
Malaysian Journal of Computer Science, Vol. 12 No. 2, December 1999, pp. 1-9

1

USING FORMAL SPECIFICATION TO VALIDATE A HUMAN RESOURCE INFORMATION SYSTEM

Rohidah Maskuri
Sepang Institute of Technology

Level 5 Klang Parade, 2112 Jalan Meru
Klang, Selangor

Malaysia
Tel.: 603-3430628

email: rohidah@sit.edu.my

Abdullah Mohd. Zin
Faculty Technology and Information Science

Universiti Kebangsaan Malaysia
43600 Bangi, Selangor

Malaysia
Tel.: 603-8296179

email: amz@suns1.ftsm.ukm.my

ABSTRACT

This paper contains the analysis of the Z specification of a
human resource information system. It aims to show the
strength of the formal methods in analysing and detecting
errors after the implementation phase.

Keywords: Prototyping, Formal Methods, Initialisation

Theorems, Preconditions

1.0 INTRODUCTION

Prototyping is one of the traditional, yet most popular
methodologies that is widely being practised in software
development. This is due to one main factor, it allows the
product to be delivered to the customer in the shortest time
scale. The prototyping paradigm begins with the
requirements gathering. A meeting between developer and
customer is arranged to define the objectives as well as to
identify the requirements of the software.

Following the meeting, a model which focuses on a
representation of those aspects of the software that will be
visible to the customer such as the format of the input and
output will be designed. The quick design then leads to the
construction of a prototype. At this point, the customer
may decide that the requirements are wrong, or that they
have changed, or that new features should be added.
Iteration occurs as the prototype is tuned to satisfy the
needs of the customer [1].

One main advantage of this approach is the quick
turnaround in designing and building the prototypes.
Customers are able to preview the system even before the
system is fully implemented. No doubt that prototyping is
preferred by most of the customers because of its fast
delivery, yet it can be problematic for certain reasons [2].

First, customers are normally mislead into regarding the
first prototype as the end result. The first prototype
presented to the customer is just the first phase of an
iterative system development process.

Second, for the sake of demonstration, developers tend to
design the first prototype using inappropriate language and
platform. However, the nature of iteration practised in this

approach always causes this to be ignored. This affects the
overall performance of the system in the long run.

Third, and the most significant disadvantage is that the
requirements for the system are not fully captured since the
system is built during the implementation phase. Thus, the
chances of producing errors are high. Boehm discovered
that over 60 percent of errors encountered in the systems
during operations were due to shortcomings in the
specifications [3].

A formal method is another useful methodology in software
development due to its role to produce a defect-free
software. By applying a rigorous mathematical notation to
specify, develop, and verify a computer-based system, this
approach certainly provide a promising method to increase
confidence in developing a system prior to system
implementation [4]. This mechanism which makes use of
mathematical analysis is very useful in overcoming
difficulties such as ambiguity, incompleteness, and
inconsistency when used during development. Thus, it is
not too outrageous to claim that formal methods model does
offer the promise of defect-free software.

Formal specification is normally used to guide the software
development process. However, this paper explores a new
approach towards formal methods, that is the use of formal
methods in analysing existing systems. In particular, this
paper attempts to show that formal methods can be used as
a verification tool, that is to find and correct errors after the
system implementation.

2.0 METHODOLOGY

To study the effectiveness of formal methods in verifying a
system, a human resource information system of one
institute of higher learning was studied. The main task of
the system is to maintain the record of each staff working in
the institute. After considering the constraints and
requirements of the system, a formal specification for the
system is produced by using Z notations [5]. The Z formal
specification of the system is described by Mohd. Zin and
Maskuri [6]. Below is the summary of the methodology.

• study the human resource information system
• develop formal specification for the system

Maskuri and Mohd. Zin

2

• prove the formal specification of the system.

The first two items above are covered in the paper by
Mohd. Zin and Maskuri [6] while the third one is the main
focus of this paper.

3.0 VALIDATION PROCESS

A formal specification is valid if it is self-consistent and
complete. The self-consistency and completeness of a Z
formal specification is determined by proving the following
three things [7]:

• Proof of Initialisation Theorem
• Simplification of Preconditions
• Proof of Properties

The Proof of Initialisation Theorem and Simplification of
Preconditions are two standard checks that are carried out
for any state-based specification. Initialisation Theorem is
a theorem concerning the existence of at least one suitable
initial state. It takes the form of

├ � Schema' ● InitSchema

This theorem states that there really is a Schema’ which
satisfies the requirements of InitSchema. An initial state of
the system should always be specified. The purpose of the
initial state is to demonstrate that at least one beginning
state exists before any operation on the state can be
performed.

Unlike any other states, an initial state has one interesting
property, it does not have any ‘before state’ which means
that there is no operation applicable before the existence of
this state. However, an initial state will produce an ‘after
state’ once the first operation is performed on it.

The purpose of the second check, the precondition
calculation is to examine that the operation is valid. There
must be at least one ‘before state’ in which the operation is
applicable. To make an operation applicable, a
combination of ‘before state’ and a set of inputs must exist.
There must also exist a combination of ‘after state’ and set
of outputs that satisfies the relationship amongst all the
variable involved.

The precondition for an operation schema Op is denoted in
Z as

 pre Op

In developing the precondition of a schema, all the output
variables and after state variables are existentially
quantified and allocated under the predicate part. For
example, if Op represents an operation, pre Op is defined
to mean

� State' ; Outputs! ● Op
where State’ is the after state of the system for which Op is
defined and Outputs! is the set of declarations of the output
variables of Op.

In many cases, the precondition can be simplified to give a
shorter but logically equivalent statement.

Having proven the first two levels, the last type of proof,
the Proof of Properties is the formal checking on the
informal properties and requirements in the system that
need to be captured.

4.0 VALIDATING A HUMAN RESOURCE INFOR-

MATION SYSTEMS

This section will practically apply the above validation
process to prove a human resource information system
mentioned earlier. In order to do that, this section will be
divided into three parts. The first part is to check the Initial
State Theorem for the state schemas of the Z formal
specification while the second part is to calculate the
preconditions of all the operation schemas of the
specification. The last section involves in analysing and
verifying the properties of the system.

4.1 Initial State Theorem

This section is divided into two parts. The first section will
generate all the initial state schemas for the specification
while the second part will involve proving the produced
initial state schemas.

There are five state schemas for the system: Person,
Address, Independence, Beneficiary and Salary. The prefix
Init to the schema name is used to denote an initial state
schema. For example, InitPerson is the initial state for the
schema Person.

The initial state for all the schemas are given in Fig 1.

Initial state schemas are validated by proving their
corresponding initial state theorem. Since the steps taken to
prove all the initial state theorems are almost the same, this
section will only show the steps taken to prove the initial
state theorem for InitPerson. A summary of the final steps
for the rest of the schemas will be shown at the end of this
section.

The corresponding initial state theorem for the schema
Person is given below:
 ├ � Person’ ● InitPerson

The statement of the theorem can be expanded and
simplified. The simplification of this theorem is shown
in Fig. 2.

Using Formal Specification to Validate a Human Resource Information System

3

 (a)

 InitPerson
 Person'

dom name' = dom title' = dom sex' = dom race' = dom religion' = dom origin' =
dom pensionno' = dom telext' = dom status' = dom dob' = dom icno' = dom
newicno' = dom citizenship' = dom state' = dom maritalstatus' = dom pensiondate'
= dom dobno' = dom disability' = dom taxno' = dom epfstatus' = dom socsono' =
dom epfno' = staff' = Ø

(b)

InitAddress
Address'

dom address1’ = dom address2’ = dom address3’ = dom postcode’ = dom town’ =
dom state’ = dom telephone’ = dom telext’ = Ø

(c)

InitIndependence
AllIndependence'

dom child’ = dom spouse’ = dom parents’ = Ø

(d)
 InitBeneficiary

Beneficiary'

dom address1benef' = dom address2benef' = dom address3benef' = dom
postcodebenef' = dom townbenef' = dom statebenef' = dom phonebenef' = dom
offphonebenef' = dom sambtelwaris' = Ø

(e)
InitSalary

Salary'

dom bankcode' = dom bankbranch' = dom accountno' = Ø

Fig. 1: Initial State Schemas

Maskuri and Mohd. Zin

4

├ � name’ : kk01personno �� kk40name
title’ : kk01personno �� kk40title
sex’ : kk01personno �� kk40sex
race’ : kk01personno �� kk40race
religion’ : kk01personno �� kk40religion
origin’ : kk01personno �� kk40origin
pensionno’ : kk01personno �� kk01pensionno
dob’ : kk01personno �� kk40dob
icno : kk01personno �� kk40icno
newicno’ : kk01personno �� kk40newicno
citizenship : kk01personno �� kk40citizenship
state’ : kk01personno �� kk01state
maritalstatus’ : kk01personno �� kk40maritalstatus
pensiondate’: kk01personno �� kk01pensiondate
dobno’: kk01personno�� kk40dobno
disablecode’ : kk01personno �� kk02disablecode
taxno’ : kk01personno�� kk01taxno
epfstatus’ : kk01personno �� kk01epfstatus
socsono’ : kk01personno �� kk01socsono
socsotype’ : kk01personno �� kk01socsotype
epfno’ : kk01personno �� kk01epfno

staff’ : � kk01person ●
dom name’ = dom sex’ = dom title’ = dom race’ = dom religion’ = dom origin’ =
dom pensionno’ = dom telext’ = dom ukmstatus’ = dom dob’ = dom icno’ = dom
newicno’ = dom citizenship’ = dom state’ = dom maritalstatus’ = dom
pensiondate’ = dom dobno’ = dom disablecode’ = dom taxno’ = dom epfstatus’ =
dom socsono’ = dom socsotype’ = dom epfno’ = staff’ = Ø

Fig. 2: Simplification of Schema InitPerson

Since all the after state variable share the common domain,
the above can be further reduced to become,

staff’ = Ø

The requirement of Person’ is certainly met when staff’ is
set to empty. By using the same approach, it is also proven
that all the other initial state theorems are true.

4.2 Precondition Calculation

As mentioned earlier, a formal specification is valid if it is
self-consistent and complete. The consistency of an
operation can be checked by calculating the precondition
for that operation and also by checking that it agrees with
our intuition. Thus, to complete this section, the expected

preconditions for all available operations is presented.
Following that, mathematical analysis will be used to
calculate the precondition manually. The details of the
steps taken in calculating every precondition are no shown
due to the space constraint. Only the details for the schema
DisplayPerson will be illustrated. The summary for all the
simplified preconditions will be presented right after that.

In developing the precondition of a schema, all the output
variable and after state variable are existentially quantified
and allocated under the predicate part. As it progresses,
One Point Rule will be used regularly to reduce predicates.

For the schema DisplayPerson the precondition is given in
Fig. 3.

Using Formal Specification to Validate a Human Resource Information System

5

 PreDisplayPerson

name : kk01personno �� kk40name
title : kk01personno ��kk40title
sex : kk01personno �� kk40race
origin : kk01personno �� kk40origin
pensionno : kk01personno �� kk01pensionno
telext : kk01personno �� kk01telext
ukmstatus : kk01personno �� kk40status
dob : kk01personno �� kk40dob
icno : kk01personno �� kk40icno
newicno : kk01personno �� kk01newicno
citizenship : kk01personno �� kk40citizenship
state : kk01personno �� kk01state
maritalstatus : kk01personno �� kk40maritalstatus
pensiondate : kk01personno �� kk01pensiondate
personno? : kk01personno

staff : � kk01personno

� name!:kk40name; title!:kk40title; sex!:kk40sex; origin!:kk40origin;
dob!:kk40dob; pensionno!:kk01pensionno; telext!: kk01telext;
ukmstatus!:kk40status; icno!: kk40icno; newicno!:kk01newicno;
citizenship!:kk40citizenship; state!:kk01state; ensiondate!:kk01pensiondate;
maritalstatus!:kk40maritalstatus ●
personno? є staff ^
name! = name(personno?) ^
title! = title(personno?) ^
sex! = sex(personno?) ^
origin! = origin(personno?) ^
pensionno! = pensionno(personno?) ^
telext! = telext(personno?) ^
ukmstatus! = ukmstatus(personno?) ^
dob! = dob(personno?) ^
icno! = icno(personno?) ^
newicno! = newicno(personno?) ^
citizenship! = citizenship(personno?) ^
state! = state(personno?) ^
maritalstatus! = maritalstatus(personno?) ^
pensiondate! = pensiondate(personno?) ^
dom name = dom title = dom sex = dom origin = dom pensionno = dom telext
= dom ukmstatus = dom dob = dom icno = dom newicno = dom citizenship =
dom state = dom maritalstatus = dom pensiondate

Fig. 3: Precondition for the Schema DisplayPerson

By the one point rule [5], all the variables under the
existential quantifier can be eliminated to result in the next
schema as in Fig. 4. Following the PreDisplayPerson is the

summary for all the simplified preconditions for the
operation schemas produced by Mohd. Zin and Maskuri
[6].

Maskuri and Mohd. Zin

6

PreDisplayPerson
name : kk01personno �� kk40name
title : kk01personno ��kk40title
sex : kk01personno �� kk40race
origin : kk01personno �� kk40origin
pensionno : kk01personno �� kk01pensionno
telext : kk01personno �� kk01telext
ukmstatus : kk01personno �� kk40status
dob : kk01personno �� kk40dob
icno : kk01personno �� kk40icno
newicno : kk01personno �� kk01newicno
citizenship : kk01personno �� kk40citizenship
state : kk01personno �� kk01state
maritalstatus : kk01personno �� kk40maritalstatus
pensiondate : kk01personno �� kk01pensiondate
personno? : kk01personno

staff : � kk01personno

personno? є staff ^
name! = name(personno?) ^
title! = title(personno?) ^
sex! = sex(personno?) ^
origin! = origin(personno?) ^
pensionno! = pensionno(personno?) ^
telext! = telext(personno?) ^
ukmstatus! = ukmstatus(personno?) ^
dob! = dob(personno?) ^
icno! = icno(personno?) ^
newicno! = newicno(personno?) ^
citizenship! = citizenship(personno?) ^
state! = state(personno?) ^
maritalstatus! = maritalstatus(personno?) ^
pensiondate! = pensiondate(personno?) ^
dom name = dom title = dom sex = dom origin = dom pensionno = dom
telext = dom ukmstatus = dom dob = dom icno = dom newicno = dom
citizenship = dom state = dom maritalstatus = dom pensiondate

Fig. 4: Simplified Precondition for Schema DisplayPerson

Using Formal Specification to Validate a Human Resource Information System

7

Table 1: Summary of the Simplified Preconditions for all the Operation Schemas

Operations Simplified Preconditions

PreDisplayPerson personno? є staff
name(personno?) є kk40name
title(personno?) є kk40title
sex(personno?) є kk40sex
origin(personno?) є kk40origin
pensionno(personno?) є kk40pensionno
telext(personno?) є kk40telext
ukmstatus(personno?) є kk40status
dob(personno?) є kk40dob
icno(personno?) є kk40icno
newicno(personno?) є kk01newicno
citizenship(personno?) є kk40citizenship
state(personno?) є kk01state
maritalstatus(personno?) є kk40maritalstatus
pensiondate(personno?) є kk40pensiondate

PreDisplaySpouse personno? є staff

spouse(personno?) ≠ ∅

spouse(personno?) є � independence

PreDisplayIndependence personno? є staff

child(personno?) ≠ ∅

spouse(personno?) ≠ ∅

parent(personno?) ≠ ∅

child(personno?) є � independence

parent(personno?) є � independence

spouse(personno?) є � independence

PreUpdateStaff personno? є staff

name ⊕ {personno? ↦name?} є kk01personno �� kk40name

icno ⊕ {personno? ↦ icno?} є kk01personno �� kk40icno

title ⊕ {personno? ↦ title?} є kk01personno �� kk40title

sex ⊕ {personno? ↦ sex?} є kk01personno ���kk40sex

race ⊕ {personno? ↦ race?} є kk01personno �� kk01race

origin ⊕ {personno? ↦ origin?} є kk01personno �� kk40origin

religion ⊕ {personno? ↦ religion?} є kk01personno �� kk40religion

maritalstatusn ⊕ {personno? ↦ maritalstatus?} є kk01personno �� kk40maritalstatus

newicno ⊕ {personno? ↦ newicno'?} є kk01personno �� kk01newicno

citizenship ⊕ {personno? ↦ citizenship?} є kk01personno �� kk40citizenship

dobno ⊕ {personno? ↦ dobno?} є kk01personno �� kk40dobno

dob ⊕ {personno? ↦ dob?} є kk01personno �� kk40dob
disablecode ⊕ {personno? disablecode?} є kk01personno �� kk02disablecode

taxno ⊕ {personno? ↦ taxno?} є kk01personno �� kk01taxno

epfstatus ⊕ {personno? ↦ epfstatus?} є kk01personno �� kk01epfstatus

epfno ⊕ {personno? ↦ epfno?} є kk01personno �� kk40epfno

socsotype ⊕ {personno? ↦ socsotype?} є kk01personno ���kk01socsotype

socsono ⊕ {personno? ↦ socsono?} є kk01personno �� kk01socsono

Maskuri and Mohd. Zin

8

PreUpdateQualification personno? є staff

institutionname? є kk04institutionname
graduatedate? є kk04graduatedate
cert? є kk04certcode
course? є kk04course

qualificationn ⊕ {personno? ↦ {institutionname?, graduatedate?,cert?,course?} є
kk01personno? ��degree

PreUpdateSpouse personno? є staff
name? є kk40name
task? є kk03taskcode
employer? є kk03employer
taxstate? є kk01state

spouse ⊕ {personno? ↦ {name?, task?, employer?, taxstate?}} є kk01personno

���� Independence

4.3 Proof of Properties

For a particular specification there may be certain other
properties which are desired consequences. These
properties may be demanded in the informal requirements
for the specification. This section will show a few
properties that are not met by the actual system. Below is
the list of the properties.

• If a person is not a member of the institution, his

personal record will not be in the database. Thus he
will not be able to update his personal record.

• If a staff just got married, entering the detail of the
spouse should automatically change his marital status
from bachelor to married.

• If a couple, both working at the same institute, any
changes made to the employee will update the spouse
record.

• If a couple, both working at the same institute, the
details of children should be the same regardless of
whose record is checked.

• If the staff is a female staff, her record should not be
able to accept more than one partner.

For the first item, the following will show that if a person is
not a staff, then the operation of UpdateStaffData will not
be successful. To ensure that the operation of the schema is
successful, one of the constraints that has to be satisfied is

 personno? є staff

However, if the requested staff number, i.e. personno is not
in the database, which means the following expression:

personno?∉ staff

is true. This contradicts the first predicate. Thus, the
operation will not be carried out. However, the
unsuccessful operation will be carefully handled by error
handling schema. In this case, the schema NotFoundErr

will handle the above problem. This schema will
successfully report that the requested staff number is not
available and thus generate an error message. Since an
error message is generated, it shows that this particular
property is fully captured.

For the second item, the following will be shown:

UpdateSpouse | Person.maritalstatus = bachelor ├
Person.maritalstatus = married

That is, given the declaration of the UpdateSpouse
operation, together with the requirement that the person is a
bachelor, any updates that concern the partner record will
change his marital status from bachelor to married. The
schema references may be expanded to give the next level
of detail as shown below:

≡Person
∆AllIndependence
personno? : kk01personno
name? : kk02name
task? : kk03taskcode
employer? : kk03employer
taxno? : kk03taxno
taxstate? : kk01state
spousedetail! : Independence |
person? є staff
spousedetail!.name = name?
spousedetail!.taskcode = task?
spousedetail!.employer = employer?
spousedetail!.taxno = taxno?
spousedetail!.taxstate = taxstate?

spouse' = spouse ⊕ {person? ↦{spousedetail}
Person.maritalstatus = bachelor
├
Person.maritalstatus = married

Using Formal Specification to Validate a Human Resource Information System

9

However, the conclusion,

Person.maritalstatus = married

which means there is an update in the schema Person
contradicts with the declaration of ≡ Person which says
that the property of Person should not be changed.
Therefore, it is shown that this part of the system properties
is not captured.

For the third condition, the domain of the function
spouse(x) which means that a spouse to the employee x will
be stored as type Independence and since there is no
relation between Independence and kk01personno, then the
spouse of x will be treated as another outsider even though
the spouse is an element of staff.

The fourth condition follows from the third one. Since
there is no clear relationship to show a possibility of having
a spouse to be an employee, i.e. kk01personno, any record
such as the details of children related to the employee will
be treated as his or hers. If a spouse is another employee,
then again any records related to him or her will be treated
as his or hers, even though, by right they should share the
same record. Thus any update to be made to the details of
the children will need to be duplicated to the spouse
children’s record.

The theorem of the fifth condition is:

� x : kk01personno | sex(x) = female
├ #spouse(x) ≤ 1

Since spouse is defined to be a function from kk01personno

to � Independence, i.e. spouse:kk01personno ���
Independence, the range of the function will always have a
size of at least zero. Thus, spouse(x) may have more than
1. Regardless of the sex of the employee, the number of
partner that an employee may have will always be more
than one.

5.0 CONCLUSION

Formal specification technique has been successfully
applied to a module of an existing system - the human
resource information system. By using initial state
theorems and preconditions, it has been shown that the
system in general, is consistent. However, some errors
have been found These errors can be summarized as
follows:

• Female employee record is allowed to record more

than one husband where it should not be.
• Data for a husband and wife are treated differently. It

means that if the wife has given birth to another child,
updating the wife record will not affect the husband’s
record.

• Updating an employee’s spouse record will not change
an employee marital status. For example if an
employee has just married, updating his spouse’s
record from nil to a new set of data will not affect
his/her marital status. This happens because there is no
bridge to link a partner record with an employee
record.

The above analysis has shown that the formal methods are
able to find errors that have not been identified through
testing. It is interesting to note that these errors have not
been identified even though the system has been running
for quite some time.

REFERENCES

[1] H. K. Stephen, Metrics and Models in Software

Quality, Addison-Wesley, 1995.

[2] A. H. Jeffrey, F.G. Joey, S.V. Joseph, Modern

Systems Analysis and Design, Benjamin Cummings,
1996

[3] B. K. Boehm, Software Engineering: R&D trends

and defence needs, M.I.T Press, 1979.

[4] S. P. Roger, Software Engineering, A Practitioner's

Approach, 4th Edition, Mc-Graw Hill, 1997.

[5] P. Ben, S. Jane, T. David, An Introduction to Formal

Specification and Z, 2nd Edition, Hemel Hempstead,
1996.

[6] A. Mohd. Zin, R. Maskuri, “Z Specification of A

Human Resource Information Systems”, Technical
Report Series, Fakulti Teknologi dan Sains
Maklumat, UKM, July 1998.

[7] J. C. P Woodcock, “Calculating Properties of Z

Specifications”, ACM SIGSOFT, Software
Engineering Notes, Vol. 14, No. 5, July 1989.

BIOGRAPHY

Rohidah Maskuri received her BS degree in Computer
Science from San Jose State University, California, USA in
1993. She is currently attached to the Information
Technology Division, Sepang Institute of Technology. Her
research interests include Formal Methods and
Programming Languages.

Abdullah Mohd. Zin received his Ph.D. from the
University of Nottingham, United Kingdom in 1993. He is
currently attached to the Faculty of Technology and
Information Science, University Kebangsaan Malaysia.

	Rohidah Maskuri
	ABSTRACT
	
	
	
	
	
	InitBeneficiary

	PreDisplayPerson
	
	
	
	Simplified Preconditions

	PreDisplayPerson
	Person.maritalstatus = married
	BIOGRAPHY

