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ABSTRACT

A general computational sequence in optimizing the
operation of a dynamic process is firstly highlighted in this
paper.  However, in most cases these dynamic processes
include process-model mismatch, which shifts the optimal
operation of the process.  To overcome this, a model-
mismatch estimator such as the neural network technique
has been implemented in the optimization strategy.  A
modified general computational framework to incorporate
these mismatches is developed for this purpose.  The
framework also allows the use of discrete process data in a
continuous model to predict discrete and/or continuous
mismatch profiles.  The strategy is applied on a batch
distillation system and the optimal operation using model
mismatches is found to be comparable to that using the
actual process model.

Keywords: Optimization, Computational framework,
Dynamic process and Model mismatch

1.0 INTRODUCTION

Chemical operations such as batch processes are inherently
dynamic and remain dynamic until the end of their
operation.  Optimal operation of such processes has been
the subject of many researchers in the past (Cuthrell and
Biegler, 1989; Farhat et al., 1990; Logsdon et al., 1990;
Mujtaba and Macchietto, 1996).  In most cases, these
dynamic batch processes are modelled by a set of
differential and algebraic equations (DAEs) which are
considered to be the exact representative of the system.
However, accurate modeling of dynamic processes is often
very difficult.  Availability of faster computers and
sophisticated numerical methods although allowing
developments of complex models, are not completely free
from process-model mismatches.  Therefore, operations
using optimal control profiles (based on the approximate
model) as set points are no longer optimal.

In the past, some methods have been developed to obtain
optimal operation using nominal models with some degrees
of uncertainties in model parameters (Walsh et al., 1995).
In most cases, the model parameters are related to time
invariant variables like chemical reaction rate constants,
relative volatility and plate efficiencies.  The parameters are
updated to match the final time constrains (i.e. amount of

distillate, product composition, etc., as obtained by the
actual process).  No attempt has been made to obtain
optimal operation policies for dynamic system with due
consideration to the dynamic mismatches (between the
model and the actual process) of the state variables.
Furthermore optimal operation policy of steady state or
dynamic systems can be significantly different with and
without due consideration to the process-model
mismatches.

In this work we develop a general computationally based
optimization algorithm to obtain optimal operation of
dynamic processes under process-model mismatches.  The
use of standard regression techniques to estimate the
process-model mismatches can be extremely difficult due to
the inherent non-linearity and dynamic nature of these
mismatches.  To this effect, we have decided to utilize
neural networks to model these mismatches, as they have
been known to be able to approximate any non-linear
continuous function arbitrarily accurately (Hussain et al.,
1995, Hussain, 1996).  The neural network method utilized
here require current and past values of the state variables
and past values of mismatches at discrete points to predict
the current values of mismatches, while the optimization
techniques used in this work utilizes continuous profiles for
all the state variables.  Hence in this work efficient
switching from discrete to continuous and/or continuous to
discrete profiles has also been demonstrated.

A batch distillation process is used to demonstrate the
technique.  For simplicity, we consider binary batch
distillation with only one special product.  Our goal is to
determine the optimal operation policy in terms of reflux
ratio to obtain the specified product in minimum time using
a simple process model for the dynamic mismatches.  The
optimal operation policy thus obtained should be close to
that of the real process.  In other words, the optimal policy
when implemented in the real process should obtain the
specified product in the same minimum time.  In the
absence of process data (or experimental data) for the
batch; distillation in the literature, we generate data using
rigorous model based on mass, energy balances and
thermophysical properties.  For optimization purposes, we
use simple no holdup batches distillation model based on
the equimolal overflow and constant relative volatility.  For
a particular reflux ratio and operation time, the difference in
predictions (e.g. instant distillate composition, accumulated
distillate composition, reboiler compositions, etc.) by the
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two models of different complexity is assumed to be the
process-model mismatches.

2.0 DYNAMIC PROCESS OPTIMIZATION

A dynamic process can be modeled as a system of
differential and Algebraic Equations (DAEs) of the form:

( ) ( ) ( )( ) ,0,,,', =vtutxtxtf [t0,tF] (1)

where t is the independent variable (time), x(t)∈Rn is the set
of all state variables, x’(t) denotes the derivatives of the x(t)
with respect to time, u(t)∈RP  is a vector of time variant
parameters (control variables) and v is a set of independent
design variables.  The time interval of interest is [t0,tF] and
the function f : RxRn xRn xRmxRp à Rn is assumed to be
continuously differentiable with respect to all its arguments
(Morison, 1984).

For a given initial conditions x(t0) and v, the optimal
operation of a dynamic system can be obtained by
controling u(t) optimally, while maximising (or
minimising) an objective function of the form:

( ) ( ) ( )( )vtutxtxtFJ FFFF ,,,',= (2)

subject to bounds on u(t) and interior point or terminal
constraints.  Finite dimensional representation of the
control vector has been considered in the past by many
authors to transform the time optimal control problem
(dynamic optimization problem) to non-linear programming
problem (Vassiliadis et al., 1994; Mujtaba and Macchietto,
1996) of the form:

Min (or Max) J(z) (3)
       z
Subject to: Equality constraint (in the form of Eqn. 1)

Inequality constraints of the form

( ) ( )( ) 0,,',, ≤vutxtxtg fff (4)

where, z is the parameterized control vector to be
optimized.  Upper and lower bounds may be defined on the
control variables, u(t) and on the final time.  Termination
conditions may be implicitly or explicitly defined as
constraints.  Additional inequality constraints may be
defined for state variables not just at the end but also at
interior points (path constraints), e.g. a bottom temperature
that has to be bounded at all times.

The formulation above is used to find the optimum function
u(t) over time, i.e. infinite set of values of the controls over
time.  The technique used to solve the above optimal
control problem is the control vector parameterization
(CVP) method.  They transform the control functions into
discrete form approximated by a finite number of
parameters.  The CVP method discretizes each continuous
control function over a finite number of control intervals
using a simple basis function to approximate the control
profile in each interval.

As an example, Fig. 1 shows a piecewise constant
approximation for a control profile with 6 intervals.  Since
two parameters are sufficient to describe the control profile
in each interval, the entire control profile is defined by 12
parameters.  These can then be added to any other decision
variable in the optimization problem to form a finite set of
decision variables.  The optimal control problem is then
solved using a nested procedure: the decision variables are
set by an optimizer in an outer level and for a given instant
of these variables, dynamic simulation is carried out to
calculate the objective function and constraints as given
from Eqns. (1) to (3).  These outer problem is a standard
nonlinear programming problem (NLP), solvable using a
suitable method such as Sequential Quadratic Programming
(SQP).  Since the DAE’s are solved for each function
evaluation, this has been called a feasible path approach.

Fig. 1: Piecewise Constant Discretization of Continuous Control Function
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Fig. 2 illustrates a typical computation sequence for the
solution of optimization problem presented by eqn. (3).
The calculation sequence is started with an initial estimate
of vector z.  For each iteration (of the OPTIMIZER)
dynamic optimization requires full integration of the model
equations from t=[0,tF] to evaluate the objective function J
and the constraints (h and g) which are then passed to the
OPTIMIZER.  OPTIMIZER then takes a step in z and the
process is repeated until convergence is achieved within an
acceptable accuracy.

Fig. 2: Computational sequence of dynamic optimization
problem

However, in many chemical processes, especially
inherently dynamic batch process, it is not always possible
to model actual processes.  Therefore, the state predicted by
using the model (eqn. 1) will be different than that of the
actual process and will result in process-model mismatches.
The implementation of the optimal operating policies
obtained using the model will not result in a true optimal
operation.  Regardless of the nature of the mismatches, a
true process can be described (Agarwal, 1996) as:

( ) ( ) ( ) ( )( ) 0,,,,', =
−−−

tevtutxtxtf x      [t0,tF] (5)

where ( )tx
−

 is the true set of all state variables, ( )tx
−
'

denotes the derivatives ( )tx
−

 with respect to time; ( )tv
−

 is

the true set of time independent design variables; ( )tex  is

the set of process-model mismatches for the state variables
x; and the control vector u , and the function f are

identical to those used in the model (eqn. 1).  The error

( )tex is in general time dependent and describes the entire

deviation due to process-model mismatches.

At any time t during the process operation, the true
estimation of the state variables requires instantaneous

values of the unknown mismatches ( )tex .  To find the

optimal operation policies in terms of the decision variables
z (Eqn 3) of a dynamic process using the model will require

accurate estimation of ( )tex  for each iteration on z during

repetitive solution of the optimization problem.  Although
estimation of process-model mismatches for a fixed
operation condition (i.e. for one set of z variables) can be

obtained easily, the prediction of mismatches over a wide
range of operating conditions can be very difficult.  In this
case, the plant-model mismatch is estimated using neural
networks and the optimization methodology mentioned
above modified to cater for this mismatch estimation, which
is described in the next section.

3.0 DYNAMIC PROCESS OPTIMIZATION WITH
PROCESS MODEL MISMATCH ESTIMATION

3.1 Modeling of Dynamic Process-Model Mismatches

As the mismatches of the sate variables of a dynamic
system (i.e. instant distillate and reboiler compositions in
batch distillation) are dynamic in behavior, they have to be
treated as such, and not as static systems.  Neural networks
have been known to be able to approximate non-linear
continuous functions with a high degree of accuracy
(Cybenko, 1989; Hussain et al., 1995).  In this work, neural
network techniques are used to model process-model
mismatches.  This method is also suitable and appropriate
in dealing with the estimation of these mismatches on-line,
due to its fast implementation time.  Although black box in
nature, it has the ability to approximate any function
mapping from system inputs to outputs, from known input-
output data.  It performs much less computation time in on-
line applications than the other methods since the
computer-intensive parts of the work, i.e. its training, are
normally done off-line.  The method of training the neural
network to perform system identification, i.e. prediction of
the mismatches at discrete-time intervals is called forward
modeling, the details of which can be seen in other
references [Hussain, 1996].

In this example, the reflux ratio is considered the only
governing factor for the optimal operation, which can vary
within reasonable physical bounds during the operation of
the actual process and also during the solution of the
dynamic optimization problem.  Therefore, all dynamic
mismatch models should be able to predict the mismatches
accurately within the bounds of the reflux ratio.  For
different values of the reflux ratio over a feasible length of
time (within which the minimum time lies) the process-
model mismatches for the state variables are generated
using the actual process data (as given by the detailed
model) and simple model predictions.

The development of these neural network-based estimators
also requires both the state variables (predicted by the
model) and the mismatches at discrete points within the
time interval.  However in generating the state profiles, the
variable multistep length is used for efficient integration of
the model equations, which does not produce the states at
fixed discrete-time intervals.  Hence, the states at discrete
time steps are obtained using linear interpolation technique.
For example, if the instant distillate compositions predicted

by the models are kdx ,  and 1, +kdx at time kt and 1+kt ,

J (objective function)
h = 0 (equality constraints)
g < 0 (inequalities)

z

OPTIMISER

MODEL (DAEs)

optimisation
variable (z)

START
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then at any discrete time it , which lies within [ ]1, +kk tt ,

the instant distillate composition ( )idx ,  is calculated using

the following expression:

( ) kdki

kk

kdkd

id xtt
tt

xx
x ,

1

,1,

, +−
−

−
=

+

+
(6)

Usually, discrete points are of equal length ( ii tt −=∆ +1 )

which usually represents the sampling time of the actual
process.  In the absence of the actual process data, state
variables for the actual process are predicted from the
detailed model at discrete time interval using the same
technique outlined above.  For example, the instant
distillate composition of the actual process at discrete time

it , is given by idx ,

−

.  The discrete mismatch at it  will

therefore be ididixd xxe ,,, −=
−

.

The approach we adopted here is to augment the neural
network inputs with corresponding discrete present and past
values of the state variables, the past values of the
mismatches together with the relevant optimization
variables (z) (e.g. reflux ratio in batch distillation).  It is to
be noted that we develop separate mismatch models for
each state variable.  The data are fed to the network in a
moving window scheme.  In this scheme, all the data are

moved forward at one discrete-time interval until all of
them are fed into the network.  The whole batch of data is
fed into the network repeatedly until the training error
criterion is achieved.  The method of training the network is
by the normal back propagation with momentum term as
well as an adaptive learning rate to speed up the rate of the
convergence.

3.2 Reformulation of Algorithm for Dynamic Process
Optimization

The solution of dynamic optimization problem as presented
by Eqn. (3) requires continuous profiles for the state
variables for any given reflux ratio and therefore requires
continuous profiles for the mismatches.  However, the
neural network mismatch estimator predicts the mismatches

at discrete times, kt  as mentioned in the previous section.

Hence, to obtain the state variables incorporating
mismatches requires the estimation of all the state variables
at these discrete times.  For any reflux ratio and batch time
(as determined by the OPTIMIZER, Fig. 2) this is achieved
by integrating the model without adding mismatches.  The
estimated mismatches are then added to these state
variables and these updated state variables values are then
converted back into the continuous profile by the
interpolation techniques above.  They are then utilised
within the optimizer routine and the whole procedure
repeated for the next time step, as illustrated in Fig. 3.  In
this work the prediction of mismatch profiles starts from
discrete point 3.  Time t=0 represents discrete point 1 where

Fig. 3: Incorporation of Model Mismatch in State Variable
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the mismatch is assumed to be zero for all the state
variables.  A discrete point 2, mismatches are initialized
with a given value (obtained by judging the trend in all the
data set used for the training of the neural network).  In this
work the length of the discrete time interval used is 15
minutes, (which is an acceptable sampling time for a batch
distillation process).

Fig. 4 illustrates the general optimization framework to
obtain the optimal operation policies for dynamic processes
with process-model mismatches as purposed in this work.

In summary, the following steps are performed in this
scheme: (1) Dynamic set of the process-model mismatches
data is generated for different values of the optimization
variables (z) covering the range within the process is to be
operated optimally.  These data are then used to train the
net.  Once trained, the net predicts the process-model
mismatches for any sets of values of z as a function of time
at discrete-time intervals.  (2) During solution of the
dynamic optimization problem, the model has to be
integrated many times, each time using a different set of z.
The process-model mismatches profiles at discrete-time
intervals, which has been estimated by the neural network,
are then added to the simple dynamic model during the
optimization process.  During this course of solving the
dynamic model, these discrete process-model mismatches
are converted to continuous function of time using linear
interpolation technique so that they can be easily added to
the model within the optimization routine.  One of the
important features of the framework is that it allows the use
of discrete process data in a continuous model to predict
discrete and/or continuous mismatch profile.

Fig. 4: Computational sequence for dynamic process
optimization with process-model mismatch

4.0 CAS E STUDY: BATCH DISTILLATION
PROCESS

Batch distillation is an excellent representative example of
a whole class of complex dynamic optimization problem
(see Fig. 5).  It represents an interesting field of academic
and industrial research, for several reasons.  Even for
simple binary mixtures many alternative operations are
possible.  There is ample scope for optimization with
complex trade-offs as a result of the many degrees of
freedom available (Macchietto and Mujtaba, 1996).  The
accurate modeling of this process is difficult and can be
very complex.  Therefore, a simple model incorporated
with process-model mismatches is very attractive for on-
line prediction of states and also for finding optimal
operation policies on-line or off-line.  In the absence of real
process data in the literature, we assume that a rigorous
model based on the detailed mass and energy balances and
rigorous thermophysical property calculations represent the
actual batch distillation process.  In this work, we have used
the model used by Macchietto and Mujtaba (1996).  The
details of the model equations will not be presented here.
However, it is to be noted that unlike the simple model the
detailed model included plate holdup, which results to a
large number of state variables (differential variables).  At
any given time, for a particular reflux ratio, the difference
in predictions of the state variables by the two models of
different complexity gives the process-model mismatches.

Fig. 5: Schematic of a batch distillation process

4.1 Optimal Operation without Process-Model
Mismatch

Here, we considered a simple binary mixture.  The
separation task is defined as: recover 90% of component A
(more volatile) as distillate product with purity of 0.95
molefraction in component A.  The reflux ratio is chosen as
the only control variable, which governs the performance of
the process.  The objective is to obtain reflux ratio policy
which all achieve the separation task in minimum time.   The
column configuration and input data are given in Table 1.

Table 1: Column Configuration and Input Data

Number of Stages, N  12
No. of components, Nc  2

Initial feed, B0, kmol  10.0
Initial feed composition, xB0 <0.5, 0.5>
Condenser holdup, kmol  0.1
Vapour boilup rate, V, kmol/hr  5.0

LDL

V

Optimization Decision Variables

Integration of the Model without Mismatch

Integration of the Model with Mismatch

Prediction of States at Discrete Time

Prediction of Process-Model Mismatch
Using Neural Network at Discrete Time

Conversion to Continuous Mismatch Profiles

Evaluation of Objective Function, Constraints

OPTIMIZER Convergence Yes, STOP

No, New Values for Optimization Variables
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The results at optimal solutions for both the actual model
and the simple model are shown below.

Actual Process (Detail Model)

Optimum Reflux Ratio = 0.914
Minimum Time, hr = 10.99
Amount of Distillate, kmol = 4.74
No. of iteration for optimisation = 10

Model (Simple)

Optimum Reflux Ratio = 0.924
Minimum Time, hr = 12.51
Amount of Distillate, kmol = 4.74
No. of iteration for optimisation = 12

The instant distillate composition profiles for the actual
process (detailed model) and that predicted by the model
(simple model) are shown in Fig. 6.  The simple model
predicts significantly higher operation time (about 14%)
compared to that by the actual process although the
variation in the optimal reflux ratio is within 1%.  The
results clearly show the undesired effect of process-model
mismatches on the optimal operation.

4.2 Optimal Operation with Process-Model
Mismatch

Here we implement the general optimization framework
with the incorporation of the process-model mismatches in
the batch distillation study above.  The separation task and
the objective are same as those presented in Table 1.  The
optimization variables are the reflux ratio and the batch
time.

The solutions of the optimization problem in this case are:

Optimization Reflux Ratio = 0.915
Minimum Time, hr = 11.09
Amount of Distillate, kmol = 4.74
No. of iteration for optimization = 7

The results in terms of reflux ratio and minimum batch time
are sufficiently close to those of the actual process.  At the
optimal solution, the instant distillate composition profiles
of the actual process and that obtained using model with
process-model mismatches are presented in Fig. 7.  These
clearly show that the strategy was able to predict the
dynamic mismatch profiles with sufficient accuracy and
hence suitable to be used as the process-model mismatch
predictor in any optimization framework.
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Fig. 6: Instant distillate composition profiles
  2-Actual process
  3-Simple model
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Fig. 7: Instant Distillate Composition Profiles
1-With mismatch
2-Actual process

5.0 CONCLUSION

In this work, we have presented a general computational-
based optimization algorithm to obtain optimal operation
policies of dynamic processes under process-model
mismatches.  An efficient method was also developed to
model dynamic process-model mismatches with the use of
neural network techniques as well as interpolation
strategies.  The method also allows the use of discrete
process data in a continuous model to predict discrete
and/or continuous mismatch profiles.
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The optimization algorithm has been tested using a batch
distillation process.  For a given separation task the use of
simple model for this process predicted about 14% higher
optimal batch time compared to that of actual process
(represented by a detailed model).  This was due to the
presence of substantial process-model mismatch.  Inclusion
of mismatches in the simple model allowed us to obtain
optimal operation policy (in terms of reflux ratio and batch
time) very close to that of the actual process.  Application
of the purposed technique to cases with more that one
reflux ratio interval and to multi-component non-ideal
systems are currently being investigated.  This technique is
also suitable for real on-line applications where process-
model mismatch inherently exists at all times.
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