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ABSTRACT 

 

Chronic alcohol consumption poses significant public health challenges globally. In underserved regions, the lack 

of AI-based interventions for alcohol addiction highlights a critical gap in the healthcare system, particularly 

regarding the early detection of alcohol abuse. Henceforth, this research aims to raise awareness of alcohol use 

disorder and proposes a novel AI-powered solution designed with an improved classification algorithm to address 

this deficiency, with a primary focus on a cutting-edge prediction model. This research shifts the current reactive 

approach in alcohol addiction intervention to proactive approach by employing an enhanced meta-classification 

algorithm (EMC) that focuses on improving the interpretability, efficiency, and accuracy of predictions. The 

proposed EMC ultimately provides a robust tool for healthcare professionals and patients which fosters more 

effective and personalized intervention strategies for alcohol addiction recovery. The results demonstrate a 

remarkable 10.13% improvement in balanced accuracy and a 9.72% enhancement in the area under the curve 

compared to traditional ensemble and state-of-the-art methods. Thus, findings from this study will assist medical 

practitioners and policymakers in developing evidence-based strategies to combat alcoholism and enhance public 

health outcomes. By deriving insights from real-world case study, the outcome of this research represents a 

pioneering effort to betterment of healthcare in underserved regions, offering a low-cost, scalable solution for 

early detection, and has the potential to significantly improve outcomes in marginalized communities. 
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1.0 INTRODUCTION 

 

Alcohol addiction, also known as alcohol use disorder (AUD), is a significant public health concern, affecting 

millions of people globally. According to the World Health Organization (WHO), alcohol consumption is 

responsible for over 3 million deaths annually, which accounts for nearly 5.3% of all deaths worldwide [1]. This 

alarming statistic demonstrates the far-reaching consequences of alcohol addiction. From liver cirrhosis to 

cardiovascular diseases and mental health disorders, the physical and psychological toll of alcohol misuse is 

immense [2]. Economically, alcohol addiction leads to loss of productivity, increased healthcare costs, and 

expenses related to law enforcement. It also hampers national growth as working-age individuals struggling with 

addiction become less productive, contributing to the overall weakening of the labor force. The societal costs of 

alcohol addiction are equally devastating, leading to broken families, domestic violence, and social stigma [3].  

With alcohol becoming increasingly accessible in many parts of the world due to globalization, the 

challenges associated with addiction continue to grow. As per latest statistics, the issue is even more pronounced 

in underdeveloped countries and among ethnic minorities, who often face systemic barriers to healthcare and 

education [4]. In many cases, alcohol addiction is exacerbated by poverty, lack of access to mental health services, 

and limited opportunities for early intervention. In these settings, alcohol misuse is often a coping mechanism for 

stress, trauma, or socio-economic hardships, which makes it harder to address. Ethnic minorities may also face 

cultural or language barriers that prevent them from accessing effective treatment.  

Similarly, alcoholism has become all too frequent among indigenous community in Malaysia [5].  Studies 

show that some Indigenous groups in East Malaysia, such as the Orang Asli, have a high prevalence of risky 

drinking behaviors, with 37% of drinkers in these regions scoring 8 or more on the Alcohol Use Disorder 

Identification Test (AUDIT) scale. This is significantly higher compared to other regions in Malaysia. In Sabah, 

for example, it is estimated that 18.4% of the population consumes alcohol regularly, with Indigenous communities 

often engaging in binge drinking, which exacerbates health and social issues [6]. The lack of adequate healthcare 

services, particularly in remote areas where these communities reside, makes it harder for individuals to receive 
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proper treatment and intervention for alcohol addiction. In 2019, head of the Kensiu Orang Asli tribe claimed that 

a negative side effect of modernity is the influx of drugs and cheap alcohol into the Orang Asli community.  

Although police and Jabatan Kebajikan Orang Asli (JAKOA) jointly put into action to eliminate this 

impact, the problem with addiction still exists. Recently, Non-Governmental Organization (NGO) together with 

Sahabat Jariah Malaysia (SJM) investigated into alcohol abuse problem in Orang Asli and concluded a new 

implantable solution as exploring a more psychological approach to solve the problem [7]. However, the 

indigenous community as in their culture are not comfortable to visit hospitals, consult on addiction and receive 

intervention treatments. Consequently, individuals often do not receive timely interventions, exacerbating the 

problem. Only a tiny percentage of patients receive effective, evidence-based therapies for alcoholism, which is 

undoubtedly the most serious area of unmet medical needs in psychiatry [8]. Therefore, the ongoing concern about 

alcohol addiction stems from the failure to identify and intervene early, allowing addiction to progress to more 

severe stages. This lack of early identification is often due to insufficient public health infrastructure, lack of 

awareness, and cultural stigmas that discourage people from seeking help.  

On the other hand, traditional methods of identifying alcohol addiction often rely on observable 

behaviors, social cues, and personal admissions. Such methods depend on the human judgements and bare eyes, 

where family and community members typically look for signs such as frequent intoxication, neglect of 

responsibilities, withdrawal symptoms, or a noticeable impact on relationships and employment. In many cultures, 

including Indigenous communities, elders or spiritual leaders might step in to counsel individuals when they notice 

these patterns. However, these methods depend heavily on subjective observations and the willingness of the 

person to admit their problem, which can lead to underreporting and delayed interventions. Traditional approaches 

often miss early-stage alcohol abuse, especially since people may hide their behavior, making it hard to detect 

without more objective tools like screening questionnaires or clinical assessments. 

During the COVID-19 pandemic, healthcare systems worldwide were overwhelmed with addressing 

immediate health crises, leaving chronic conditions such as alcohol addiction under-prioritized. The pandemic 

environment itself, characterized by isolation, economic stress, and disrupted routines, increased alcohol 

consumption globally. There is no direct medication for alcohol abuse treatment if there are no other health 

complications, and access to rehabilitation services was often limited [9]. This led to a surge in addiction rates, 

highlighting the inadequacies of traditional methods in dealing with a complex, chronic issue like alcohol 

addiction. Objective assessment such as screening questionnaires or clinical assessments are also laborious and 

prone to human errors. Hence, traditional methods are not effective approach for raising awareness and preventing 

alcohol usage [10].  

In order to address the limitations with traditional methods, technology-based interventions are 

introduced to assist in alcohol addiction prevention and treatment. Digital tools, such as mobile apps that track 

drinking habits, virtual counseling platforms offer a way to intervene before addiction becomes severe [11]. These 

tools can provide individuals with immediate access to support and self-assessment tools, enabling early detection 

of problematic drinking behaviors. The major issue remains the lack of widespread adoption of these technologies, 

especially in underdeveloped regions and marginalized groups [4]. Without predictive tools that can assess risk 

factors and alert users to potential addiction, alcohol abuse often remains undiagnosed until it causes severe health 

or social issues. Therefore, technology-driven solutions, including machine learning models and remote health 

monitoring, are essential to bridge this gap and provide timely, personalized interventions. 

In brief, from a macro perspective, alcohol addiction poses a widespread public health issue that affects 

entire communities and economies. Limited healthcare access, underfunded addiction services, and a lack of focus 

on preventive measures have led to increased addiction rates globally. At a micro level, individuals suffering from 

alcohol addiction often avoid seeking help due to the stigma, denial, or lack of resources. Traditional methods of 

identifying addiction rely heavily on subjective assessments by family or community members, which are often 

insufficient to detect early-stage problems. Moreover, objective medical assessments are labor-intensive and tend 

to occur only after the addiction has progressed, delaying necessary interventions. However, although alcoholism 

has a negative impact on people's lives, early detection of binge drinking, and effective intervention support can 

lead to more successful therapies in the future, especially for the youngesters. 

 

To overcome current challenge and filled the gap, this paper proposes the use of machine learning for 

predictive analysis in alcohol use disorder prediction by leverging the traditional predictive model to meta-model 

with improved interpretability, efficiency and accuracy. The goal is to overcome the constraints of individual 

classifiers and conventional stacking models by introducing a new method called metaclassifier on heterogeneous 

bootstrap-aggregated models.  Proposed model aimed at addressing challenge of missing early-stage alcohol abuse 

with more accurate prediction for early detection of addiction. By utilizing improved prediction model, it will 

improve upon subjective assessments and provide more reliable results than conventional prediction tools. This 

automatic prediction system will reduce the laborious effort required for healthcare practitioners to assess patients, 
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streamlining the process. Furthermore, the solution will address the under-prioritized criticality of addiction by 

offering an efficient, interpretable system that is easy to implement in healthcare settings. All in all, the proposed 

approach aims to enhance the accuracy and reliability of alcohol use disorder prediction models, contributing both 

practically and theoretically to the field. As for the novelty, this would be the first solution in Malaysia to provide 

AI-powered alcohol addiction intervention for the community. In brief, the overall contribution and experimental 

methods used for this study are summarized as below. 

• Developed an enhanced meta-classification framework for alcohol addiction prediction, leveraging a 

diverse ensemble of kernel-based, instance-based, and deep learning classifiers. 

• Introduced a novel integration of bootstrapped heterogeneous models combined with a linear model meta-

learner to achieve a balance of accuracy, interpretability, and efficiency. 

• Conducted rigorous testing and evaluation of the meta-classifier against traditional models to validate 

performance improvements on real-world datasets. 

• Demonstrated the model’s effectiveness in early-stage alcohol addiction detection, addressing the critical 

need for proactive intervention in health monitoring systems. 

Lastly, this paper is organized as Section 2 discusses state-of-art approaches and gap analysis; Section 3 

explains the methodology followed throughout the research; Section 4 presents the results and discusses findings 

from results, recommends application to real-word scenario; and Section 5 with conclusions, contributions and 

future works. 

2.0 LITERATURE REVIEW 

 

A synthetic literature review is conducted from 38 papers to summarize existing alcohol brief interventions (ABIs), 

early identification tools, and technology-based interventions. The aim is to perform a critical review of current 

methodologies and thereof identify gaps that could be addressed by implementing a meta-classifier machine 

learning model. Therefore, this review collectively presents the features highlighted in heterogeneous studies and 

will serve as a baseline to draw out limitations from existing practices which eventually leads to suggest an AI-

driven prediction model for early detection of alcohol addiction. 

 

2.1  Classic Alcohol Interventions  

ABIs are widely used for alcohol misuse prevention and typically involve short, structured conversations that 

encourage individuals to reduce their drinking. Classic alcohol addiction interventions include various approaches 

like Brief Interventions (BI), Cognitive Behavioral Therapy (CBT), Motivational Interviewing (MI), 12-Step 

Programs, and Family Therapy [12]. BI are short, structured conversations in primary care aimed at raising 

awareness and encouraging reduced alcohol consumption, typically using screening tools like the AUDIT. CBT 

focuses on altering thought patterns and behaviors linked to alcohol use, helping individuals manage triggers and 

cravings through structured therapy sessions. MI encourages individuals to find personal reasons for change, 

addressing ambivalence and motivating behavioral shifts. Peer support programs, such as Alcoholics Anonymous, 

follow a structured 12-step recovery process emphasizing mutual accountability and spiritual growth. Lastly, 

Family Therapy involves family members in the recovery process, addressing systemic issues contributing to 

addiction and enhancing communication to support the individual's sobriety.  

Classic alcohol addiction interventions have both significant advantages and notable limitations. On the 

positive side, interventions like Cognitive Behavioral Therapy (CBT) and Motivational Interviewing (MI) offer 

personalized support by providing one-on-one sessions with trained professionals, allowing for tailored recovery 

strategies specific to each individual’s needs. Additionally, community-based programs like Alcoholics 

Anonymous (AA) offer strong peer support, which fosters a sense of belonging and accountability, enhancing 

long-term recovery for some individuals. Structured frameworks, such as the 12-step programs, provide a clear, 

step-by-step path that gives participants a sense of direction and progression in their journey toward sobriety [13]. 

 

Despite their benefits, these interventions often lack scalability, accessibility, and early detection 

capabilities, prompting a shift toward more efficient technology-based interventions. One major limitation is their 

restricted reach and scalability, as most of them rely on face-to-face interactions, making them resource-intensive 

and difficult to implement on a large scale [14]. For example, Brief Interventions (BI) require healthcare 

professionals to administer them, which can be time-consuming and limit the number of individuals who can be 

helped. Another disadvantage is the subjectivity and variability of outcomes, as the success of programs like MI 

largely depends on the counselor's skill and the participant’s readiness for change. Moreover, these interventions 

are often reactive, addressing alcohol addiction only after serious issues arise, thus missing opportunities for early 

intervention. Lastly, access barriers such as geographic, financial, and social constraints make it difficult for many 

individuals—especially those in underserved areas—to engage with these programs, further limiting their 

effectiveness [15].  
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In brief, although effective to some extent, these interventions have notable limitations, particularly in 

their generalization and scalability. Many studies show that ABIs often rely on self-reported data, which can be 

inaccurate due to the stigma surrounding alcohol addiction. Furthermore, ABIs are reactive rather than proactive, 

meaning they are often implemented after addiction symptoms are already present. Thus, classic interventions, 

while beneficial for some, are often inefficient due to their dependence on subjective, labor-intensive processes 

and in-person interactions. This has paved the way for more accessible, technology-driven solutions that can 

provide early detection, ongoing monitoring, and scalable support.  
 
2.2  Technology-based interventions  

In recent years, technology-based interventions, such as mobile health apps and digital counseling platforms, have 

grown in popularity due to their accessibility and flexibility. These interventions range from mobile health apps to 

online therapy platforms and telemedicine services. Mobile applications, such as “Drinkaware” and “Sober Grid,” 

help users track their alcohol consumption, set goals, and monitor progress over time [16]. Online therapy 

platforms provide remote counseling sessions with licensed therapists, often through video calls, making it easier 

for individuals to receive professional help from the comfort of their homes. Telemedicine services offer virtual 

consultations and continuous health monitoring for those in recovery. These types of technology-based 

interventions leverage digital tools to provide individuals with ongoing support and education, ensuring that help 

is accessible at any time.  

While technology-based interventions offer numerous advantages, their effectiveness is limited by the 

absence of accurate, efficient, and interpretable prediction models for alcohol addiction [17]. One significant issue 

is that current interventions lack the ability to proactively identify individuals at risk of developing alcohol 

dependency, which means they tend to respond only after addiction becomes a severe problem. Without reliable 

predictive models, early identification remains a challenge, leading to missed opportunities for timely intervention. 

Additionally, many of the algorithms used in existing systems are either too simplistic or too complex, resulting 

in inaccurate predictions or models that healthcare professionals struggle to interpret [18]. This makes it difficult 

to create tailored intervention plans that address specific needs, particularly in diverse populations. Furthermore, 

the absence of interpretable models leads to a lack of trust among healthcare providers, who may hesitate to rely 

on black-box machine learning solutions for clinical decisions. Hence, there is a pressing need for more accurate, 

interpretable, and efficient classification models to improve the early detection of alcohol addiction and enhance 

the efficacy of technology-based interventions. 

In brief, these interventions offer convenience and accessibility, but they often lack predictive capability 

and depend heavily on user engagement, which may vary. There is a lack of tools that can predict alcohol addiction 

at an early stage, which is crucial for timely intervention. Current solutions are also limited in their ability to 

integrate large datasets for comprehensive analysis, and they rarely account for complex relationships between 

various risk factors. Therefore, the shift has moved towards AI-powerd machine learning models to fill the gaps 

and enhance the efficacy of technology-based interventions. Machine learning models can analyze vast amounts 

of data, identifying patterns and risk factors that traditional methods may overlook. By predicting potential 

addiction risks early, these models can help healthcare providers intervene before the addiction becomes severe, 

improving treatment outcomes.  

2.2.1  Technology-Driven Alcohol Addiction Interventions: A Case Study on Malaysia's Minority Ethnic 

Communities 

A case study has been conducted with a pilot study focusing on the Orang Asli community in Malaysia to 

understand their specific needs and assess how existing technology-based solutions can be adapted to suit this 

minority ethnic group. Main purpose is to position this research as a foundation for developing machine learning-

based prediction models that cater to diverse real-world contexts and facilitate early identification of alcohol 

addiction. 

Despite the fact that there are several web-based therapies for alcohol consumption management available 

online around the world, many of them were designed to meet their individual needs. These websites primarily use 

English as their primary language, which may not be appropriate for the majority of illiterate Orang Asli [19]. 

Similarly, the authors of [20] stated unequivocally that the indigenous community's failure to receive successful 

health promotion is due to a lack of culturally specific health promotional materials, a lack of community-based 

programs, and inefficiency in indigenous health data collection. A study on the prevalence, knowledge, attitude, 

and practices of noncommunicable diseases (NCDs) among adult Orang Asli and Malay ethnicity in Negeri 

Sembilan, Malaysia, found that NCDs (including alcohol use) are on the rise among Orang Asli, owing to low 
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rates of healthy lifestyle practices and the need for immediate attention. For disease screening and prevention, 

adequate NCD education and promotion are essential [21]. 

According to clinical professionals from University of Malaya Centre for Addiction Sciences (UMCAS) 

and Orang Asli Gombak Hospital (HOAG), there are few limitations in current alcohol brief interventions. Firstly, 

there is no centralized data storage and data collection is performed manually in flat files which reflect to data 

missing in record and prone to human-errors. Secondly, score assessments (such as AUDIT-C and AUDIT-10) is 

conducted manually which is labor intensiveness and time-consuming. There is no existing workflow for alcohol 

relapse monitoring and tracking for individual patients to support recovery journey. There is no available dataset 

to utilize existing advanced technological interventions such as prediction models for relapse rate to better support 

in recovery curve. All in all, current interventions are lacking supportive features for alcohol abuse recovery such 

as online community-based programs, socio-cultural factors consideration (user-friendliness) for the minor 

community and relevant data collection and manipulation for the advantage of new generation solution in 

technology-based alcohol brief interventions.  

According to a study on the digital inclusion of Peninsular Malaysia's Orang Asli, half of those polled 

believe that ICT will help to improve their health (53%), and 61.9% believe that ICT will bring about changes in 

their community [22]. Similarly, according to the Department of Orang Asli Development (JAKO), no previous 

effort had been made in terms of ICT-based intervention for Orang Asli, and signal coverage in Gombak is 

adequate; additionally, the majority of Orang Asli in the Gombak area use smartphones. This suggests that there 

is a potential to establish a computerized clinical decision support system for suggesting brief alcohol interventions 

with treatment-seeking persons from Malaysia's Orang Asli community by leveraging today's ICT readiness and 

advanced technology. 

In brief, the case study observations highlight significant gaps in the current interventions for Malaysia’s 

minority ethnic groups, such as the Orang Asli. Classic interventions rely heavily on paper-based assessments like 

AUDIT-C and AUDIT-10, which are not flexible, scalable, or accessible to these communities. Due to their 

minority status and limited healthcare access, the interventions remain largely reactive, responding to addiction 

only after it has become a serious issue rather than proactively identifying at-risk individuals. This underlines the 

urgent need for technology-based solutions that can facilitate early identification of alcohol addiction.  

2.3  AI-Powered Predictive Models 

AI-powered models have been explored in healthcare for various applications, including addiction prediction. 

Machine learning classification models are instrumental in classifying health data into predefined categories, 

which can assist healthcare professionals in making informed decisions [23-24]. The literature reveals a variety of 

machine learning techniques, such as supervised learning, unsupervised learning, and reinforcement learning, 

which have been adapted for use in healthcare applications [25-26].  In the context of alcohol addiction prediction, 

deep learning classifiers have shown high accuracy in identifying alcoholics and classifying drinking behaviors 

from health records [27-28]. However, their black-box nature makes clinical interpretation challenging [29].  

 On the other hand, classification models such as random forest and machine learning methods like 

qualitative interaction trees and group LASSO interaction nets are employed for predicting alcohol addiction and 

treatment response [30]. The limitations of these models include challenges with data randomness, imbalanced 

datasets, and the need for more comprehensive integration with clinical practices to enhance their applicability and 

effectiveness in real-world settings [31]. Study conducted by [27] found that single dependent learners exhibited 

greater dominance compared to deep learning algorithms in the context of AUD research. Furthermore, [32] 

observed single dependent learners had a restricted ability to learn and perceive information. Likewise, [33] 

reported kernel-based methods guarantee structural risk minimization and global optimal solutions, but they may 

struggle with large-scale datasets due to computational complexity.  

 Similarly, [28] claimed that instance-based classifiers are often simple and interpretable but can suffer from 

high storage requirements and sensitivity to irrelevant features. Whereas deep learning methods can automatically 

learn complex features and have achieved state-of-the-art performance in many domains, but they require large 

amounts of labeled data and are less interpretable [34]. Hence, each single dependent learner has its own strengths 

and weaknesses [27][28][33][34] while deep learning classifiers offer high predictive accuracy for alcohol 

addiction prediction, their lack of interpretability is a significant limitation in a clinical context. Kernel-based 

classifiers offer better interpretability and theoretical guarantees but may face scalability issues. Instance-based 

classifiers are simple and interpretable but may not handle complex data as effectively.  
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 Likewise, while DL and ensemble models offer advanced capabilities for predicting complex phenomena 

such as alcohol addiction, their inherent complexity can impede interpretability. This presents a challenge in 

clinical settings where explainability is essential for model acceptance and ethical decision-making. Efforts to 

enhance the interpretability of alcohol addiction classifiers without sacrificing performance are therefore of 

paramount importance in the field of alcohol addiction prediction where understanding model reasoning is critical 

[35-36]. 

 In brief, most models focus on specific types of addiction, such as opioid use, or general health conditions, 

rather than alcohol addiction specifically. Additionally, these models often use single-classifier algorithms, which 

may not perform well across heterogeneous datasets. Therefore, AI-powered solution which can improve accuracy 

and generalizability, is required to capture the complex and multifactorial nature of alcohol addiction better than 

traditional AI models. 

2.4  State-of-art Methods in AUD predictions  

In conducting a synthetic literature review, a comprehensive collection of similar papers was gathered and 

categorized based on various themes related to alcohol addiction prediction. Each paper was critically reviewed 

and analyzed to identify prevailing methodologies and findings, providing a cohesive understanding of the current 

landscape in this research area.  

 

Support Vector Machines (SVMs) have been employed for alcohol addiction prediction without 

substantial feature engineering efforts. While studies such as those by [37] demonstrate SVM's effectiveness in 

classifying alcohol use disorder, they often overlook the necessity of feature selection to enhance model 

interpretability and generalization. The reliance on SVMs without feature engineering may lead to suboptimal 

performance and poor interpretability which may hinder their practical application in clinical settings. Therefore, 

while SVMs can achieve reasonable accuracy, their usability in real-world scenarios is compromised, highlighting 

the need for enhanced methodologies. 

The K-Nearest Neighbors (KNN) algorithm has also been applied to alcohol addiction prediction, with 

studies indicating its simplicity and ease of implementation. However, research by [38] shows that KNN lacks 

robustness and efficiency when applied without feature engineering, underscoring the importance of preprocessing 

in predictive modeling. The KNN algorithm alone suffers from inefficiencies in scalability, particularly with large 

datasets [39], that limits its utility for healthcare practitioners.  

Multilayer Perceptrons (MLPs) are recognized for their potential in predicting alcohol addiction. 

Nevertheless, studies such as those by [27] that without proper feature engineering, MLPs may not fully utilize 

their capabilities, resulting in lower accuracy and slower convergence. MLP showcase their ability to model non-

linear relationships; yet, they often yield models that are difficult to interpret [40]. The inherent complexity of 

MLPs can also lead to overfitting, impacting their accuracy when applied to new data [41]. As a result, this 

highlights a significant gap in interpretability and generalization that limits their applicability in clinical contexts. 

Logistic Regression has been widely used for alcohol addiction prediction; however, recent studies 

indicate that the absence of feature engineering can limit the model's effectiveness. Research by [42] highlights 

how logistic regression may yield biased predictions due to unaccounted interactions among features. LR is 

commonly utilized for binary classification tasks like predicting alcohol use disorder; however, its simplicity may 

result in oversimplified models that fail to capture the intricacies of addiction [43]. Moreover, while LR is 

interpretable, its accuracy can be insufficient when handling complex datasets, leading to poor predictive 

performance. Consequently, this points to a gap in balancing interpretability and accuracy within LR approaches. 

 

Decision trees (DTs) are frequently applied for their interpretability and ease of use in predicting alcohol 

addiction; however, they are prone to overfitting, particularly when dealing with imbalanced datasets [40]. While 

they provide clear visualizations of decision-making processes, the accuracy of predictions can be compromised, 

limiting their effectiveness in real-world scenarios. This illustrates a gap in accuracy that detracts from the potential 

benefits of DTs. Moreover, DTs are frequently employed in predicting alcohol addiction, but studies show that 

their performance can degrade without feature engineering.  

Random forests (RFs) have been leveraged for alcohol addiction prediction, exhibiting high accuracy 

through ensemble learning; yet, their interpretability is often criticized due to the complexity of multiple decision 

trees [27]. Additionally, while RFs manage the issue of overfitting better than single decision trees, they still face 

challenges in computational efficiency and can produce models that are not easily interpretable for practitioners. 

Research by [44] indicates that while Random Forest can manage high dimensionality, lacking appropriate feature 

selection leads to inefficiencies and reduced accuracy.  
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On the other hand, there are improved single classifiers to achive higher perofmrnace of the prediction 

models. Among latest studies, state-of-art approaches are regarded as the use of Lasso with SVM and Random 

Forest Regularization on SVM for alcohol addiction prediction. The integration of Lasso regression with SVM has 

emerged as a promising approach in predicting alcohol addiction. Studies such as those by [45] indicate that Lasso 

can enhance the SVM model's performance by promoting sparsity and addressing multicollinearity among 

features. Utilizing Lasso with SVM can improve model performance, yet the reliance on a single model still raises 

concerns regarding interpretability and generalizability. Incorporating Random Forest regularization with SVM 

has shown to improve prediction accuracy in alcohol addiction cases. Research by [46] highlights that this 

combined approach can enhance the robustness of predictions by effectively managing feature interactions. 

Although SVM with Random Forest regularization enhances accuracy, it may still lack the interpretability required 

for practical applications, revealing an existing gap in developing interpretable predictive models. 

Besides, Stacking models have been employed in the prediction of alcohol addiction, where multiple base 

classifiers are combined to improve predictive performance. While stacking has shown improvements in accuracy 

over single classifiers, the complexity of model aggregation can hinder interpretability, making it challenging for 

practitioners to understand the contribution of each base model to the final prediction [47]. This illustrates a gap 

in interpretability, highlighting the need for an improved stacking approach that can effectively balance accuracy 

with comprehensibility, thereby enhancing the applicability of stacking models in clinical settings. 

Likewsie, Bagging techniques, particularly the random forest algorithm, have been applied to alcohol 

addiction prediction, achieving high accuracy by reducing variance through ensemble learning. However, the 

interpretability of bagging models remains an issue, as the aggregation of numerous decision trees often results in 

a “black box” effect that obscures the decision-making process [48]. Consequently, this presents an opportunity 

for enhanced classification algorithm to enhance the interpretability of bagging models while maintaining or 

improving accuracy, ultimately making them more useful for practitioners. 

Similarly, Boosting models have demonstrated superior predictive capabilities in the context of alcohol 

addiction by sequentially focusing on misclassified instances. Despite their high accuracy, boosting algorithms, 

such as AdaBoost and XGBoost, can suffer from reduced interpretability due to their complex nature and the 

influence of numerous weak learners in the ensemble [49]. Therefore, integrating a relevant meta models could 

improve both interpretability and efficiency, enabling better decision-making and actionable insights for healthcare 

providers working with alcohol addiction cases. 

2.5  Gap analysis 

While several studies have explored machine learning for addiction prediction, very few focus specifically on 

alcohol addiction. Additionally, existing models do not fully address the problem of early-stage detection, and 

many are limited by the quality and scope of the training data. Similar works often lack interpretability, making 

them difficult for healthcare professionals to adopt in real-world settings.  

Machine learning models for predicting alcohol addiction often either sacrifice interpretability due to 

their sophistication or lack necessary complexity because they are overly simplistic. This imbalance can hinder 

trust in real-world applications, as healthcare professionals may struggle to explain complex predictions to patients, 

ultimately limiting the effectiveness of interventions. Conversely, overly simplistic models can lead to significant 

inaccuracies, including high false-negative rates, which misclassify at-risk individuals as safe, particularly in 

underserved communities where timely support is crucial. 

Additionally, the datasets used in training these models are often hard to find and can be imbalanced, 

reflecting the rarity of positive cases compared to negative ones. Thus, it is essential to strike a balance that 

maintains both interpretability and accuracy, as this would improve the efficiency of interventions in real-world 

scenarios. Hernce, the existing literature emphasizes the need for a meta-classifier approach that can enhance 

interpretability, accuracy, and efficiency—essential elements that are currently not adequately addressed in 

existing single-classifier algorithms [50].  

In brief, common gaps across related studies underscore the necessity for a improved prediction model, 

as existing solutions fall short in addressing the intertwined gaps of interpretability, accuracy, and efficiency and 

usability in real-world context. This prompts the consideration of meta classification algorithm to markup the 

deficiency of each model and bring the best combination of classifiers for improved prediction performance. 

By offering a more proactive approach, this solution will be the first of its kind in Malaysia, with the 

potential to be adopted across other underserved regions in Southeast Asia, such as Myanmar, ultimately 

contributing to the betterment of healthcare systems in these areas. to improve public health domain in Malaysia 
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and examine the benefits of intervention for patients and healthcare providers towards future advanced in health 

science. In short, through this synthetic review, the gaps in current approaches are systematically identified, 

establishing the need for a more advanced and reliable solution using an AI-powered meta-classifier.  

 
3.0 METHODOLOGY 

 

This methodology section outlines the research framework for developing an improved classification algorithm 

using an enhanced meta-classifier, which integrates aggregated bootstrapped heterogeneous models, including 

kernel-based, instance-based, and deep learning techniques. The section will detail the data sources utilized in the 

study, the development of the algorithm, the validation metrics employed to assess its performance, and the 

rationale for selecting these specific methods. The overview of machine learning experiment for the proposed AI-

powered intervention design is discussed in below sections. 

 

3.1   Overview of the proposed model 

The proposed solution for alcohol addiction prediction leverages a robust methodology that begins with the 

collection of real-world data from both underage individuals (under 18) and adults (above 18). This dataset 

encompasses various dimensions, including demographic information, behavioral patterns, clinical data, and 

specific factors related to addiction. The diverse nature of the data ensures that the prediction model is not only 

comprehensive but also tailored to address the unique needs of different populations. The training of the prediction 

model aims to bridge the knowledge gaps identified in the literature review, focusing on enhancing accuracy, 

interpretability, and efficiency—critical factors for successful implementation in real-world scenarios. 

 To harness the advantages of heterogeneous models, the methodology employs a combination of base 

models from various categories, such as kernel methods, instance-based models, and deep learning algorithms. 

Each of these models undergoes a process called bootstrap aggregation (bagging) to improve stability and reduce 

variance, ultimately enhancing prediction performance. The conducted experiment involved comparing single 

classifiers, traditional stacking classifiers, and the proposed metaclassifier on kernel-based bagging, instance-based 

bagging and deep-learning based bagging. By aggregating predictions from multiple models, the approach aims to 

balance their respective benefits and drawbacks, enabling the meta-model to utilize the full potential of these varied 

algorithms, thus overcoming the limitations typically associated with single classifiers.  

Unlike traditional methods that may lack interpretability or accuracy, enhanced meta-classifier balances 

the two ratios and delivers performance metrics comparable to existing state-of-the-art approaches in alcohol 

addiction prediction [27]. Compared to classic interventions, which often rely on static assessments and may 

overlook the nuanced changes in a patient's condition, the proposed AI-powered solution provides a dynamic, 

responsive system that adapts to individual needs and circumstances. Moreover, the data collected through user 

interactions with the web application can be utilized for retraining the model, enabling it to adapt and improve 

continuously based on real-world feedback and outcomes. 

 

Once trained on preprocessed data, the prediction model is embedded within a web application that is 

accessible to users. This platform will enable users to self-assess their risk for alcohol addiction and receive tailored 

recovery recommendations. Notifications will be sent to assigned healthcare providers when users are identified 

as being at risk, allowing doctors to review cases and recommend appropriate interventions. The visibility of 

benefits will manifest in improved patient outcomes, increased engagement in recovery programs, and more 

effective use of healthcare resources. This AI-powered approach significantly improves the traditional intervention 

processes by providing real-time feedback and personalized care plans, ultimately enhancing the likelihood of 

successful recovery. 

 

 In brief, this research covers end to end solution with focus on improvement in classification algorithm to 

deliver AI-powered alcohol addiction intervention solution, firstly: the advancement in predictive model and 

secondly: the development of web-based intervention. The end goal is to deliver AI-powered predictive web-based 

intervention that performs three major tasks as learn, predict, and improve i.e., to learn the factors related to 

addiction and intervention, to predict better relapse prevention by artificial intelligence and to improve the AUD 

recovery process. The steps and objectives involved in the proposed system design are illustrated as in Fig. 1. 
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Fig. 1. Workflow and objective of proposed solution 
 

3.2.   Datasets 

There are two datasets used in this paper i.e., Student alcohol addiction dataset and Adult Drug addiction dataset. 

Both datasets are widely used and cited in related studies, validated for the applicability for predictive classification 

experiments [51-54)]. The dataset collected is primary data with random sampling from publicly avaiable 

repository, Kaggle. Both datasets have an imbalanced class distribution, where records indicating addiction are 

significantly fewer than those for non-addiction. This imbalance is common in addiction-related datasets and 

presents challenges for model performance. To address this, stratified sampling is employed during the data split, 

ensuring that each fold in the training and testing sets maintains a proportionate representation of both classes. 

This approach helps the model generalize better, preventing bias towards the majority class. 

 
3.2.1.   Dataset 1 

For this research, the primary dataset is student alcohol dataset. For student alcohol dataset, there are 33 columns 

with 1024 instances [51-53]. The data was obtained from two Portuguese secondary schools during the academic 

year 2005-2006, comprising 395 records from mathematics class and 649 entries from Portuguese language class. 

The dataset (Cortez & Silva, 2008) was compiled by authors who devised a survey with questions pertaining to 

demographics, social interactions, emotional well-being, and school-related matters. The study focused on two 

crucial inquiries: alcohol usage during workdays and weekends.  

3.2.1.   Dataset 2 

Although the primary dataset used in this study is a student dataset, an additional alcohol dataset was utilized to 

repeat a subset of experiments to ensure the generalizability of the model's performance across different 

populations. Hence, another dataset named Adult Drug addiction dataset is collected, which consists of 32 columns 

with 1885 instances [54].  

 
3.3.   Data Pre-processing 

After the data collection, a few steps are performed to prepare for feature engineering, such as data cleansing, data 

transformation, data pre-processing, labelling and splitting the data into seen and unseen for model validation as 

80:20. For data pre-processing, the student dataset is filtered to include only records where the age is less than 18 

to predict underage alcohol addiction, while for the adult dataset, individuals aged 18 and above are retained to 

focus on adult addiction prediction.  

Both datasets undergo similar cleansing steps, including handling missing values, correcting inconsistent 

data entries, and normalizing features like demographic and behavioral data to ensure consistency. Additionally, 

any outliers are removed to maintain data quality. The student dataset lacks the target variable necessary for 

predicting alcohol addiction. Hence, a new variable called "addiction" was created from preexisting attributes 

utilizing the method described by [55], as in equation (1).  

𝑎𝑑𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =
[(𝑊𝑎𝑙𝑐 ×2)+(𝐷𝑎𝑙𝑐 ×5)]

7
                                               (1) 



234 

The target variable, addiction, was subsequently transformed into a binary outcome, as demonstrated in 

equation (2) using a method suggested by [56]. This is a scale used to assess alcohol addiction, with a value of 1 

indicating the presence of alcohol addiction and a value of 0 indicating the absence of alcohol addiction. 

𝑎𝑑𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ≥ 3 = 1 

     𝑎𝑑𝑑𝑖𝑐𝑡𝑖𝑜𝑛 < 3 = 0    (2) 

On the other hand, the target variable for the adult dataset is derived from the alcohol addiction score, 

which is calculated based on predefined thresholds in the dataset. This score categorizes individuals as either 

addicted or not addicted, serving as the key label for prediction in the machine learning model. For both datasets, 

the data is split into 80% training and 20% testing. Stratified K-fold cross-validation is applied to ensure that each 

fold has a balanced representation of both classes (addiction vs. non-addiction), mitigating the impact of imbalance 

during training. These pre-processing steps ensure that both datasets are ready for training the meta-classifier, with 

the adult addiction prediction tailored to real-world applications. 

 
3.4.   AI-powered AUD prediction  

3.4.1.   Kernel-based Classifier 

Kernelized learners in machine learning provide extensible nonlinear hypothesis spaces over functions for learning 

latent functions from datasets [57]. They sometimes outperform autoencoders and limited Boltzmann machines 

[58]. However, the selection of an appropriate kernel can be a challenge, and noisy or outlier-laden data can impair 

kernelized graph-based approaches [59]. The concept of kernelization, which involves transforming input features 

using a kernel function, is applicable to various classifiers, such as Kernelized Logistic Regression, Kernelized 

Ridge Regression, Kernelized Naive Bayes, Kernelized Decision Trees, Kernelized Random Forests, Kernelized 

Neural Networks and Support Vector Machines (SVM). 

With the popularity and being the state-of-art model for AUD, SVM is chosen for experimentation in this 

paper. A kernelized classifier, SVM may translate input data into higher-dimensional spaces using multiple kernel 

functions. SVM can capture complex decision boundaries and produce effective predictions for non-linearly 

separable datasets using the RBF kernel to evaluate data point similarity in converted space. SVMs using a Radial 

Basis Function (RBF) kernel, often known as the Gaussian kernel, use the following mathematical formula as in 

equation 3, where 𝒇(𝒙) is the decision function to predict the class of new instance x, ∝𝒊 as coefficients during the 

training phase, as class label of i, ||𝒙 − 𝒙𝒊||
𝟐 as Euclidean distance between instances, as width parameter σ of the 

RBF kernel and b as the bias term. 

                     𝑓(𝑥) =  ∑ ∝𝑖 𝑦𝑖
𝑛
𝑖=1 𝑒𝑥𝑝(−

||𝑥−𝑥𝑖||2

2𝜎2 ) + 𝑏                    (3) 

3.4.2.   Instance-based Classifer 

Instance-based classifiers predict new instances based on their similarity to known instances in the feature space, 

as shown in Figure 3.5. Instance-based classifiers can handle complex, non-linear decision boundaries without 

training [60]. They demand large memory and are sensitive to noise, however improved instance selection can 

alleviate these problems [61]. Enhancing the effectiveness of instance-based classifiers is achieved by accurately 

identifying the most optimal instances from the dataset. However, the efficacy of instance selection strategies is 

contingent upon the classifier [62]. 

KNN is a widely used classifier in the prediction domain due to its robustness, incrementality, and low 

implementation complexity [63]. KNN is a classic instance-based classifier that assigns new data points to a class 

based on the majority class of their k-nearest neighbors in the feature space. Equation 4 represents the mathematical 

formula of the KNN algorithm, where x is the new instance and k is the neighbors considered.  

𝑓(𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠 𝑜𝑓 𝑘 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑜𝑢𝑟𝑠 𝑜𝑓 𝑥                                (4) 

3.4.3.   Deeep-learning Classifier 

Deep learning classifiers are machine learning models composed of multiple layers of interconnected 

neurons, designed to learn complex patterns directly from raw data. They are widely used in the prediction domain 

due to their ability to automatically discover intricate patterns in data, enabling high accuracy in tasks such as 

image recognition, natural language processing, and speech recognition [64]. Their hierarchical representation and 
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feature learning capabilities make them particularly effective for handling large, high-dimensional datasets with 

complex structures, where traditional machine learning algorithms may struggle. 

Out of all deep learning models, MLP is most applied model in health care domain due to its versatility 

and flexibility to handle various types of data, including textual, numerical, and image data, making them adaptable 

to diverse sources of information commonly encountered in public health research, such as medical records, social 

media posts, and imaging scans [65]. MLPs can be scaled up to accommodate large datasets and complex 

architectures, allowing researchers to leverage increasingly abundant and diverse data sources in alcohol addiction 

and public health research. Generic equation for MLP is described in equation (5), whereas X is the input data 

matrix, Y is the output of MLP, 𝑊(1) and 𝑏(1) are the weight matrix and bias vector for the 𝑙(𝑡ℎ) layer 

respectively, σ(.) represents the activation function applied elementwise to the weighted sum, softmax(.) is the 

activation function for the output layer, often used for classification tasks. 

𝑌 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊(𝐿). 𝜎(𝑊(𝐿−1). 𝜎(… 𝜎(𝑊(1). 𝑋 + 𝑏(1)) … ) + 𝑏(𝐿−1)) + 𝑏(𝐿))    (5) 

3.1.6.   Enhanced Meta classifer (EMC) 

In the context of this research, meta-classifier is a classifier that is constructed with Base classifiers (Level-0 

Models) and Meta-classifier (Level-1 Model), where Level 0 models are trained on the training data and make 

individual predictions and Level 1 model combines the predictions from the base models to make the final 

prediction. Enhanced meta classifier is an improved base classifiers with bootstrap aggregated and applied linear 

meta model for final prediction. Technically, Level 0 is constructed with bootstrap aggregated models from 

different classification families such as kernel-based (SVM), instance-based (KNN) and deep learning based (NN 

MLP). Level 1 is equipped with Logistic regression (LR).  

For the base models, different types of classifiers from different classification families are chosen as kernel-

based, instance-based and deep-learning based, to prevent the highly correlated base models in stacking, which 

will lead to overfitting. Moreover, bagging is selected over boosting due to its nature of robustness against outliers 

and reducing of variance. On the other hand, boosting also reduces variance, however, it is not robust against noisy 

data. Hence, there are four main phases involved as Base model selection, Bootstrap aggregating, Meta-feature 

creation and meta-learner construction as shown in Fig 2.  

 
Fig. 2. High Level steps for EMC 

On the other hand, below decision matrix is weighted to identify the current gap and generate high level 

conceptual idea for proposed solution. The chosen criteria of interpretability, accuracy, efficiency, scalability, and 

complexity are prioritized as they directly impact the practical application and effectiveness of machine learning 

models in real-world scenarios, especially in sensitive areas like alcohol addiction prediction. Weight represents 

the relative importance of each criterion in the context of comparing different machine learning models for alcohol 

addiction prediction decision making process. The weights are assigned based on a combination of expert opinions, 

relevant literature, and practical considerations in healthcare applications, emphasizing the necessity for 

interpretability and accuracy in models used for sensitive issues like addiction prediction [27, 40, 50]. Scores 

indicates a positive or negative impact associated with that model for the respective criterion (1: very low to 5: 

very high).  
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Fig. 3. Decision Matrix based on gap analysis outcome for determination of conceptual design 

Fig. 3. explained rational behind single classifier such as SVM and bagging method such as DT or RF is 

highly recognized as the state-of-art approach in the alcohol addiction prediction domain, compared to traditional 

stacking. However, full potential of advtange from each approach can be utilized with meta-classifier. Hence, this 

research aims to address these gaps by enabling early identification through objective data analysis and prediction, 

facilitating more targeted and timely interventions. The expected outcome is effective predictive model which can 

be easily integrated into existing healthcare systems for early identification and intervention in alcohol addiction. 

This model can overcome the limitations of both traditional and technology-based interventions, providing a robust 

tool for early prediction and treatment of alcohol addiction. The purpose is to enhance the performance of existing 

inferior classification algorithms, enabling them to reach the same level of efficacy as superior classification 

models while maintaining the necessary interpretability for practical application. 

3.1.6.1. Base Model Selection 

For kernel-based, SVM with Radial Basis Function (RBF) kernel operates on the pre-processed data by projecting 

the input features (demographic, clinical, addiction-related variables) into a higher-dimensional space using a 

kernel function (RBF kernel). This transformation allows SVM to handle complex, non-linear relationships by 

solving a quadratic optimization problem to find an optimal hyperplane that separates different classes (e.g., 

alcohol addiction or no addiction). For instance-based, KNN processes the data by calculating the distance 

(Euclidean) between a test sample and the training samples. It then assigns the class label based on the majority 

vote from its closest K neighbors. KNN excels in identifying local structures in the data, which is particularly 

useful in detecting small clusters of similar addiction behaviors in the dataset. 

For deep learning, MLP as a type of neural network, takes the pre-processed data and passes it through 

multiple layers of neurons, where each layer applies a non-linear transformation followed by a linear 

transformation (via learned weights). The training of MLP involves backpropagation, where the model learns by 

minimizing a loss function (e.g., cross-entropy) using gradient descent. This process adjusts the model weights to 

improve the prediction accuracy iteratively, to model complex patterns in the data, especially those involving non-

linear relationships between variables like demographics and addiction behaviors. 

3.1.6.2. Bootstrap aggregation  

Bootstrap Aggregation is applied to each base model (SVM, KNN, and MLP). Bootstrapping involves generating 

multiple subsets of the training data by sampling with replacement. Each model (SVM, KNN, MLP) is trained on 

these bootstrapped samples, which helps in reducing overfitting by improving model robustness. Bagging creates 

diversity among the base models and averages their predictions.  

Each base model is trained on a different bootstrap sample—a randomly selected subset of the data with 

replacement. This ensures that the model isn't overly sensitive to small fluctuations in the training data. The 

predictions from the multiple versions of each base model are then aggregated, using soft voting. Soft voting 

provides a probabilistic interpretation, allowing the meta-classifier to capture nuanced prediction probabilities 

instead of just class labels. 

3.1.6.3. Meta-Features Creation 

After training each base model (SVM, KNN, MLP) on the bootstrapped datasets, they produce probabilistic 

outputs (soft predictions). These predictions (e.g., probability of alcohol addiction) from each model are collected 

as meta-features. These meta-features encapsulate the "opinion" of each base model on the given instance. For 

instance, if SVM predicts a probability of 0.8 for class A, KNN predicts 0.6 for class A, and MLP predicts 0.9 for 
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class A, these probabilities become features for the meta-classifier to analyze. For each test sample, the prediction 

probabilities from SVM, KNN, and MLP serve as new features (meta-features). 

3.1.6.4. Meta-Learner Construction 

The final step involves training a Logistic Regression (LR) model on the meta-features. Logistic Regression (LR) 

is then applied to the meta-features generated by the base models. The role of LR is to learn the best weights to 

assign to each base model's prediction based on their reliability. Unlike traditional stacking approaches where 

more complex models (e.g., decision trees) might be used, the use of LR enhances the interpretability of the meta-

classifier while maintaining efficiency. It offers insight generation by assigning weights to each base model's 

prediction based on their performance, effectively learning which model to trust more in certain contexts. 

The LR model learns from the meta-features and identifies the best combination of base model outputs 

to make the final prediction. This layer also adds interpretability, as logistic regression coefficients can be 

examined to understand how each base model's predictions contribute to the final outcome. LR solves a convex 

optimization problem, where it learns coefficients that maximize the likelihood of predicting the correct class given 

the base model outputs. Technically, LR ensures that the contribution of each base model to the final prediction is 

easily interpretable, making this approach more transparent compared to traditional stacking, which often uses 

more complex meta-models that reduce interpretability. 

In brief, unlike traditional stacking, where each base model contributes directly to the meta-model's input 

features, here the bagged versions of the base models are treated as separate entities, and LR is trained on their 

predictions independently. In the context of using logistic regression (LR) as a meta-classifier on bootstrap 

aggregated base models, each bagged version of the base model (such as SVM, KNN, and NN) is considered as a 

separate entity or model in itself. Instead of directly combining the predictions of these bagged models into LR's 

input features, LR is trained independently on the predictions generated by each bagged base model. This means 

that LR learns to interpret and weigh the predictions from each bagged base model individually, without directly 

considering their original features or data. This approach allows LR to learn the optimal combination of predictions 

from the bagged base models, potentially capturing complex relationships between their predictions and improving 

the overall ensemble's performance. The algorithm for meta-classifier is described below.  

Training phase: 

For each base model M in {SVM, KNN, NN}: 𝐵𝑀 = train_bagged_model (M, D) 

For each base model M: 𝛼𝑀 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝐵𝑀 , 𝐷) 

𝐹𝐿𝑅 = [𝛼𝑆𝑉𝑀 , 𝛼𝐾𝑁𝑁, 𝛼𝑁𝑁] 

𝑀𝐶𝐿𝑅 = 𝑡𝑟𝑎𝑖𝑛_𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐_𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (𝐹𝐿𝑅 , 𝑌) 

Prediction phase: 

For each base model M: 𝛼𝑀,𝑛𝑒𝑤 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝐵𝑀, 𝐷𝑛𝑒𝑤) 

𝐹𝐿𝑅,𝑛𝑒𝑤 = [𝛼𝑆𝑉𝑀,𝑛𝑒𝑤 , 𝛼𝐾𝑁𝑁,𝑛𝑒𝑤 , 𝛼𝑁𝑁,𝑛𝑒𝑤] 

𝑀𝐶 𝐿𝑅 𝑓𝑖𝑛𝑎𝑙 = 𝑀𝐶𝐿𝑅 . 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝐹𝐿𝑅,𝑛𝑒𝑤) 

Where: 

• 𝐵𝑀 represents the bagged version of the base model M trained on dataset D. 

• 𝛼𝑀 represents the predictions generated by the bagged base model M trained on dataset D. 

• 𝐹𝐿𝑅 represents the features used to train the logistic regression model, which consist of the predictions 

from the bagged base models. 

• 𝛼𝑀,𝑛𝑒𝑤 represents the predictions generated by the bagged base model M for new data 𝐷𝑛𝑒𝑤 

• 𝐹𝐿𝑅,𝑛𝑒𝑤 represents the features used to make predictions for new data, consisting of the predictions from 

the bagged base models for the new data. 

• 𝑀𝐶 𝐿𝑅 𝑓𝑖𝑛𝑎𝑙 represents the final prediction made using logistic regression for the new data. 
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In alcohol addiction classification, it is preferrable to use simple and more interpretable models than complex 

models due to transparency and interpretability. For example, simple models, such as logistic regression (LR), 

provide straightforward interpretations of how input features relate to the predicted outcome. This transparency is 

essential in medical applications like addiction classification, where understanding the reasoning behind 

predictions is crucial for clinical decision-making.  

Simple meta-learner on heterogeneous bagged models combines the advantages of bagging, such as diversity 

and reduced variance, with the predictive power of stacking, resulting in an ensemble that is often more robust, 

stable, and interpretable compared to traditional stacking approaches. Meta-classifiers provide a regularization 

effect, helping to generalize better to unseen data. LR imposes constraints on the model coefficients, which can 

prevent overfitting and lead to more robust performance on new data. High level illustartion as shown in Fig 4. 

 
Fig. 4. Workflow of meta classifer approach 

In brief, Logistic Regression (LR) as a meta-classifier on SVM, KNN, and NN bagging models is superior 

to traditional bagging, boosting, or stacking ensemble methods due to its simplicity, interpretability, and efficiency 

in handling diverse outputs from different base learners. LR excels in combining predictions, mitigating individual 

biases, and promoting model interpretability, making it a well-suited choice for integrating the diverse strengths 

of SVM, KNN, and NN bagging models. Training a meta-classifier on the predictions of bagged base models is 

computationally less intensive compared to training multiple complex base models. 

 
3.5.   Evaluation 

After predictions are made by the meta-classifier, they are compared with the true labels in the test set. Different 

metrics are used to assess the performance, such as F1-score, and Area Under the Curve (AUC). Balanced 

accuracy, a key metric in this case, adjusts for any imbalance in the test data, ensuring that the performance is 

evaluated fairly. The AUC metric specifically evaluates the model's ability to distinguish between classes, which 

is critical in cases like alcohol addiction prediction where false negatives (missed cases) must be minimized. 

The performance of the meta-classifier is compared with traditional stacking [47] and state-of-art methods 

[45-46]. This comparison is essential to demonstrate the improvement in accuracy, interpretability, and efficiency. 

The testing process not only validates the model's predictive capability but also highlights how the meta-classifier 

outperforms traditional methods in terms of both accuracy and interpretability, thus providing a technically 

superior solution for real-world alcohol addiction prediction. The end to end process of deployment and evaluation 

before releasing for practical utilization is depicted as in Fig 5.  
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Fig. 5. Workflow for deployment and evaluation 

 

3.5.1.   Balanced Accuracy 

The evaluation method for this research utilizes the F1 score as a measure of balanced accuracy, as in equation 6. 

The F1 score is selected over other metrics because it provides a harmonic mean of precision and recall, offering 

a single metric that accounts for both false positives and false negatives [27]. This is particularly important in the 

context of alcohol addiction prediction, where both types of errors can have significant consequences. Other 

methods, such as simple accuracy, may not be as effective in scenarios with imbalanced datasets, which is common 

in medical informatics. By using the F1 score, the model's performance can be more accurately assessed, ensuring 

it is both reliable and effective in real-world applications. 

                  𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙
                      (6) 

 

 

3.5.2.   Area Under the Curve 

The Receiver Operating Curve (ROC) or AUC curve evaluates binary classification problems. The True 

Positive Rate (TPR) versus False Positive Rate (FPR) probability curve at various threshold settings separates the 

‘signal’ from the ‘noise.’ Thus, it displays classification model performance at all thresholds [27]. The Area Under 

the Curve (AUC) summarizes the ROC curve and measures a binary classifier's class distinction ability, as in 

equation 7, where the Receiver Operation Characteristic curve, and  the inverse of the decision threshold applied 

to the models’ predicted probabilities with integral calculation ranging rom 0 to 1. The model distinguishes positive 

and negative classes better with greater AUC [20]. 

𝐴𝑈𝐶 =  ∫ 𝑅𝑂𝐶 (𝑓−11

0
(𝑡)) 𝑑𝑡                                                               (7) 

3.6.   Methodologıcal Selectıon and Justıfıcatıon 

Traditional stacking typically combines base models without a clear strategy to maintain both interpretability and 

accuracy [47]. By using a diverse set of models (SVM, KNN, MLP) and incorporating bagging, this method 

maximizes the strengths of each model (SVM for decision boundaries, KNN for local patterns, MLP for complex 

non-linear relationships) while mitigating their weaknesses through bootstrapping. The decision matrix for 

selection of SVM, KNN and MLP is described as in Fig 7.  

 

Fig. 7. Decision Matrix for base models selection 
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 The weighted decision matrix demonstrates that SVM, KNN, and MLP complement each other in critical 

area and therefore, these three models are ideal for constructing a meta-learner, leveraging the advantages of each 

to improve performance in alcohol addiction prediction. The novelty also lies in combining bootstrapping with 

meta-learning in a single unified process, which improves robustness, accuracy, and interpretability—an advantage 

that traditional stacking and bagging methods do not achieve simultaneously. Bagging not only stabilizes SVM 

and MLP by averaging predictions from multiple bootstrapped instances but also minimizes variance in KNN, 

ultimately leading to better generalization and convergence stability.  

 On the other hand, LR, has low computational overhead, making it suitable for running as meta-learner. LR 

is chosen to improve the interpretability of the combined predictions from the bagged models, addressing the lack 

of clarity in how individual models contribute to the final outcome and enhancing overall predictive accuracy. It 

achieves by transforming complex ensemble predictions into actionable insights, which addresses the 

interpretability challenge often faced with traditional models. This structured and technically sound approach is 

designed to handle real-world complexities, such as dataset imbalance, while ensuring the model remains 

interpretable and efficient for healthcare professionals working on alcohol addiction prediction. 

 For evalution, F-measure and AUC were used for this experiment due to their ability to capture different 

aspects of model performance. F-measure is ideal for binary classification applications because it balances 

precision with recall, which is important when false positives and negatives carry significant consequences. AUC, 

on the other hand, provides a complete assessment of a model's class discrimination capacity, making it suited for 

imbalanced datasets. In this study, AUC is prioritized as major metric for comparison because discriminative 

power is crucial in practice for alcohol addiction prediction in clinical setting. It measures a model's ability to 

correctly distinguish between different classes, which is essential for reliable decision-making between addicted 

and non-addicted. 

 

4.0 RESULTS AND DISCUSSION 

 

The experimental results derived from Student dataset, along with a subset of experiments conducted using Adult 

dataset is presented in this section. A thorough evaluation and comparative analysis of the outcomes is provided, 

followed by a critical discussion aimed at addressing real-world problems highlighted by this research.  

 Support Vector Machine (SVM) is recognized as state-of-art model for alcohol addiction [27] and many 

studies centered improvement around the kernel-based SVM for alcohol addiction prediction state-of-art 

approahces. [47] conducted traditional stacking which is limited with the evaluation only with recall and observed 

insiginifcant improvement compared to single Naive Bayes. [45] implemented Support Vector Machine (SVM) 

with LASSO and PCA, which claimed as benchmark prediction model for the alcohol addiction. [46] introduced 

SVM on regularized random forest as best performing model for alcohol addiction prediction. Thus, this research 

selected above studies as comparative studies to evaluate the performance of meta classifer.  

4.1.   Results from Dataset 1 

4.1.1. Experiment 1 - Baseline Comparison: Performance of base classifiers versus meta-classifier  

For modelling, the first set of experimentation is performed to compare meta modelling verusus single 

dependent learners. The experimentation result is reported as in table 1.  

Table 1: Baseline Comparison: Performance of base classifiers versus meta-classifier (Student Alcohol Dataset) 

Experiment I - Baseline Comparison: F-score AUC 

Single kernel-based dependent learner: SVM on all features  0.83 0.64 

Single instance-based dependent learner: KNN on all features 0.82 0.51 

Single deep learning based dependent learner: NN on all features 0.85 0.68 

Enhanced Meta-classifier  0.86 0.79 

In this comparison, where Meta-classifier exhibits superior performance in terms of AUC compared to all single 

dependent learners [66–68], while F-measure results are comparable across all models, it can be inferred that 

proposed model demonstrates stronger discriminative power in distinguishing between positive and negative 

instances.  

Nonetheless, improved F-measure of 0.86 suggests that the models achieve comparable balance between precision 

and recall, indicating consistent performance in correctly identifying true positives while minimizing false 
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positives and false negatives. Finding is pragmatic as deep learning model such as NN provides better accuracy 

due to its nature of automatically discovering complex patterns in data, enabling high accuracy in tasks. Deep 

learning can handle large, high-dimensional datasets with complex structures, where traditional machine learning 

algorithms struggle. Therefore, achieving comparable performance with deep learning is a significant 

improvement for the interpretable meta classifier. Result of F-score across single learners compared to enhanced 

meta classifier is shown in Fig 8. 

 

Fig. 8. Baseline performance comparison with single dependent learnerr in terms of balanced accuracy 

On the other hand, the findings highlight the proposed model as a favorable choice for tasks prioritizing 

AUC as the primary evaluation metric, demonstrating its effectiveness in capturing class separation compared to 

other models. The result clearly demonstrated that AUC achieved 16.18% improvement compared to the closed 

competitors, which is Deep learning versus metaclassifier with AUC from 0.68 to 0.79, as shown in Fig 9.  

 

Fig. 9. Baseline performance comparison with single dependent learnerr in terms of discriminative power 

Additionally, effective size is calculated using Cohen’s d measure for each of the performances to determine the 

significant difference in performance between the single learners and proposed meta leaner as in Table 2. Effect 

size provides a standardized measure of the magnitude of the difference between compared models, irrespective 

of sample size. This helps in understanding the practical significance of the difference between models. Effect size 

offers more informative and reliable estimates compared to p-values alone. For example, a small difference in 

predictive accuracy may not be clinically meaningful, even if it is statistically significant. Effect size and 

confidence intervals are more robust and less sensitive to sample size variations compared to p-values from t-tests, 

especially in the context of large sample sizes where even small differences can become statistically significant. 
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Table 2:  Effect size between base classifiers and meta-classifier 

Effect Size F-score AUC 

Effect size (NN versus Meta-classifier)  4.24 1.92 
Effect size (SVM versus Meta-classifier) 1.01 1.42 
Effect size (KNN versus Meta-classifier)  1.06 0.76 

For NN versus meta classifier, the effect size is 4.24 for F-score, suggesting a large effect size. This 

indicates a substantial difference between the two models in terms of F1-score. For the AUC, the effect size is 1.92 

indicating a moderate effect size. For SVM versus meta classifier, a Cohen's d value of 1.01 for F-score and 1.414 

is considered large, suggesting that there is a substantial difference between the models in terms of both F1-score 

and AUC. For KNN versus meta classifier, the effect size is approximately 1.061, indicating a moderate effect 

size. For the AUC, the effect size is approximately 0.758, also indicating a moderate effect size. This suggests a 

notable difference between the two models in terms of F-score and AUC. All in all, from the aspect of effect size, 

meta-classifier performs better than single dependent classifiers, regardless of kernel-based, instance-based or deep 

learning based. 

 
4.1.2. Benchmark Comparison: Performance of baseline papers versus meta-classifier  

 Subsequently, the experiment is conducted compared to benchmark approaches. For benchmark, traditional 

stacking model is chosen to set fair comparison as similar technique to proposed solution, followed by traditional 

bagging to determine performance on bagging compared to enhanced meta classifier. The result is presented in 

Table 3. 

Table 3:  Benchmark Comparison: Performance of traditional stacking and bagging classifiers versus meta-

classifier (Student Alcohol Dataset) 

Experiment II: Benchmark Comparison F-score AUC 

Traditional Stacking (SVM + KNN + NN + LR) 0.83 0.72 

Traditional Bagging  0.76 0.71 

Enhanced Meta-classifier  0.86 0.79 

 As per the result shown in Table 3, the experiment results demonstrate that the Enhanced Meta-classifier 

outperforms both Traditional Stacking and Bagging techniques. The Enhanced Meta-classifier achieved the 

highest F-score (0.86) and AUC (0.79), indicating a better balance between precision and recall, as well as superior 

discrimination ability across class labels. The strength of the meta-classifier lies in its ability to aggregate and learn 

from diverse base models, leveraging their complementary strengths to address both variance and bias issues, 

which traditional stacking and bagging alone cannot fully resolve. 

 

Fig. 10. Benchmark performance comparison with stacking and bagging learners in terms of balanced accuracy 
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 As shown in Fig 10, the F-score measures the harmonic mean of precision and recall, highlighting the 

model's capability to correctly classify positive cases. The Enhanced Meta-classifier scored 0.86, surpassing 

traditional stacking (0.83) and bagging (0.76). The F-score for traditional stacking (0.83) is slightly lower than the 

meta-classifier (0.86) due to the limitations of basic model integration in traditional stacking, where predictions 

are simply aggregated without deeper insight extraction from base models. Likewise, bagging tends to reduce 

variance but may fail to correct bias, leading to a lower F-score. Improvement from EMC can be attributed to 

meta-classifier intelligent learning from base model outputs, leveraging a more interpretable approach to combine 

them, which enhances the precision and recall trade-off, leading to a higher F-score. 

 

Fig. 11. Benchmark performance comparison with stacking and bagging learners in terms of discriminative power 
 

As in Fig 11, the Enhanced Meta-classifier achieved an AUC of 0.79, higher than stacking (0.72) and 

bagging (0.71). This suggests that the meta-classifier excels in ranking predictions, benefiting from the fine-tuned 

ensemble of diverse models. Traditional stacking's AUC (0.72) is lower than the enhanced meta-classifier (0.79) 

because it treats the stacked models' predictions as static without leveraging their internal dynamics. The meta-

classifier applies a more refined learning process using logistic regression on the meta-features, which enables 

improved ranking and classification, leading to better class separation and, consequently, a higher AUC. . 

Bagging's lower AUC indicates its lsimitation in addressing bias, whereas the meta-classifier benefits from a more 

sophisticated combination of base learners. 

 
4.1.3. State-of-art comparison: Performance of state-of-art methods versus meta-classifier  

 The state-of-the-art approaches chosen for comparison include SVM on Lasso regularization and SVM with 

Random Forest regularization, which have demonstrated strong performance in predicting alcohol addiction, 

especially in imbalanced datasets. These methods were selected because they represent the latest advancements, 

with claims of achieving high classification accuracy in addiction prediction, making them relevant benchmarks 

for evaluating the proposed meta-classifier. 

Table 4:  State-of-art Comparison: Performance of state-of-art approaches versus meta-classifier (Student 

Alcohol Dataset) 

Experiment III: State of art Comparison F-score AUC 

State-of-art 1 (SVM on Lasso) 0.83 0.57 

State-of-art 2 (SVM on Random Forest Regularization) 0.78 0.63 

Enhanced Meta-classifier  0.86 0.79 

 
The results from Table 4 show that the Enhanced Meta-classifier outperforms both state-of-the-art 

approaches—SVM on Lasso and SVM on Random Forest Regularization—in terms of both F-score and AUC. 

The Enhanced Meta-classifier achieved an F-score of 0.86 and AUC of 0.79, surpassing the best F-score (0.83) 

from the SVM on Lasso and the best AUC (0.63) from the SVM on Random Forest Regularization. This 
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improvement demonstrates that combining heterogeneous models through meta-learning and bagging is highly 

effective in dealing with noisy and imbalanced datasets, especially for the complex problems with inbalanced data. 

 

Fig. 12. State-of-art performance comparison with SVM on Lasso and RFR learners in terms of balanced accuracy 

As in Fig 12, when focusing on the F-score, the Enhanced Meta-classifier shows clear improvement over 

the state-of-the-art. The SVM on Lasso and SVM on Random Forest Regularization methods show lower F-scores 

(0.83 and 0.78, respectively), mainly due to their inability to handle diverse data dimensions as effectively. The 

Enhanced Meta-classifier benefits from combining SVM, KNN, and MLP, which brings a robust balance of 

interpretability, scalability, and accuracy, thus improving the overall prediction quality. 

 

 

Fig. 13. State-of-art performance comparison with SVM on Lasso and RFR learners in terms of discriminative power 

 
As in Fig 13, for the AUC metric, which assesses the classifier's ability to distinguish between classes, 

the Enhanced Meta-classifier again outperforms (AUC of 0.79). The SVM on Lasso (AUC 0.57) and SVM on 

Random Forest Regularization (AUC 0.63) show lower performance, which can be attributed to their susceptibility 

to noise and inability to capture complex non-linear relationships in the dataset. The ensemble nature of the Meta-

classifier, supported by bagging, allows for better generalization and improved performance in distinguishing 

between addicted and non-addicted individuals. 

However, one significant findings resultant here as in this experiment, SVM on Random Forest 

Regularization (RFR) shows a higher AUC (0.63) but a lower F-score (0.78) compared to other models. RFR's 

ability to generalize well comes from its ensemble nature, which helps in capturing the broader, global patterns in 

the data, resulting in better distinction between classes. This is why the AUC, which measures the model's capacity 

to separate addicted from non-addicted cases across all thresholds, is higher for SVM with RFR. The regularization 

helps control overfitting and improves the model's ability to handle imbalanced datasets, making it more robust in 

distinguishing classes. 
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The F-score is more sensitive to the balance between precision and recall, and the RFR's ensemble 

mechanism might prioritize recall over precision, causing it to perform worse in situations where a balanced trade-

off between false positives and false negatives is critical. This leads to a lower F-score, as it may correctly classify 

more cases (hence the higher AUC) but struggle to optimize for the balance needed for a high F-score. Thus, SVM 

on RFR captures the data's global structure well, leading to a higher AUC but suffers in terms of precision-recall 

trade-offs, resulting in a lower F-score. 

4.2.   Results from Dataset 2 

4.2.1.   Baseline comparison: Performance of baseline papers versus meta-classifier  

Experiments are selectively repeated with different datasets to validate model performance across varied 

data distributions and ensure the robustness of findings. Not all experiments are repeated due to resource 

constraints, time limitations, and the need to prioritize experiments based on their significance and potential 

impact. Selective repetition allows for efficient allocation of resources while still ensuring thorough validation of 

key findings and insights. The findings from the second dataset are summarized in Table 5. 

 

Table 5: Baseline comparison: Performance of baseline papers versus meta-classifier (Adult Drug Dataset) 

Experiment IV: Adult Drug Dataset F-score AUC 

Traditional Stacking (SVM + KNN + NN + LR) 0.79 0.55 

State-of-art 1 (SVM on Lasso) 0.81 0.54 

Meta-classifier  0.89 0.68 

 

Similar to the findings from Dataset 1 (Student dataset), the meta-classifier demonstrates the highest F-

score of 0.8921, indicating superior precision and recall balance, while also achieving the highest AUC of 0.68, 

suggesting strong discrimination power. compared to traditional stacking, and SVM on Lasso, the meta-classifier. 

This finding (as in Fig 14) declares that meta-classifier combines the predictions of multiple base models, 

potentially capturing more complex relationships within the data compared to simpler individual models or 

traditional ensemble methods. It also aggregates predictions from multiple base models using a weighted scheme, 

allowing it to harness the strengths of each base model while mitigating their weaknesses, thereby improving 

overall performance. 

Synthetically, the meta-classifier provides consistent result on both dataset 1 and dataset 2.  In both 

experimental scenarios, a common observation is that the proposed model achieves higher AUC scores compared 

to other metrics, indicating superior discriminative power. This performance edge is especially important in 

alcohol addiction prediction, where reducing false negatives is critical. A model with high discriminative power 

minimizes missed cases of addiction, ensuring that individuals at risk are identified and addressed. False negatives 

in this context mean failing to detect early-stage or ongoing addiction, which can lead to delayed intervention, 

worsening health outcomes, and increased strain on healthcare resources. In medical diagnostics, where timely 

detection can prevent severe consequences, a low false-negative rate is essential. By reducing missed cases, the 

proposed model contributes directly to more effective interventions and improved public health outcomes, 

emphasizing the importance of prioritizing AUC as a key metric. 

 
Fig. 14. Comparative analysis with Adult Drug dataset on benchmark and state-of-art learners 
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However, compared to dataset 1, all models perform relatively poorer on dataset 2, with lower AUC 

values and marginally reduced F-scores. This suggests potential dataset-specific challenges or differences in data 

characteristics between the two datasets, highlighting the importance of evaluating model performance across 

multiple datasets to ensure robustness and generalizability of findings. 

4.3.   Comparison with previous studies  

The outcome of experiments on two datasets affirmed the problem statements mentioned in this research 

can be resolved with the proposed solution. According to the author’s knowledge, there is no previous work on 

the enhanced meta classifier approach. Therefore, phase by phase experiment is performed on three different 

scenarios (i.e., baseline, benchmark and state-of-art) on two different datasets for evaluating the performance with 

proposed approach.. Hypothesis is preserved as enhanced meta classifier produces better discriminative power and 

balanced accuracy compared to traditional methods, while maintaining the accuracy, interpretability and 

efficiency. The comparison with previous studies are summarized as in below Table 6.  

 

Table 6: Comparative analysis with previous studies compared to enhanced meta classifier 

Papers Approach F-score AUC Efficiency Interpretability 

Park et al. 

(2021) [67] 

Single kernel-based: 

SVM 

0.83 0.64 

1-5 mins (RBF 

kernel adds 

complexity, 

quadratic 

scaling) 

Low (RBF 

kernel makes it 

harder to 

interpret) 

Xiong et al. 

(2023) [66] 

Single instance-based: 

KNN 
0.82 0.51 

<1 min  (O(n²) 

scaling with 

dataset size) 

High (Simple to 

interpret based 

on distance 

metrics) 

Kumari et al. 

(2018) [68] 

Single deep-learning: 

MLP 0.85 0.68 

3-7 mins (high 

computational 

complexity) 

Low (black-box, 

challenging to 

interpret) 

Buniyamin 

(2022) [47] 

Traditional Stacking 

0.83 0.72 

5-10 mins 

(multiple 

models 

combined, 

increases 

training time) 

Low (difficult to 

interpret when 

many models 

are stacked) 

Ebrahimi et al. 

(2021) [69] 

Traditional Bagging 

0.76 0.71 

5-8 mins  

(depends on 

base models) 

Medium 

(improves 

variance control, 

moderate 

interpretability) 

Priya & 

Thilagamani 

(2022) [45] 

SVM on Lasso 

0.83 0.57 

1-5 mins (Lasso 

regularization 

improves 

efficiency) 

Medium-High 

(better 

interpretability 

due to feature 

selection) 

Enhanced Meta 

Classifier 

Bootstrap aggregated 

SVM, KNN, MLP with 

Linear meta learner 0.86 0.79 

1 – 7 mins 

(parallelization 

possible) 

Medium-High 

(meta-learner 

LR improves 

interpretability 

of ensemble) 

 

 As in table 6, improvements from enhanced meta classifer underscore the efficacy of the metaclassifier 

approach in enhancing model discrimination capabilities, surpassing the performance of alternative methodologies 

[45-47]. Interpretability concern is also supported by latest studies for deep learning models such as [70] 

highlighted it can be complex and require substantial computational resources, which might not be feasible in all 

healthcare settings. Likewise, [71] claimed that implementing and interpreting ensemble or bagging models like 

Random Forest can be challenging, especially in clinical settings without technical expertise. In contrast, with 

these compelling results, the proposed approach not only demonstrates a substantial improvement in accuracy but 

also advances the forefront of machine learning applications in the realm of public health and presents a promising 

new research avenue in the machine learning domain.  
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 Henceforth, the proposed meta-classifier outperforms traditional stacking methods by 10% in terms of the 

F1 score due to its innovative approach to generating and leveraging meta-features. Unlike conventional stacking, 

proposed method involves training the LR model on meta-features derived from different subsets of the training 

data, which allows for a more nuanced understanding of the relationships between the base model predictions. 

This diverse subset approach enhances the meta-learner's ability to generalize better across various scenarios. 

Additionally, the LR model in proposed approach examines how each bootstraped base model (SVM, KNN, NN) 

performs on these subsets, providing a richer set of meta-features compared to traditional stacking methods. 

Furthermore, by combining these predictions into meta-features, the LR model can identify patterns and 

interactions between the base models that would be overlooked in a traditional stacking setup. This comprehensive 

insight generation allows the meta-learner to correct biases and errors more effectively. In contrast, standard 

methods like SVM on Lasso or random forest regularization often rely on a single perspective of the data, which 

can lead to suboptimal performance in complex datasets. The proposed method's ability to dynamically adapt to 

the strengths and weaknesses of each base model on different data subsets results in a more balanced and accurate 

final prediction. 

Moreover, traditional stacking techniques may suffer from overfitting due to their reliance on the entire 

training dataset for meta-features, while proposed method's subset approach mitigates this risk by promoting 

diversity in the training process. This robustness against overfitting contributes significantly to the improved F1 

score. The enhanced interpretability of meta-classifier also allows for better model diagnostics and refinements, 

ensuring continuous performance improvements. Overall, the proposed method's strategic use of meta-features 

and comprehensive insight generation leads to superior predictive performance, as evidenced by the 10% increase 

in the F1 score. 

 

In brief, the enhanced meta-learner embraces the strengths of each base model (SVM for handling 

complex decision boundaries, KNN for local instance-based learning, and MLP for capturing deep, non-linear 

relationships) and addresses their individual weaknesses (overfitting, noise sensitivity, complexity) through 

bagging. The final use of Logistic Regression as a meta-learner offers an additional layer of interpretability and 

stability compared to traditional stacking or bagging approaches, making it more robust and explainable for real-

world applications. This balance of improving interpretability without sacrificing performance makes this 

approach superior. 

 
4.4.   Future work: Application to the real-world problems  

The ongoing issues surrounding alcohol abuse in the Orang Asli community, Malaysia, such as missed early-stage 

detection, reliance on subjective assessments, laborious evaluation processes, and limited healthcare access, can 

be effectively addressed through the findings from this study. By employing machine learning (ML)-based 

predictions, early detection of alcohol abuse, and timely intervention for at-risk individuals can be promoted. 

Improved prediction model offers objective and standardized results, significantly enhancing accuracy over 

traditional methods. Additionally, automating the assessment process alleviates the burden on healthcare 

practitioners, enabling them to focus on patient care rather than administrative tasks. Finally, the proposed solution 

is designed to be efficient and interpretable, making it easy to implement within existing healthcare systems, 

thereby increasing accessibility for remote communities and prioritizing the urgent need for effective intervention. 

The integration of our ML-based predictive model into a web-based solution can significantly enhance 

accessibility and usability for both healthcare practitioners and community members. A user-friendly interface can 

be designed to allow healthcare workers to input relevant patient data easily, with the system providing real-time 

predictions and risk assessments. Visual dashboards could display critical metrics, such as individual risk scores 

for alcohol abuse, trends in community health data, and alerts for high-risk cases requiring immediate attention. 

Such a system would not only streamline the assessment process but also facilitate better communication among 

healthcare providers, enabling them to collaborate effectively in addressing patient needs 

In brief, the findings from this research have the potential to create a profound impact on the Orang Asli 

community by improving the detection and management of alcohol abuse. With the existing strong use-case from 

Hospital Oang Asli Gombak (HOAG), this research findings can be implemented as prototype to enable betterment 

in Alcohol addiction management among Orang Asli with the expected outcome to significantly reduce the 

instances of missed early-stage alcohol abuse, leading to more effective prevention strategies.  
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5.0 CONCLUSION AND FUTURE WORK 

 

Alcohol addiction remains a pressing public health issue that affects countless individuals and communities, 

necessitating effective early detection and intervention strategies. Although technology-based interventions 

remains popular, existing machine learning models for alcohol addiction often struggle to find the right balance 

between accuracy, interpretability, and efficiency, limiting their practical application in real-world healthcare 

settings. Hence, in this enhanced meta-classifier approach, combining heterogeneous models (SVM, KNN, MLP) 

ensures a balance between robustness and diversity, while using logistic regression as the meta-learner provides a 

clear, interpretable model. By using bagging at the base model level and logistic regression at the meta-learning 

stage, the solution maintains interpretability, improves accuracy through diversity, and ensures efficiency by 

leveraging soft voting and meta-features, thus overcoming the limitations of traditional approaches.Therefore, the 

proposed meta-classifier represents a significant advancement in predictive modeling by introducing a novel 

approach that enhances model performance through improved meta-feature generation and insight extraction. This 

method outperforms state-of-art and traditional techniques by 10.13% in balanced accuracy and 9.72% in 

discriminative power.  

 The practical application of this research is realized through its integration into a web-based intervention, 

providing a user-friendly tool for healthcare professionals and patients. The theoretical contributions include a 

deeper understanding of meta-classification dynamics and its impact on model accuracy. The study’s limitations 

include the reliance on a limited number of datasets, which may impact the generalizability of the model across 

diverse populations. Additionally, implementing the model in underserved areas presents challenges due to limited 

infrastructure and resource constraints, potentially affecting accessibility and adoption rate. 

 Future work will involve extending experimentation to diverse datasets and incorporating additional 

evaluation metrics such as Log Loss and confidence intervals to further validate the model's robustness. 

Additionally, a prototype of the AI-powered web-based intervention is aimed to develop specifically for Hospital 

Orang Asli in Malaysia, enhancing its relevance and applicability in real-world healthcare settings. This ongoing 

work will refine the model and intervention, ensuring both practical and theoretical advancements in the field of 

medical informatics. 
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