes from each independent dataset as (Σ𝐴𝑖𝑗 ∈ 𝐷𝑖) such that 

[∀𝐴𝑖𝑗 ⟹∋ (𝐷𝑖 ∩ 𝐷𝑗)] for mutual ratio extraction. 

On further understanding, the dependency breaking can be represented as shown in Eq. 1, where (ΣD) is 

the dependency matrix of given datasets with multiple sources. Hence the computational values of (ΣD) is 

dependent on (△ 𝐴(𝑖,𝑗)) associated to (𝐷𝑖) at the given time (t), this can be customized as shown in Eq. 2. 

ΣD = lim
n→∞

(
∂(𝐷𝑖)

∂t
∗ ∬

𝜕(△𝐴(𝑖,𝑗))

𝜕𝑡

𝑛

0
)       (1) 

ΣD = ∏ ∑ ([
∂(𝐷𝑖)

∂t
] ⟹ [∬

𝜕(△𝐴(𝑖,𝑗))

𝜕𝑡

𝑛

0
])𝑛

𝑖=1
∞
𝑛     (2) 

∴ ΣD =
1

𝑡
{∏ ∑ ([∂(𝐷𝑖)] ⟹ [∬ 𝜕(△ 𝐴(𝑖,𝑗))

𝑛

0
]

(𝑖,𝑗)

𝑛
)𝑛

𝑖=1
∞
𝑛 }  (3) 
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Thus, according to Eq. 3, the time (t)-1 is extracted as a constant parameter on processing the dataset (𝐷𝑖) 

and attribute dependencies (𝐴(𝑖,𝑗)) for a given ratio of volume. Typically, the coordination of (𝐷𝑖) ⟹ (Δ𝑡)0
𝑛 and 

hence add indexes to the processing parameter. According to Eq. 3, the dependencies indexes (I) are shown in Eq. 

4. 

𝐼 = [𝐴(𝑖,𝑗)]
(𝑖,𝑗)⟹𝑛

∗ 𝑙𝑜𝑔𝑛(𝐷𝑖)      (4) 

with passing epoch, the indexing volume (I) is added to the individual attribute ratio (𝐴(𝑖,𝑗)) with (𝐷𝑖) existence. 

If the association is reflected in dual parameters dataset, for instance [(𝐷𝑖 ⟶ 𝐷𝑗 ⟶ 𝐷𝑘) ⟹△ 𝐴(𝑖,𝑗)] at generalized 

processing of parameter attributes. Though (∀ △ 𝐴(𝑖,𝑗) ∈ 𝐷𝑖 , 𝐷𝑗 , 𝐷𝑘) the indexing parameters is strengthen on (𝐷𝑖) 

as origin value of dataset also termed as “master node” of (△ 𝐴(𝑖,𝑗)) at given primary instance (t) as shown in Eq. 

5 and Eq. 6. 

𝐼1 = 𝑂𝑐𝑐[𝐴(𝑖,𝑗) ∗ 𝜎𝑡] ⊕ 𝑙𝑜𝑔𝑛(𝐷𝑖)      (5) 

𝐼2 = 𝑂𝑐𝑐[𝐴(𝑖,𝑗) ∗ 𝜎𝑡] ⊕ 𝑙𝑜𝑔𝑛(𝐷𝑖)      (6) 

the collective representation is as shown in Eq. 7. 

𝐼𝑂𝑐𝑐 =
𝐷𝑖 : 𝑖𝑓 [𝐴(𝑖,𝑗)] ⟹ 𝐶𝑜𝑢𝑛𝑡 = 0: 𝐶𝑎𝑙𝑙(𝑐𝑎𝑠𝑒 1)

𝐷𝑗 : 𝑖𝑓 [𝐴(𝑖,𝑗)] ⟹ 𝐶𝑜𝑢𝑛𝑡 = 1: 𝐶𝑎𝑙𝑙(𝑐𝑎𝑠𝑒 1 + 𝑙𝑜𝑜𝑝)
   (7) 

thus the summarization can be drafted as Eq. 8 from Eq. 7. 

Σ(𝐼𝑂𝑐𝑐) = 𝑎𝑟𝑔𝑚𝑖𝑛 {(∆𝐴(𝑖,𝑗)) ⊕
𝜕(𝐷𝑖)⋃𝜕(𝐷𝑗)⋃𝜕(𝐷𝑘)…

𝜕𝑥
}    (8) 

Σ(𝐼𝑂𝑐𝑐) = 𝑎𝑟𝑔𝑚𝑖𝑛 {(∆𝐴(𝑖,𝑗)) ⊕ ∑
𝜕(𝐷𝑖)𝑘

𝜕𝑥

𝑛
𝐾=1 }    (9) 

Thus, the reflective index of two binary information from (𝐼𝑂𝑐𝑐) in Eq. 9 summarizes the existence of 

attribute and the dependencies layer (Li) with respect to dataset (Di). typically, the values of these datasets are 

internally computed and a multi-dimensional CVD dataset is extracted.   

4.4 Customization of CVD multidimensional datasets 

The process of CVD dataset customization includes the refinement of dependency ratio as demonstrated 

in Eq. 9. The dataset attributes customs include the factor of stacking most influencing parameters of datasets (S), 

this includes as shown in Eq. 10. 

Σ(𝐼𝑂𝑐𝑐) = ∆𝑎𝑟𝑔𝑚𝑖𝑛 {Σ(𝐼𝑂𝑐𝑐)0
𝑛}     (10) 

The customization results in generating a multi-dimensional CVD datasets as shown in Fig. 4 

respectively. The propagation stream of data coordination and alignment assures the corelationship between the 

extracted attributes is interdependent on formulated indexing matrix. Typically, the mapped attributes are further 

associated and customized with reference to number of participating datasets (DX) and associated layers of attribute 

count. The outcome of this research is to generate a reliable and customized CVD datasets for regression and 

testing of novel CVD related scenarios. The justification is followed with retaining the basic input and dataset 

origin points for collaborative learning via transfer learning models on public domain. The variation and 

fragmentation of datasets origin results in collaborative outcomes of attributes associations and dataset monitoring.   
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5.0 RESULTS AND DISCUSSIONS 

The proposed system is developed on a generic computational environment using NVidia GPU servers 

blocks for computation and operations. Typically, the side-lined computation and operations as endues (i.e.) data 

origin servers are regular compute with i5 silver line processor connected via master-slave representation as shown 

in block diagram (Fig. 1). The experimentation is aligned on universal CVD datasets (i.e) MIMIC – III, FHS, CHD 

and ARIC for higher accuracy and real-time compatibility. The proposed framework has generated a higher order 

MIMIC – III and FHS combined dataset aggregation for relatively higher order of attribute dependency extraction. 

The outcome of this research is to streamline the dataset (CVD) with respect to monitoring repositories for 

resolving newer and customizable features associated in CVD such as unnatural CVD attacks pattern extraction, 

studying habits and behavior based on geographical populations and its influence in CVD and much more. The 

realistic possibilities of this research is novel multi-dimensional dataset extraction and mapping with respect to 

the real-time CVD datasets (single dimensional) to generate or explore larger possibilities.  

Table.1: Computation of dataset v/s attribute dependencies (Indexes) 

Dataset_name Dependency attribute 

(%) 

Non-Dependency 

attribute (%) 

Interdependency 

attribute (%) 

MIMIC – III 46.32 50.36 3.32 

FHS 68.17 19.41 12.42 

CHD 52.11 41.17 6.72 

ARIC 29.64 68.72 1.64 

According to Table.1, the relevance of dataset based inference of dependency, interdependency and non-

dependencies is computed. The validation is concluded based on the observation from existing CVD based single 

dimension model design. According to outcome patterns as shown in Table. 2 of three prominent CVD datasets 

(i.e) MIMIC – III, FHS and CHD, we have extracted the dimensional representation of dependency matrix and 

interdependency matrix with respect to the indexing ratio of given datasets on layer of indexing. Typically, the 

indexing is resultant of multiple values associated with the dataset-attributes on particular function mapping. The 

corelationship of these attributes are to demonstrate they associations with nearest alike attribute for decision 

making. For instance, the value of TP (True Positive) and FN (False Negative) depicts the influence attribute 

mapping and clarity of attributes association. 

Table.2: Computational model for layer based attribute dependency indexing 

Dataset Layers Dependency 

matrix (%) 

Interdependency 

matrix (%) 

Indexing ratio 

TP (%) FN (%) 

MIMIC – III L1 46.32 3.32 41.11 58.89 

L2 49.67 11.17 56.42 43.58 

L3 49.68 18.11 58.52 41.48 

L4 52.34 19.66 58.42 41.48 

FHS L1 68.17 12.42 66.48 33.52 

L2 69.41 14.11 68.14 31.12 

L3 70.91 14.82 68.88 31.12 

L4 71.20 15.67 70.66 29.34 

CHD L1 52.11 6.72 48.11 51.89 

L2 53.66 8.42 49.72 50.28 

L3 53.67 8.49 49.93 50.06 

L4 53.67 8.49 49.93 50.06 

6.0 CONCLUSION 

The proposed technique has made significant strides in the realm of Cardiovascular Disease (CVD) 

research, as evidenced by successful applications and findings on multi-dimensional CVD datasets. The primary 

outcome of this research effort is the creation of a pioneering and unique class of multi-dimensional CVD datasets, 

a novel development in the field. These datasets are meticulously customized to align with the specific inferences 

and requirements of both end-users and researchers in the CVD domain. Importantly, this dataset is open to the 
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broader scientific community and can be readily harnessed for a multitude of applications, particularly within the 

domains of behavioral studies and pattern evaluation. The datasets have exhibited a remarkable improvement in 

the accuracy of mapping and indexing the intricate correlation matrix that exists among various attributes and their 

respective features, a critical advancement that enhances the precision and comprehensiveness of CVD analysis. 

Looking ahead, there is immense potential for these datasets to be amalgamated and universally applied in open 

domain validation across a range of datasets. This interoperability opens doors for collaborative research efforts 

and the further refinement of CVD insights on a broader scale. 
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