
Malaysian Journal of Computer Science, Vol. 12 No. 1, June 1999, pp. 76-81

76

VISUAL LANGUAGES: A NEW WAY OF PROGRAMMING

Rodina Ahmad
Software Engineering Department

Faculty of Computer Science & Information Technology
University of Malaya
50603 Kuala Lumpur

email: rodina@fsktm.um.edu.my

ABSTRACT

Visual programming languages(VPLs) represent quite the
biggest departure from traditional programming
approaches. However the last ten years have seen quite
remarkable progress in this field. There is a number of
visual programming languages (VPLs) already in the
market and others are still in the research prototype stage
and it is difficult to predict the suitability of its usage for
the real world applications. This paper highlights some of
the basic concepts of visual programming, its
classification, current research trends and the benefits
gained from using it.

Keywords: Visual programming language, visual
object-oriented language, form-based
language

1.0 HISTORICAL BACKGROUND OF
PROGRAMMING LANGUAGES AND
ENVIRONMENTS: TEXTUAL PROGRAM-
MING

The textual programming languages and environments
have been developed ever since the computer was invented
and therefore have been greatly influenced by the computer
hardware organization. As a result, most of the textual
languages developed are oriented towards using character-
based input and output and the program structure is usually
sequential. Beside hardware, programming languages are
also influenced by natural language and mathematical
formalisms such as algebra, predicate calculus and lambda
calculus. This gives way to creation of variables to
symbolize addresses, keywords such as if-then-else to
describe conditional branches and unconditional branches.
However, as computer progresses, it was found that some
higher level languages do not favor natural language
structure and choose mathematical formalisms like lambda
calculus and predicate calculus to develop languages like
LISP and PROLOG. These languages have been widely
used especially in the area of artificial intelligence
applications until today.

Textual programming languages which were developed as
the result of the influences mentioned have several

drawbacks. These languages provide facilities to express
algorithms according to how computers operate but not
according to how the human mind works. Since the
medium of expression is text, which is one dimensional,
algorithms are expected to be sequential. This requirement
has restrained the programmer’s thinking and forced him
to consider organizing every program to be linear which
may not be the requirements for its algorithm. In addition,
textual programming usually has a complex syntax which
is inherited from its natural language ancestry. Usually,
the programmer is forced to follow strict rules to ensure
that the program executes. This prohibits the programmer
from being more creative and becomes more focus on the
language syntax.

There are several other loopholes of textual programming
such as their use of variables which have various
conflicting roles, their weakness in expressing the concepts
of object orientation and in describing data structures such
as lists, graphs and trees which require many levels of
abstraction from the intended semantics. However, text
also has its worth which cannot be dismissed easily. Text
is superior in expressing compact concepts such as
algebraic formulae, comments and program element
identification. As a result, it is always seen as part of the
program.

2.0 THE ADVENT OF VISUAL PROGRAMMING

Visualization is long associated with computers and
programming. Most of the analogue machines which were
constructed prior to the development of digital computers
were programmed in a pictorial fashion. Besides,
flowcharting which uses picture like diagram, has been
used as a heuristic aid in designing algorithms in
programming our present digital computers. Visual
programming field has matured from the unification of
progress in computer graphics, programming language and
human-computer interaction. One of its pioneer
contributions came from the work of Ivan Sutherlands who
designed Sketchpad on the TX-2 computer at MIT in 1963.
His work has been recognized as the first computer
graphics application which allowed users to work with a
lightpen to create 2D graphics by creating simple
primitives and applying operations on the geometric

Visual Languages: A New Way of Programming

77

shapes which the users created. Sketchpad has contributed
mostly in its graphical interface and support for user-
specifiable constraints.

The second major contribution in VPLs was made by
David Canfield Smith in his Ph.D. dissertation entitled
‘Pygmalion: A Creative Programming Environment’.
Smith introduced the idea of icon-based programming
paradigm which allows the user to create, modify and link
together small pictorial objects (icons) with defined
properties to perform computations. Pygmalion also
introduced the concept of programming-by-example in
which the user shows the system how to perform a task in a
specific case and the system generates a program to
perform generalized tasks. Smith’s work has initiated
many other visual programming researches till today.

3.0 VISUAL PROGRAMMING AND ITS
DEFINITION

 Visual programming differs from textual programming in
terms of expressing the syntax and semantics of
programming languages. Visual programming uses visual
syntax which means that some terminals are able to display
pictures or forms or other illustrations. A visual syntax
may incorporate spatial information and visual attributes
such as color, depth and location. According to Shu [25],
a visual programming language uses “some visual
representations (in addition to or in place of words and
numbers) to accomplish what would otherwise have to be
written in a traditional one-dimensional programming
language.” Shu also emphasizes that “to be considered a
visual programming language, the language itself must
employ some meaningful… visual expressions as a means
of programming”.

In our current scenarios, a VPL is usually embedded inside
a visual environment. The environment is said to be a
visual environment when the tools are graphical or adopted
graphical techniques for manipulating pictorial elements
and displaying program structure. This is where the
programmer works to create, modify and design his
programs. The environment may also consist of a set of
tools and a user interface for accessing the tools.

The objective of having visual programming and visual
environments is to enable programmers to express their
logic or ideas of solving a problem in a simpler way, and to
enable them to clearly understand how the program works
visually. In order to achieve this objective, VPL usually
uses the following four characteristics.

1. Conceptual simplicity: VPL represents the underlying
concepts as natural as possible and simplifies abstract
concepts. It only emphasizes logic which is directly
pertinent to the application and not the programming

mechanics such as event loops, storage allocation and
scope rule for objects.

2. Concreteness: VPL uses concreteness to facilitate
creation of a program. Concreteness can be used to
provide feedback or to provide specification to the
program that needs to be created, for example, using
the point and click user interface technique to enable
programmers to specify what they want for their
program.

3. Explicitness: VPL usually shows relationships among
objects or modules in a very explicit way such as
through connections or diagrams.

4. Immediate visual feedback: Liveness level refers to
the degree in which VPL may provide immediate
feedback. VPL is fully live as it displays the effects of
changes made by the programmer automatically, that
is, the programmer does not need to press a special
button or do something in order to see the effects.

4.0 CLASSIFICATION OF VISUAL PRO-
GRAMMING LANGUAGES (VPLS)

As the field of VPL grows, many people have tried to
categorize VPLs. Basically, they can be categorized as
follows:

A. Purely visual language
B. Hybrid text and visual systems
C. Others, such as constraint-oriented systems and

form-based systems

Purely visual language semantics have been derived
entirely or predominantly from graphical rules. These
languages are usually characterized by heavy reliance on
visual techniques throughout the programming process.
The program created in purely visual language is compiled
directly from its visual representation and not translated
into any text-based language. Examples of these languages
include Pictorial Janus, VIPR, Prograph and PICT. There
are other suggestion to subdivide this category into more
specific language paradigm such as object-oriented,
functional, imperative and logic. Burnett and Baker [5]
have developed a classification scheme for classifying VPL
research papers. Their aim is to help other researchers to
easily locate relevant works in this field.

Another subset of VPLs favors the idea of integration of
visual languages with well-established textual
programming languages. They perceive the integration
might be more likely to meet the actual requirements of
practical software development than the highly ambitious
goal of creating purely visual languages. These hybrid
systems may include both programs created visually and

Ahmad

78

then translated into high-level textual language, or
programs which involve the use of graphical elements in a
textual language. The work of Andrew, Erwig and Meyer
[13] are examples of programs created graphically and the
system generates textual program from it. The latter
includes works to extend existing textual language such as
C++ and Basic. The current commercial system in this
category includes Visual Basic and Visual C++.

Beside the two major categories discussed, there exists
many VPLs which fall into smaller classifications similar
to Pygmalion or Sketchpad. They are termed constraint-
based languages which are especially popular for
simulation design. An example of this is ThingLab II [16],
which is an object-oriented and constrainted programming
system. A few other VPLs follow the metaphor of
spreadsheets and these languages are classified as form-
based VPLs. Programming using form-based VPLs
involves altering a group of interconnected cells and
allowing the programmer to visualize the execution of a
program as a sequence of different cell states which
progress through time. Examples of form-based VPLs are
Forms/3, ASP (Analytic Spreadsheet Package), NoPumpG,
NoPumpII and Penguims. Besides that, there are VPLs
such as Vampire [17], ChemTrains and BITPICT which
combine visual object-oriented programming language

with a rule-base approach. Table 1 summarizes
classification of most of the visual system or VPLs
frequently quoted according to the three categories
highlighted above.

The Prograph environment has three main components
which are the editor, interpreter and application builder.
The editor is used for program design and construction, the
interpreter executes a program and provides debugging
tools and the application builder helps the task of
constructing a graphical user interface for a program.

Another example of VPL is VIPR or Visual Imperative
Programming. VIPR is developed by Citrin et al [8] at the
University of Colorado in 1993. It is a general-purpose
visual programming languages. It uses nested series of
concentric rings to visualize or represent a program. Each
computation step is represented by the merging of two such
nested rings in the presence of a state object which is
connected to the outermost ring. Fig. 2 illustrates three
sequential statements in action. Fig. 3 illustrates an
example of if-then-else statement in VIPR. In this case, if
two or more rings are nested inside a ring with an attached
state object, the conditions of all these rings are evaluated
and one of the rings will be evaluated.

Table 1: Classification of Visual Systems or Visual Programming Languages

Purely Visual Languages Systems Hybrid text & Visual
Programming Systems

Others

VIPR, Prograph, Pictorial Janus,
LabVIEW, Visual Engineering
Environment(VEE), HI-VISUAL,

Vista

Visual Basic, VisualWorks,
Visual J++, Visual C++,
OpenStep, ObjectWorld,
Rehearsal World

Pygmalion, ThingLab, Forms/3,
Pursuit, Vampire, ChemTrains,
BITPICT, ASP, NoPumpF,
NoPumpII, Penguims.

Fig. 1: Example of Class Window in Prograph

Visual Languages: A New Way of Programming

79

Fig. 2: Sequential statements S1,S2 and S3 are represented statically and dynamically in VIPR

Fig. 3: An if statement in static VIPR representation

5.0 THE BENEFITS OF VISUAL
PROGRAMMING

Visual programming addresses two important issues in
software engineering. Firstly, it enables users to master
the complexity of programming by visualizing it. The
raising of the abstraction to the visual level reveals
semantic relationships among program entities and makes
it more understandable. Another one is increasing
productivity which is gained either through the ease of
using the systems or the increase in communication among
the developers and the users of the systems, because the
users can usually understand the beginning process of
designing the systems.

Some studies have been carried out to compare visual
programming with other types of programming.

Green[14] compared the readability of textual and
graphical programming and concluded that graphical
programs took longer to understand than textual ones.
Moher [19]also compared petri-net representations with
textual program representation and found areas where the
petri-net representation was more suitable. Besides,
Pandey and Burnett [20] compared time, ease, and errors
in constructing code using visual and textual languages.
They found that matrix and vector manipulation programs
constructed using visual programming had fewer errors.
Another study by Cunniff and Taylor on the
comprehension of a static visual flowchart language versus
the textual language Pascal, was conducted on 23 novice
programmers. The finding is based on reaction time and
on the number of correct responses from the programmers.
The study reported that the flowchart language was easier
to comprehend.

Ahmad

80

In the real world application, Baroth and Hartsough [2]
reported on the use of LabView in their workplace. They
had two group of developers to create a telemetry analyzer.
One group was asked to use LabView and another group
was asked to use C programming. After about eight weeks
of work, they found that the visual programming group
had exceeded the original requirements while the C
programming group had not completed the original
requirements. They cited several advantages of visual
programming such as its flexibility in the design process,
improvement of communication between users and
programmers, and shorter period to train programmer to
master the language. Besides, they have observed
increased productivity through a reduction in software
development time as communication between the
customer, the developer and the computer is facilitated by
the visual programming tools used.

Other attractive features of visual programming tools are
that they are easy to use and understand and make rapid
prototyping possible. As a result, early testing and
demonstration, and allows corrections to be made early in
the development life cycle. The prototype can later be
refined to produce the final application. Visual
programming also makes coding easier to follow and the
codes become more reusable, easier to debug and easier to
document. Maintenance is also easier because the visual
programs are usually run-time reconfigurable. As a result,
the pace of work is faster since changes made visually are
immediately in effect and testable without the
recompilation stage. On the whole, it shortens up the
development process. Another benefit cited is that visual
programs are much easier to adapt to run on parallel
processing systems. This is due to the fact that a visual
program preserves information about the “dependencies”
in an algorithm and this information is needed by the
computer in order to run in parallel. A textual program
usually lacks this explicit dependency information and the
compiler usually must first try to infer from the existing
structure before attempting any parallel execution.

6.0 SUMMARY

This paper looks at the definition and classification of
visual programming. VPLs are characterized by their
immediate visual feedback, concreteness, explicitness and
conceptual simplicity to enable programmers to better
understand programs. Visual programming has simplified
the programming process and made programming projects
more manageable. It also enables the users to be involved
more directly in the process of programming. Future
research should focus more on its use in the development
of applications.

REFERENCES

[1] J. W. Atwood, Jr., M. M. Burnett, R. A. Walpole, E.
M. Wilcox and S. Yang, “Steering Programs Via
Time Travel” in IEEE Symposium on Visual
Languages, Boulder, Colorado, Sept. 1996.

[2] E. Baroth and C. Hartsough, “Visual Programming
in the Real World”, in M. M. Burnett, A. Goldberg,
and T. Lewis, eds., Visual Object-Oriented
Programming: Concepts and Environments,
Englewood Cliffs, Prentice-Hall, 1994.

[3] T. Budd, An Introduction to Object-Oriented
Programming, Reading, Addison-Wesley, 1990.

[4] M. M. Burnett, “Seven Programming Language
Issues” in M. M. Burnett, A. Goldberg, and T.
Lewis, eds., Visual Object-Oriented Programming:
Concepts and Environments, Englewood Cliffs,
Prentice-Hall, 1994.

[5] M. M. Burnett and M. J. Baker, “A Classification
System For Visual Programming Languages”,
Technical Report 93-60-14, Department of
Computer Science Oregon State University,
Corvallis, OR.

[6] S. K. Chang, “Elements of a Visual Language”,
http://www.cs.pitt.edu/~chang/365/elements.html.

[7] S. K. Chang,” Principles of Visual Programming
Systems”, http://www.cs.pitt.edu/~chang/365/sk1.
html.

[8] W. Citrin, M. Doherty and B. Zorn, “The Design of
a Completely Visual OOP Language”, in M. M.
Burnett, A. Goldberg, and T. Lewis, eds., Visual
Object-Oriented Programming: Concepts and
Environments, Englewood Cliffs, Prentice-Hall,
1994.

[9] P. T. Cox, F.R. Giles, and T. Pietrzykowski,
“Prograph: A step towards liberating programming
from textual conditioning”, in IEEE Workshop on
Visual Languages, Rome, October 4-6, 1989, pp.
150-156.

[10] P. T. Cox, H. Glaser and S. Maclean, “A Visual
Development for Parallel Applications”,
Proceedings of IEEE Symposium on Visual
Languages, Halifax, 1998.

Visual Languages: A New Way of Programming

81

[11] R. W. Djang and M. M. Burnett, “Similarity
Inheritance: A New Model of Inheritance for
Spreadsheet VPLs”, IEEE Proceedings of Visual
Language ’98, Nova Scotia, Canada, September
1998.

[12] R. Dye, “Visual Object-Oriented Programming”,
Dr. Dobb's Macintosh Journal, Fall 1989.

[13] M. Erwig, and B. Meyer, “Heterogeneous Visual
Languages-Integrating Visual and Textual
Programming” in 11th IEEE Symp. on Visual
Languages, Darmstadt, 1995, pp. 318-325.

[14] T. R. G. Green, M. Petre, and R. K. E. Bellamy,
“Comprehensibility of Visual and Textual
Programs: A Test of Superlativism Against the
Match-Mismatch Conjecture”, in Fourth Workshop
on Empirical Studies of Programmers, New
Brunswick, December 1991, pp. 121-146.

[15] J. Grundy, J. Hosking, S. Fenwick, and W.
Mugridge, “Connecting the Pieces” in M. M.
Burnett, A. Goldberg, and T. Lewis, eds., Visual
Object-Oriented Programming: Concepts and
Environments, Englewood Cliffs, Prentice-Hall,
1994.

[16] J. H. Maloney, A. Borning and B. N. Freeman-
Benson, “Constraint Technology for User-Interface
Construction in ThingLab II”, in Proceedings
OOPSLA '89, ACM SIGPLAN Notices, Vol. 24,
No. 10, 1989, pp. 381-388.

[17] D. W. Mcintyre, “Design and Implementation with
Vampire”, in M. M. Burnett, A. Goldberg, and T.
Lewis, eds., Visual Object-Oriented Programming:
Concepts and Environments, Englewood Cliffs,
Prentice-Hall, 1994.

[18] F. Modugno, “Interface Issues in Visual Shell
Programming”, in , M. M. Burnett, A. Goldberg,
and T. Lewis, eds., Visual Object-Oriented
Programming: Concepts and EnvironmentsPrentice
Hall, Englewood Cliffs, 1994.

[19] T. G. Moher, D. C. Mak, B. Blumenthal, and L. M.
Leventahal, “Comparing the Comprehensibility of
Textual and Graphical Programs: The Case of Petri
Nets”, in Fifth Workshop on Empirical Studies of
Programmers, Palo Alto, December, 1993.

[20] R. K. Pandey, M. M. Burnett, “Is it Easier to Write
Matrix Manipulation Programs Visually or
Textually? An Empirical Study”, in IEEE
Symposium on Visual Languages, Bergen, Norway,
Aug. 1993, pp. 344-351.

[21] M. Ratcliff, C. Wang, R. J. Gautier, and B. R.
Whittel “Dora- a Structure Oriented Environment
Generator”, Software Engineering Journal, Vol.7,
No. 3, 1992, pp. 184-190.

[22] S. P. Reiss, “Interacting with the FIELD
Environment”, Software-Practice and Experience,
Vol. 20, No. S1, 1990, pp. S1/89-S1/115.

[23] S. Schiffer and J. H. Frohlich, “Visual
Programming and Software Engineering with
Vista”, in M. M. Burnett, A. Goldberg, and T.
Lewis, eds., Visual Object-Oriented Programming:
Concepts and Environments, Englewood Cliffs,
Prentice Hall, 1994.

[24] A. Scrivener, “The Impact of Visual Programming
in Medical Research”, in Conference of Medicine
Meets Virtual Reality II-Interactive Technology and
Healthcare: Visionary Applications for Simulation,
Visualization and Robotics, January 27-30, 1994.

[25] R. Sebesta (1996) Concepts of Programming
Languages. Menlo Park, California, Addison-
Wesley.

[26] N. C. Shu, Visual Programming, New York, N. Y.
Van Nostrand Reinhold, 1988.

BIOGRAPHY

Rodina Ahmad obtained her Master of Computer Science
from RPI (USA) in 1991. Currently, she is a lecturer in
the Department of Software Engineering, Faculty of
Computer Science and Information Technology, University
of Malaya. Her research interests include software
measurement, object-oriented programming and computer
aided instructions.

