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ABSTRACT 
 
The Reference Model-Open Distributed Processing (RM-
ODP) provides a framework for the standardization of 
Open Distributed Processing (ODP).  It defines an object 
model and an architecture for the construction of ODP 
systems in terms of five viewpoints.  However, the RM-ODP 
is abstract and therefore cannot be easily applicable.  
Indeed, several issues must be addressed.  The objective of 
this paper is twofold.  Firstly, based on RM-ODP itself, we 
define a concrete typing system for the ODP information 
objects.  This model is a contribution for defining the ODP 
type repository function.  Secondly, we show that the Object 
Constraint Language (OCL) can be used for the ODP type 
descriptions, and for the ODP information viewpoint 
specifications.  Using OCL we apply that typing system to 
describe the ODP trading information viewpoint. 
 
Keywords: RM-ODP, Object Model, Information, 

Description Language, OCL, Trading 
 
 
1.0 INTRODUCTION 
 
Distributed processing is rapidly expanding as it allows 
increasing the performance, the evolution, and the use of 
existing systems.  However, it is very difficult to benefit 
from distributed processing without any support because of 
its inherent properties such as concurrency, asynchronism, 
transactions, and so on.  Furthermore, the heterogeneity of 
computer systems makes this task even more difficult.  This 
heterogeneity includes the heterogeneity of programming 
languages, operating systems, hardware, communication 
protocols and also the heterogeneity of the application 
domains.  The object-oriented approach would permit 
masking these heterogeneities.  The OMG (Object 
Management Group) consortium is working towards 
defining an architecture, OMA [1] whose objective is to 
define the object -oriented concepts to ensure the 
interoperability of applications running on heterogeneous 
systems.  It defines the architecture CORBA (Common 
Object Request Broker Architecture) [2] whose core is the 
ORB (Object Request Broker) that realizes the 
communications between client objects and server objects 
by brokering requests between them.  It also defines a 
universal language for the definition of interfaces (IDL) 
(Interface Definition Language) [2].  IDL masks the 
heterogeneity of programming languages by developing 

compiler IDLs to other programming languages [2].  
CORBA is in fact an integration of the client -server 
paradigm and the object -oriented paradigm.  It is the 
specification, which allows the invocation of an operation 
on a distant object independently of the localization and 
programming language used.  CORBA specifies the 
implementation of the object oriented distributed 
applications but does not specify how to design these 
applications.  However, the objective of the inter-working 
of heterogeneous applications is  not effective unless it is 
considered in the overall process of development.  This is 
the aim of the Open Distributed Processing.  The RM-ODP 
[3, 4, 5, 6] provides a framework within which supports of 
distribution, interworking and portability can be integrated.  
It defines an object model and an architecture for the 
construction of open distributed systems.  The object model 
defines concepts for information and processing.  The 
architecture defines five viewpoints, which are enterprise 
viewpoint, information viewpoint, computational 
viewpoint, engineering viewpoint and technology 
viewpoint.  Each viewpoint handles a particular aspect of 
an ODP system.  The architecture also defines a viewpoint 
language for each viewpoint, the ODP functions and the 
ODP transparencies. 
 
Elsewhere, in order to be applied in a specific domain, RM -
ODP must be extended and specialised.  For instance, the 
TINA (Telecommunication Information Network Archi-
tecture) [7, 8] is based on RM-ODP. 
 
However, the RM-ODP is abstract and does not constitute a 
methodology itself, and hence cannot be directly applicable.  
It only provides a framework for the definition of ODP 
standards.  These standards include standards for ODP 
functions; standards for modelling and specifying ODP 
systems; standards for methodology, programming, 
implementing, and testing of ODP systems.  Furthermore, 
the RM-ODP recommends to define concrete types of 
information to use in the viewpoint specifications.  The 
type repository function constitutes an important subject  of 
standardization for the ISO/ITU-T WG7 Group. 
 
Several issues must be addressed to construct ODP systems 
[9, 10].  Current researches are focussing on different 
aspects such as the applicability of UML (Unified 
Modelling Language) [11, 12] to develop ODP systems, 
and in particular the ODP enterprise specification [13, 14, 
15, 16, 17]. 
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Substitutes 

The UML language is rapidly emerging as the de-facto 
standard for modelling Object-Oriented (OO) systems.  
Given this role, it is imperative that the UML needs a well-
defined, fully explored semantics.  Such semantics is 
required in order to ensure that UML concepts are precisely 
stated. 
 
Whereas grammars are well suited for text, the UML meta-
model works well as a description of the structure of UML 
grammars [18].  The UML meta-models capture a precise 
notion of the syntax of the UML modelling techniques (this 
is what meta-models are typically used for), but they do 
little in the way of answering questions related to the 
interpretation of non-trivial UML structures [19, 20, 21]. 
 
Rather than generate formal specifications from informal 
OO models and require that developers manipulate these 
formal representations, a more workable approach is to 
provide formal semantics for graphical modelling notations 
and develop rigorous analysis tools that allow developers to 
directly manipulate the OO models they have created.  The 
degree of formality of a model is not necessarily related to 
its form of representation.  This is the objective of the 
pUML group (Precise UML) [22]. 
 
The structure of the document is as follows.  We define two 
UML meta-models of the ODP information concepts in 
Section 2.  These meta-models describe the syntax of a 

modelling language for ODP applications.  We propose a 
concrete information object model in Section 3.  Section 4 
is about the adequate formal language for ODP type 
descriptions; we show that the OCL (Object Constraint 
Language) [23] language can be used to meet this attempt.  
We apply this work to describe the ODP trading 
information viewpoint in Section 5.  A conclusion and 
perspectives end this paper. 
 
 
2.0 THE RM-ODP OBJECT MODEL 
 
In general, the term object model refers to the collection of 
concepts used to describe objects in an object-oriented 
specification (OM G CORBA object model, RM-ODP 
object Model, UML meta-model object model).  It 
corresponds closely to the use of the term data model in the 
relational data model. RM-ODP is a framework for the 
construction of open distributed systems.  It defines a 
generic object model, a set of architectural concepts in the 
foundations part, and an architecture, which contains the 
specifications of the required characteristics that qualify, 
distributed processing as open.  The architecture extends 
and specialises the concepts of the foundations part.  To 
define concrete information object model, we will describe 
all the RM-ODP object concepts. 
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2.1 The RM-ODP Foundations  
 
The object model [4] defines the basic concepts concerned 
with existence and activity: the expression of what exists, 
where it is and what it does.  We describe these concepts 
graphically using the UML notation (Fig. 1). 
 
The core concepts defined in the object model are object  
and action.  An action is something, which happens.  An 
object is a model of an entity.  It is characterised by its 
behaviour, and dually by its states.  Depending on the RM -
ODP viewpoint, the emphasis may be placed on the 
behaviour or on the states.  When the emphasis is placed on 
behaviour an object is said to perform functions and offer 
services, theses functions are specified in terms of 
interfaces.  It interacts with its environment at its 
interaction points that are its interfaces.  An object is 
distinct from any other object by its identity. 
 
The other concepts defined in the object model are derived 
from the concepts of object and action; they are Class, 
Template, Type, Subtype, Supertype, Subclass, Superclass, 
Composition, and Behavioral Compatibility. 
 
An object is behaviorally compatible with a second object if 
the first object can replace the second object without the 
environment being able to notice the difference in the 
object behaviour.  The RM-ODP behavioral compatibility 
concept corresponds to the OMA substitutability concept.  
Composition of objects is a combination of two or more 
objects yielding a new object.  A type (of an <x>) is a 
predicate characterizing a collection of <x>s.  A class (of 
an <x>) defines the set of all <x>s satisfying a type.  The 
type concept corresponds to the type concept of UML.  The 
class concep t corresponds to the OMG extension concept, 
the extension of a type is the set of values that satisfy the 
type at any particular time.  A <x> template is the 
specification of the common features of a collection x in a 
sufficient detail that an x can be instantiated using it; the 
template has the meaning of C++ class. 
 
Note that an object has a type, a class, and a template.  It is 
the case for actions and interfaces. 
 
2.2 The RM-ODP Architecture  
 
The architecture [5] comprises: (1) five viewpoints, (2) a 
viewpoint language for each viewpoint, (3) specifications 
of functions required to support ODP systems, and (4) 
transparency prescriptions showing how to use the ODP 
functions to achieve distribution. 
 
The distribution transparencies hide the aspects of 
distributed processing in a desired way from the viewpoint 
of the users.  Each of the viewpoints handles a particular 
aspect of the ODP system.  The enterprise viewpoint 
focuses on the purpose, scope and policies for the ODP 
system.  The information viewpoint focuses on the 
semantics of information and the semantics of the 

information processing.  The computational viewpoint 
enables distribution through functional decomposition of 
the system into objects, which interacts at interfaces.  The 
engineering viewpoint focuses on the mechanisms and 
functions required to support distributed interaction 
between objects in the system.  The technology viewpoint 
focuses on technology in that system. 
 
The definition of a language for each viewpoint describes 
the concepts and rules for specifying ODP systems from the 
corresponding viewpoint.  The object concepts defined in 
each viewpoint language are specializations of those 
defined in the foundation part of RM-ODP. 
 
The ODP functions define the functionalities of the ODP 
operating system assumed to process the difficulties 
inherent to distribution.  They are classified into categories, 
which include among others the repository functions related 
to database management functions.  In the following 
section, we describe briefly the enterprise, information, and 
computational languages, the other viewpoint languages 
have no interest for our study. 
 
An enterprise specification defines the purpose, scope and 
policies of an ODP system.  A policy is a set of rules 
related to a particular purpose.  A rule can be expressed as 
an obligation, a permission, or a prohibition.  An ODP 
system consists of a set of enterprise objects.  An enterprise 
object may be a role, an activity or a policy of the system. 
 
An information specification defines the semantics of the 
information and the semantics of information processing in 
terms of a configuration of information objects, the 
behaviour of these objects and environment contracts for 
the system.  An information object template is defined in 
terms of static, invariant and dynamic schema; 
 
Invariant schema: A set of predicates in one or more 
information objects, which must always be true.  The 
predicates constrain the possible states and state changes of 
the objects to which they apply. 
 
Static schema: A set of predicates in one or more 
information objects, at some point in time, subject to the 
constraints of any invariant schema. 
 
Dynamic schema: A specification of the allowable state 
changes of one or more information objects, subject to the 
constraint s of any invariant schema. 
 
An information object is either atomic or composite.  The 
state of the composite object is represented by the 
combined state of its component information objects.  The 
information objects resulting from the instantiation of a 
composite information object template only exist as part of 
the instantiated composite object and have no meaning 
outside it. 
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A computational specification defines the functional 
decomposition of an ODP system into objects, which 
interact at interfaces.  The basic concepts of the 
computational language are the computational interface, the 
computational object, the interaction and the binding object.  
The binding object is a computational object, which 
supports a binding between a set of other computational 
objects.  An interaction is either a signal, a flow or an 
operation.  A signal is an atomic shared action resulting in 
one-way communication from an initiating object to a 
responding object.  A flow is an abstraction of a sequence 
of interactions resulting in a conveyance of information 
from a producer object to a consumer object.  An operation 
is an interaction between a client object and a server object.  
Like interaction kinds, an interface is either signal, 

operation or flow.  A signal interface is an interface in 
which all the interactions are signals.  In an operation 
interface all the interactions are operations.  All the 
interactions are flows in a flow interface.  A computational 
object template comprises a set of computational interface 
templates which the object can instantiate, a behaviour 
specification and an environment contract specification.  
The behaviour of the object and the environment contract  
are specified in terms of a set of properties (attributes).  A 
computational interface template is associated to each kind 
of interface.  It comprises a signal, a flow, or an operation 
interface signature as appropriate, a behaviour specification 
and an environment contract specification.  The behaviour 
and the environment contract are defined as set of 
properties. 
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3.0 THE ODP INFORMATIONAL OBJECT MODEL 
 
An object is characterized by its behaviour and dually by its 
states.  Depending on the RM -ODP viewpoint, the 
emphasis may be placed on the behaviour or on the states.  
When the emphasis is placed on behaviour, an object is said 
to offer services and to interact at its interfaces; this is the 
concept of a computational object.  When the emphasis is 
made on states, an object does not have interfaces, it cannot 
interact, this is the concept of an information object. 
 
The information object and computational object have 
respectively the meaning of non-object and object in the 
OMA core object model.  Indeed, from the viewpoint of 
OMA, an object provides services at an interface, while a 

non-object is not an object, but may be used as a value.  
RM-ODP recommends the definition of the concrete types 
of information (of values) to be used in the viewpoint 
specifications.  This is the subject of this section. 
 
In the OMA object model, the primitive values are not 
objects, however in our model, these primitive values are 
really objects.  This is the case of Java programming 
language, whose all-primitive types are objects. 
 
3.1 The Classification of Information 
 
We define in this section, the criteria of the classification of 
the information objects.  We describe three main criteria of 
classification of information. 

Fig. 3: The ODP Informational Object Model 
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Given an information object: 
 
- Does the information object have an identity or not? 
 
- How is the information object identity represented in 

the machine; that is, does the identity of the 
information contain the value of the information or 
does it only contain the reference of the value of the 
information?  This describes the relationship between 
the identity and the value of the information object. 

 
- Is the information object atomic or composite? 
 
We will describe and justify each of these criteria, which 
are successively applied to build our information typing 
system. 
 
The information objects can be organised into a hierarchy 
of sub-types and super-types; this corresponds to the 
concept of behavioral compatibility.  A subtype inherits all 
the characteristics of its supertypes.  An object is defined by 
its characteristics, which include the signature of its 
services, its behaviour and the contract of its environment. 
 
An object has an intrinsic identity.  A characteristic of an 
object is an information object that has equally an identity 
but this identity has no meaning outside of this object.  This 
corresponds to the first criteria of the classification of the 
information objects.  That is, the information objects are 
classified into two categories, which are the information 
objects that have an identity and the information objects 
that have no identity. 
 
The information objects which do not have an identity 
(characteristics of objects) are called NonDenotable 
objects.  According to the RM-ODP definition of 
computational interfaces, we define the NonDenotable 
objects.  They are signal, flow, operation, and property. 
Note that, an information object is an aggregation of these 
objects.  For example, The getProperties() operation of the 
Java Class System returns a set of properties of the system. 
 
The information objects, which have an identity, are called 
Denotable objects.  This information object must identify a 
local or a distant object depending on RM-ODP viewpoints. 
Indeed, from the engineering viewpoint, to interact with a 
distant object, one must have the ident ity of its 
computational interface.  In RM-ODP the identity of 
distributed computational interface is denoted Reference.  
This type has to be included in an ODP typing system. 
 
In the following, we do not consider the distribution 
aspects.  The hierarchy of the Denotable objects can be 
defined according to the representation of the value of the 
identity.  Indeed, the representation used to translate this 
identity into the machine code is not the same for all the 
information objects.  We distinguish two categories of 
Denotable information objects, which are the literal 

(Literal) information objects and the non literal 
(NonLiteral) information objects. 
 
The identity of a literal object contains exactly the value of 
that object.  In contrast, the identity of a NonLiteral 
information object does not contain the value of that object, 
but only a value, which references the value of the object.  
This means that the identity of a NonLiteral object contains 
a handle.  To this end, our system contains the type 
Handle.  In fact, each object of type t has a handle of type 
Handle(t).  The type handle is an abstraction of any 
Handle(t).  This implies that a NonLiteral object 
necessitates an operation, which allocates the necessary 
space for the representation of the value of the object and 
returns this space as the result of that operation.  In contrast, 
a Literal object does not necessitate any allocation of 
memory since the Literal objects implicitly pre-exist. 
 
The Java programming language illustrates; this criterion 
(Literal/NonLiteral) although it is a “pure” object-oriented 
language in the sense that everything is an object.  This 
means, that we manipulate objects through handles and 
hence must create all the objects.  However, for primitive 
types Java falls back on the approach taken by C and C++: 
instead of creating the variable using new, an “automatic” 
variable is created which is not a handle.  The variable 
holds the value itself.  Most of the primitive data types have 
“wrapper” classes for them.  That means if we want to treat 
a primitive type as a non-literal, we use the associated 
wrapper. 
 
After applying the two previous criteria we apply the 
criteria of the structure of the information object such as 
that being described in the ODP information viewpoint.  
That is, is the value (of the object) atomic or composite?  
 
We obtain: 
(1) the atomic literal object (AtomicLiteral), 
(2) the composite literal object (CompositeLiteral), 
(3) the atomic non literal object (AtomicNonLiteral ), and 
(4) the composite non literal object (CompositeNonLiteral ). 
 
In the AtomicLiteral objects, we include Java primitive 
types, handle and handle(t). 
 
The CompositeLiteral objects are classified into two 
subtypes, which are the struct literal (StructLiteral) objects 
and the collection literal (CollectionLiteral) objects.  A 
struct literal object has a fixed number of named fields such 
that each field contains a literal.  A CollectionLiteral object 
is a composition of literals having the same type.  This 
constitutes the criteria corresponding to the types of the 
components of a composite information (that is, are they of 
the same type or not).  The StructLiteral objects we define 
are Date, Time, Time-Stamp and Interval as defined in 
the SQL ANSI standard.  The sub-types of the 
LiteralCollection object we define are BitString, 
CharString and Enumeration. 
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The atomic non-literal (AtomicNonLiteral) objects are 
defined according to the RM-ODP objects.  Indeed, within 
RM-ODP, an object may be an enterprise object, an 
information object or a computational object from the 
user’s viewpoint. 
 
An enterprise object may be a use case of the system, a user 
of the system or a policy which governs the activities of the 
system.  An information object is the data manipulated by a 
computational object.  The policy of the system consists of 
a set of rules that govern the activities of the system 
ensuring the objective of the system.  In the information 
viewpoint, these rules are criteria and constraints.  Thus, 
our typing system has to include the type defining values of 
criteria and constraint.  We will call this type Expression.  
It is a sub-type and an instance of AtomicNonLiteral. 
 
Note that another reason to include the expression type is 
that the parameters of a database request are criteria and 
constraints and the ODP functions include the functionality 
of management of database systems.  This necessitates the 
use of a SQL request as ODP-operation.  This integration is 
very important and yet a non-traditional approach.  This is 
the main objective of Java Database Connectivity [24]. 
 
The types are themselves objects, and hence have equally 
properties and operations.  Each type is an instance of a 
type that allows manipulation of the information concerning 
types of objects.  We call it MetaType. 
 
In summary, our typing system of information includes 
among others the types, Expression, Handle, MetaType 
and Reference.  However, the difficulty is how to define 
them. 
 
We think that the set of instances of types MetaType and 
Expression can be defined only by grammars.  The 
grammar of OCL expressions is an example [23]. 
 
An instance of MetaType or of Expression or of Handle has 
attributes and properties that we will make explicit.  The 
Handle type can be defined like in C++ with the semantics 
of the creation and the copy operations. 
 
However, making explicit the type Reference is a 
challenge.  We think that it is a sub-type and an instance of 
StructLiteral.  
 
The CompositeNonLiteral objects are classified into the 
struct objects (StructNonLiteral) and the collection objects 
(CollectionNonLiteral).  The StructNonLiteral objects 
have a fixed number of named fields such as each field is 
either a literal or a non-literal object.  These fields may be 
of different types.  A CollectionNonLiteral object contains 
other objects that  must be of the same type.  Hence, we 
define a generic type of collection denoted as Collection(t).  
We classify the CollectionNonLiteral objects according to 
two criteria; the obligation of the order and the permission 
of the duplication of the components of the collection 

objects.  Applying these criteria we obtain the Sequence , 
Array(t), Set(t) and Bag(t), where Sequence and Array are 
ordered components; Array and Bag permit duplication.  
Also, we define a type of iterators of collections denoted 
Iterator(t) like in Java programming Language (the 
Enumeration). 
 
3.2 Typing System 
 
Our typing system includes types defined in many typing 
systems such as CORBA IDL, OCL, C, C++ and JAVA.  
The semantics of each information object can be easily 
defined using the OCL mechanism of pre- and post- 
conditions.  Next, we define some of types, such as; 
Property, Operation, Flow, Signal, Parameter, MetaType, 
Object, Collection, Expression, Iterator and Handle. 
 
When the semantic of a characteristic of a type is obvious, 
we define it in English language. 
 

Property 
name : CharString 
type : MetaType 
mandatory : Boolean 
readonly : Boolean 

 
Operation 

name : CharString 
typeReturn : MetaType   
parameters : Collection(Parameter) 

 
Flow 

name : CharString 
typeReturn : MetaType 
parameters : Collection(Parameter) 

 
Signal 

name : CharString 
typeReturn: MetaType 
parameters : Collection(Parameter) 

 
Parameter 

name : CharString 
type : MetaType 
passageMode : Enumeration ("in", "out", "in/out")  

 
The types MetaType, Object, Collection and Expression, 
correspond respectively to the types, OclType, OclAny, 
collection and OclExpression. 
 

Iterator(t) 
Next() : t 
First() : t  
Last() : t 
HasMoreElements() : Boolean 
Reset() 
Delete() 
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The characteristics of Iterator(t) have the same meaning as 
the Enumeration primitive type in Java.  We call iterator(t) 
an instance of Iterator(t) associated with an instance of 
Collection(t) called collection.  Next() gets the next object 
in collection.  HasMoreElements() sees if there are any 
more objects in collection. 
 

Handle(t) 
Create () : Handle(t) 
Create(aHandle : Handle): Handle(t) 
Create(aHandle : Handle(t)): Handle(t) 
Copy(aHandle : Handle): Handle(t) 
Copy(aHandle : Handle(t)): Handle(t) 
 

 
The characteristics of Handle(t) have the same definition as 
the Reference type in C++. 
 
Other obvious types are described in Fig. 3. 
 
 
4.0 WHY OCL IS USED FOR THE ODP TYPE 

DESCRIPTIONS 
 
Several specification languages have been developed; each 
handles a particular aspect of a system.  For instance, Z [25] 
and VDM [26] focus on specifying the behaviour of 
sequential systems; others such as CSP [27] and CCS [28] 
Statecharts [29] focus on specifying the behaviour of 
concurrent systems.  SDL [30] and LOTOS [31] are not 
object -oriented and therefore do not support the expression 
of basic object concepts, transaction or multi-threading 
concepts.  The SDL92 [32] and GDMO-GRM [33] are 
object -oriented, but SDL’92 focuses on specialization and 
inheritance while the formalism of GDMO does not cover 
the behavioral aspects of a system. 
 
In fact, no formal description technique is able to describe 
in a complete way the ODP concepts.  The inherent 
characteristics of ODP systems imply the need to integrate 
different specification languages, each specialized in a 
particular kind of properties and also to handle non-
behavioral properties of ODP systems.  It is recognized to 
take benefits from the well-established verification 
techniques; that is, to integrate the theorem proving and 
model checking techniques.  We can therefore conclude 
that up to now, no formal method is likely to be suitable for 
specifying and verifying every aspect of an ODP system.  
We need to support all different kinds.  Methods and tools 
should work in conjunction with each other.  More 
precisely, rather than build a single method, we can build 
meta-method which itself produces methods customized for 
a particular problem domain.  This represents the objective 
of the inter-working in the area of formal methods.  
Progress will depend on future directions on fundamental 
concepts and principles.  Those concepts would include 
among others integration of formal methods, and 
integration of those with the system development 

process.  Indeed, formal methods can complement less 
formal methods that are used in the overall system 
development process. 
 
Elsewhere, the ISOWG7 group shows that the type 
repository function standard must permit the use of multiple 
type description languages.  There are a number of widely 
used and standardized languages for type descriptions, for 
example CORBA-IDL, ASN.1, LOTOS, GDMO and SDL, 
which fulfill some of the requirements of type descriptions 
in RM-ODP.  It is not anticipated that any one existing 
language will address all of the needs of this standard, 
however, some may be adopted for description of particular 
ODP concepts.  We choose OCL for the description of 
types for many reasons: 
 
- Current trend in software engineering technology is 

the unification of methods which necessitates 
unification and integration of basic concepts and 
graphical notation.  This is the objective of the UML 
language for the object-oriented development.  The 
UML is formally being defined using the OCL 
language.  In this context, we think that OCL will 
serve as a common denominator for formal method 
semantics and software engineering method semantics. 

 
- OCL is object-oriented. 
 
- The disadvantage of traditional formal languages is 

that they are usable to persons with a string 
mathematical background, but difficult for the average 
business or system modeler to use.  OCL has been 
developed to fill this gap. 

 
- OCL can be used to specify invariants on classes and 

types in the class model, to describe pre- and post 
conditions on operations and methods. 

 
- The RM-ODP information viewpoint specification is 

described in terms of an invariant schema, a static 
schema and a dynamic schema which can be 
interpreted as follows: an invariant schema is the 
specification of the types of one or more information 
objects that will always be satisfied whatever 
behaviour the objects may exhibit.  A static schema is 
the specification of the state of one or more 
information objects at some particular point in time.  
These types are subtypes of one or more of the types 
specified in the invariant schema.  Behaviour in an 
information specification can be modeled as 
transitions from one static schema to another that is 
reclassification of instances from one type to another. 

 
We deduce that OCL can be used to describe the 
information object types and, hence to describe the ODP 
informational specifications. 
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5.0 THE INFORMATIONAL SPECIFICATION OF 
THE ODP TRADING FUNCTION 

 
5.1 Overview 
 
The ODP functions specify the functionality of the 
execution environment for the ODP systems.  The ODP 
execution environment masks the complexities inherent to 
the distribution and the openness ensuring several kinds of 
transparencies.  The trading function is an ODP function 
that allows to realise other ODP functions.  It is based on a 
database management function. 
 
A detailed analysis of the ODP functions shows that the 
programming languages and the database management 
systems must be integrated.  That is why we choose the 
ODP trading function as an application of our concrete 
information object model. 
 
As the ODP trading is very detailed in [34], we describe 
here only its aspects, which are relevant to our study. 
 
A definition of trading [34, 35] is as follows: “the activity 
of choosing services, such that they match some service 
requirements”.  The choice is based on the comparison of 
the specification of a service (provided by  a prospective 
consumer) and the service specification supplied by service 
providers or their agents.  Trading is based on the notion of 
matching service offers and service requests.  A service is a 
function provided by a component at a computational 
interface.  The component responsible for the maintenance 
of the trading space and the matching of offers and requests 
is called a trader. 
 
Current traders organise services in a service type 
hierarchy.  Each service type defines an interface that 
prescribes the operations available for the interaction 
between the service provider and the service consumer.  
They also allow the association of a number of properties as 
attribute value pairs with each service type. 
 
Central to the service type matching is the notion of type 
conformance.  Type conformance is determined by the 
interaction interface.  The specification of interfaces is then 
crucial and currently IDL-based. 
 
Offering a service is called export, discovering a service is 
called import.  To export, an object gives a trader a 
description of a service together with the location of a 
computational interface at which that service is available.  
To import, an object asks the trader a service having some 
characteristics, the trader checks against the descriptions of 
services and responds to the importer with the location of 
the selected service interfaces. 
 
Due to the sheer number of service offers that will be 
offered worldwide, it is inevitable that the trading service 
will be split up and the service offered will be partitioned.  
Hence, the trading system consists of a collection of inter 

working linked traders, each of them manages a partition of 
service offers. 
 
5.2 Informational Specification 
 
The information of the trading system is a composite object 
described by the template, we call Information: 
 

Information 
Invariant schema :  
offers : Collection(Offer) 
nodes : Collection(Node) 
edges : Collection(Edge) 
partitions : Collection(Partition) 
 
Initial schema :  
Information()  
{ offers = {}; nodes = {}; edges = {} partitions ={} } 
 
Dynamic schema :  
Export() : adds a service offer to service offer space of 
the trading system. 
 
Withdraw() : withdraws a service offer from the service 
offer space of the trading system. 
 
ModifyOffer() : changes the service property and service 
offer property values associated with a service offer 
whilst preserving the service offer identifier. 
 
AddEdge() : adds an edge to the trading system's set of 
edges. 
 
RemoveEdge() : removes an edge from the trading 
system's set of edges. 
 
ModifyEdge() : changes the property of an edge. 
 
AddNode() : adds a node to the trading system's set of 
nodes. 
 
RemoveNode() : removes a node from the trading 
system's set of nodes. 
 
Import() : searches for the subset of service offers which 
satisfy some matching criteria, scoping criteria and some 
preference constraints.  
 

 
The component objects of the information object of the 
system are described as follows: 
 

Offer 
ServiceDescription : Service  
ServiceOfferIdentifier : Reference(Offer) 
ComputingInterfaceIdentifier : Reference(Interface)  
OfferProperties  : Collection(Property) 
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Servicer 
ServiceSignature : Collection(Operation) 
ServiceProperties : Collection(Property) 

 
Partition 

NodeRef  : Reference(Node) 
NodeOffers  : Collection(Offer) 
 

 
Edge 

FirstNode : Reference(Node  
SecondNode : Reference(Node) 
EdgeProperties : Collection(Property)   

 
Node 

NodeRef  : Reference(Node) 
NodeProperties : Collection(Property) 

 
The semantics of the information processing of the trading 
system is described in terms of pre- and post-conditions of 
each operation of the system.  All the pre- and post-
conditions are given in the context of an instance of the 
information template of the system (self). 
 
Export(in NewOffer : Offer, in Anode : Node, out  
OfferRef: Reference(Offer) )  
 
Pre : 
(1) self.nodes → includes(Anode) 
(2) self.offers → forAll(p/ p.ServiceOfferIdentifier <> 

OfferRef). 
(1) self.offers → includes(NewOffer) 
(2) self.partitions →  

select(p/p.NodeRef=Anode.NodeRef).NodeOffers →  
includes(NewOffer).  

(3) self.partitions → forAll(p,q / p.NodeRef <> q.NodeRef 
implies p.NodeOffers → Intersection(q.NodeOffers) → 
isEmpty ). 

 
WithdrawOffer(in OfferRef : Reference(Offer)) 
Pre : 
self.offers → Exists(p/ p.ServiceOfferIdentifier = OfferRef) 
Post : 
 
(1) self.offers → forAll(p / p.ServiceOfferIdentifier <> 

OfferRef) 
(2) self.partitions → forAll(p/ p.NodeOffers → Not 

Exists(q/ q.ServiceOfferIdentifier = OfferRef))  
 
ModifyOffer(in OfferRef:Reference(Offer), 
ServiceProperties, OfferProperties:Collection(property))  
 
Pre :  
self.offers →Exists(p/p.ServiceOfferIdentifier = OfferRef) 
 

Post : 
(1) self.offers → Exists(p/p.ServiceOfferIdentifier = 

OfferRef and p.ServiceDescription.ServiceProperties = 
ServiceProperties and 
p.OfferProperties=OfferProperties) 

(2) self.partitions → Exists(p/p.NodeOffers → select(q/ 
q.ServiceOfferIdentifier = OfferRef and 
q.ServiceDescription.ServiceProperties = 
ServiceProperties and q.OfferProperties = 
ServiceOfferProperties))  

 
AddEdge(in NodeRef1,NodeRef2:Reference(Node); in 
EdgeProperties:Collection(Property)) 
 
Pre :  
(1) self.nodes →  Exists(p/ p.NodeRef=NodeRef1) 
(2) self.nodes →  Exists(p/ p.NodeRef=NodeRef2) 
(3) self.edges → Not Exists((FirstNode=NodeRef1 and 

SecondNode=NodeRef2) or (FirstNode=NodeRef2 and 
SecondNode=NodeRef1)) 

 
Post : 
self.edges → Exists(p/((p.FirstNode=NodeRef1 and 
p.SecondNode=NodeRef2) or (p.FirstNode=NodeRef2 and 
p.SecondNode=NodeRef1)) and 
p.EdgeProperties=EdgeProperties)  
 
RemoveEdge (in  NodeRef1, NodeRef2 : Reference(Node)) 
 
Pre : 
(1) self.nodes →  Exists(p/ p.NodeRef=NodeRef1) 
(2) self.nodes →  Exists(p/ p.NodeRef=NodeRef2) 
(3) self.edges → Exists(p/( (p.FirstNode=NodeRef1 and 

p.SecondNode=NodeRef2 ) or (p.FirstNode=NodeRef2 
and p.SecondNode=NodeRef1 ) ))  

 
Post : 
self.edges→ Not Exists( p/ ( (p.FirstNode=NodeRef1 and 
p.SecondNode=NodeRef2 ) or (p.FirstNode=NodeRef2 and 
p.SecondNode=NodeRef1 ) ))  
 
ModifyEdge(in NodeRef1,NodeRef2 :Reference(Node);in 
EdgeProperties : Collection(Property)) 
 
Pre :  
self.edges → Exists( p/ ( (p.FirstNode=NodeRef1 and 
p.SecondNode=NodeRef2) or ( p.FirstNode=NodeRef2 and 
p.SecondNode=NodeRef1) ))  
 
Post :  
self.edges → Exists(p/ ((p.FirstNode=NodeRef1 and 
p.SecondNode=NodeRef2) or (p.FirstNode=NodeRef2 and 
p.SecondNode=NodeRef1)) and 
p.EdgeProperties=EdgeProperties ) 
 
AddNode(in NodeRef : Reference(Node); in 
NodeProperties : Collection(Property))  
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Pre : 
self.nodes → Not Exists(p/  p.NodeRef=NodeRef) 
 
Post : 
(1) self.nodes → Exists(p/p.NodeRef=NodeRef and 

p.NodeProperties = NodeProperties) 
(2) self.partitions → Exists(p/p.NodeRef=NodeRef and 

p.NodeOffers → isEmpty()) 
 
RemoveNode(in NodeRef:Reference(Node)) 
 
Pre : 
(1) self.nodes →  Exists(p/p.NodeRef=NodeRef) 
(2) self.partitions → Not Exists(p/p.NodeRef=NodeRef and 

Not(p.NodeOffers → isEmpty)) 
(3) self.Edges → forAll(p/p.FirstNode <> NodeRef and  

p.SecondNode <> NodeRef) 
 
Post : 
self.Nodes →  Not Exists(p/p.NodeRef=NodeRef)  
 
Import(in Aservice:Service; in MatchingCriteria, 
ScopeCriteria, refereneceCriteria:Expression; out 
Offers:Collection(Offer)) 
 
Post : 
Offers = (self.offers → select(MatchingCriteria and 
ScopeCriteria and PreferenceCriteria)). 
 
 
6.0 CONCLUSION 
 
Now that the Reference Model for Open Distributed 
Processing has stabilised, attention is shifting towards the 
definition of ODP standards.  The type repository function 
standard requires a model describing the types to be used in 
ODP systems.  This would involve among others, 
determining what entities need to be typed and identifying 
(and characterising) language sufficient to describe the 
types identified.  The ISO/ITU-T WG7 gives guidelines to 
achieve this objective, for example, the types required for 
the ODP functions and for the ODP viewpoint 
specifications should be considered. 
 
Based on RM-ODP itself, we have defined a typing system. 
We have equally enumerated several advantages to use 
OCL for type descriptions.  This work can be considered as 
a step to achieve the WG7 objective.  We have used that 
typing system and OCL for the specification of the trading 
information viewpoint.  This specification is simple than 
the ISO specification, which uses the Z language. 
 
However, several areas require further work.  One 
important issue is to complete the typing system by 
including the ODP engineering concepts.  Also, we are 
investigating to what extent UML and OCL can be used as 
a formal notation for the development of ODP systems. 
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