
Malaysian Journal of Computer Science, Vol. 13 No. 2, December 2000, pp. 1-6

1

A PARALLEL HALFSWEEP MULTIGRID ALGORITHM ON THE SHARED MEMORY
MULTIPROCESSORS

Mohamed Othman
Department of Communication Technology and Networks

Universiti Putra Malaysia
43400 UPM Serdang, Selangor D.E.

J. Sulaiman
School of Science and Technology

Universiti Malaysia Sabah
Kota Kinabalu, Sabah

A. R. Abdullah

Department of Industrial Computing
Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor D. E.
Malaysia

ABSTRACT

The halfsweep multigrid algorithm, introduced by Othman
et al in 1998 for solving a linear system, is known as a fast
multigrid poisson solver. In this paper, the implementation
of the parallel halfsweep multigrid algorithm with several
parallel strategies is discussed. The experiments were
carried out on the shared memory multiprocessors
computer system, Sequent S27, and the results of the test
problem are included.

Keywords: Parallel halfsweep multigrid algorithm;

Parallel strategy; Performance evaluation

1.0 INTRODUCTION

Multigrid method has been known for many years. It is fast
and one of the most efficient iterative methods for solving a
wide variety of scientific computing and engineering
problems. Despite advances in computer hardware, many
applications require still greater performance than that
offered by traditional computers. Given the success of the
sequential multigrid algorithm, the V(1, 1)-cycle halfsweep
multigrid algorithm (introduced by Othman et al in 1998),
it is natural to consider the parallel version of the algorithm,
especially, on the shared memory multiprocessors platform.

In the case of the fullsweep approach, several successful
parallel multigrid algorithms have been implemented on
various parallel computer platforms [1, 2, 3, 4, 6]. For
instance, Chan et al [1] implemented the parallel multigrid
algorithm on the Hypercube Multiprocessor computer
system.

2.0 FULLSWEEP MULTIGRID METHOD

The fullsweep multigrid method has been used by many
researchers. It employs all the points (or tasks) at any

level of the hierarchical grid (i.e. Ωh, Ω2h, ..., ΩNh) for their
computations. The method uses the three points stencil, as
a grid smoother coincide with the Gauβ-Seidel chess board
strategy for their pre- and post- smoothing stages. Since all
the tasks at each level of the hierarchical grid are involved
in the computations, the full weighting restriction operator
is used to transfer all the calculated residuals from fine Ωh
to coarser grid Ω2h defined as,

 [].121R 4
1h2

h =

On the other hand, the bilinear prolongation operator h

h2P

is used to transfer the error corrections from coarse Ω2h to
finer grid Ωh given by,

 () 1Ni0,vvv

Ni0,vv

c
h2
1i

h2
i2

1h
1i2

c
h2

i
h

i2

−≤≤+=

≤≤=

++

where Nc is the size of the coarser grid. Briefly, the
V(η1,η2)-cycle fullsweep multigrid algorithm is described
in C-like language as shown in Appendix 1.

Fig. 1: The graphical structure of the V(η1, η2)-cycle
halfsweep multigrid method

R h
2h

R 2h
4h

P
4h
2h

P 2h
h

h

h

2 h

2 h

4 h

I n p u t

O u t p u t

Othman, Sulaiman and Abdullah

2

3.0 HALFSWEEP MULTIGRID METHOD

According to Othman and Abdullah [5], all tasks at any
levels of the hierarchical grid, (i.e. Ωh, Ω2h, ..., ΩNh) are
labeled in chess board labeling, as shown in Fig. 1. A
group of black (• tasks) will be computed using the three
points stencil of width 2h until the convergence criteria are
met, then the rest of red (� tasks) will be executed at once
using the three points stencil of width h, otherwise, the
computation cycle is repeated. It shows that a group of
black tasks can be implemented by involving only black
tasks and the same happens for a group of red tasks.
Therefore, the implementation of these two groups of tasks
can be carried out independently and the execution time can
be saved nearly by half if the computation over the
hierarchical grid is only carried out on either group of tasks.

As only a group of black tasks are involved in the

computation, the following restriction operator h2
hR is

required for transferring the calculated residuals from fine
Ωh to coarser grid Ω2h given by,

 []10201R 4
1h2

h = .

All the error corrections of black tasks are transferred from
coarse Ω2h back to finer grid Ωh defined by the following

bilinear prolongation operator h
h2P ,

() 2N...,,4,2,0i,vvv

N...,,4,2,0i,vv

c
h2

i
h2
2i2

1h
2i2

c
h2

i
h
i2

−=∀+=

=∀=

++

The chess board Gauβ-Seidel relaxation scheme is used as
grid smoother for their pre- and post- smoothing stages. It
is used to smooth the calculated residuals and error
corrections at the coarse grids. Appendix 1 describes the
nested V(η1,η2)-cycle halfsweep multigrid algorithm.

4.0 STRATEGIES AND THEIR PARALLEL

IMPLEMENTATIONS

Since all the black tasks at any level of the hierarchical grid
are identical, the data partitioning approach is suitable in
implementation of the methods. All the identical tasks can
be executed in parallel, and again, the static scheduling is
also employed.

Three main procedures involved in the implementation are
described in the following sections.

4.1 Parallel Grid Smoother

The Gauβ-Seidel relaxation scheme is used as a grid
smoother due to the fact that the new updated values are
used to calculate the next value, as it becomes available. It
is very important that the residuals are well smoothed
before they can be transferred to the coarser or finer grids.

Since data dependence among the tasks occurred at any
level of the hierarchical grid, the chess board strategy is
employed in the smoother and each task is allocated to a
processor at a time. Thus, every processor independently
computes its own tasks in parallel. The C-like language
codes below show the parallel grid smoother with the chess
board strategy.

Once the convergence criteria is met, no data dependency
occurs at the finest grid, then all the red tasks are smoothed
at once in parallel by employing the natural strategy. The
Par_grid_direct_procedure() shows the smoother of the
parallel direct relaxation scheme.

4.2 Parallel Restriction Operator

In the restriction procedure, there are two main
computations which depend on each other. They are the
computations of residual and full weighting restriction.
These computations must be executed one after another,
while the synchronization call at the end of each
computation ensures that the updated values are used in the
second computation. Due to the fact that no data
dependency occurs in each computation, the individual
computation can be executed in parallel by employing the
natural strategy. Each task from each computation is
assigned to one processor at a time, and then every
processor independently computes its own tasks. These
computations are shown in the following C-codes.

Par_grid_smoother_procedure()
{nprocs=m_get_numprocs();
 id=m_get_myid(); inc=2*nprocs;

 for (color=0; color<=1;color++) {

if (color==0) s=2+4*id;
else s=4+4*id;
for (i=s;i<Nc;i=i+inc) u[i]=0.5*(u[i-2]+u[i+2]-2h2*f[i]);
m_sync();

}}

Par_grid_direct_procedure()
{ nprocs=m_get _numprocs(); id=m_get_myid();

inc=2*nprocs;

for (i=1+id;i<Nc;i=i+inc)
 u[i]=0.5*(u[i-1]+u[i-1]- h2f[i]);
m_sync();

}

Par_restriction_procedure()
{ nprocs=m_get_numprocs(); id=m_get_myid();

inc=2*nprocs; half= 0.5*Nc;

for (i=2+2*id;i<Nc;i=i+inc)
 w[i]=0.5h-2*(2*u[i]-u[i-2]-u[i+2])-f[i];
m_sync();
for (k=2+2*id;k<half; k=k+inc) {
 i=2*k;
 y[k]=0.25*(w[i-2]+w[i+2]+2*w[i]);
}
m_sync();

}

A Parallel Halfsweep Multigrid Algorithm on the Shared Memory Multiprocessors

3

4.3 Parallel Prolongation Operator

There are two main computations involved in the
prolongation procedure, they are the computation of
prolongation and bilinear operation. These two
computations must be executed one after another as the
second computation depends on the results of the first
computation. The synchronization call at the end of each
computation ensures that the updated values are available
for the following computation. In the individual
computation, no data dependency occurs among the tasks,
thus, they can be executed in parallel by employing the
natural strategy. The procedure of these computations is
shown in the following C-like language codes below:

4.4 Parallel Halfsweep Multigrid Algorithm

The parallel V(η1, η2)-cycle halfsweep multigrid algorithm
is described in C-like language as stated in Appendix 2.

5.0 PERFORMANCE EVALUATION

In order to confirm that the parallel halfsweep multigrid
algorithm is superior to the parallel fullsweep multigrid
algorithm, the following experiments are carried out on the
shared memory multiprocessor computer system, Sequent
S27. All the methods were applied to the following test
problem (uxx = -x) in a unit cartesian region, subject to the
Dirichlet condition. To avoid time taken for system, user
and other I/O overheads, the algorithms were executed
when no other users were using the computer. Throughout
the experiments, all the algorithms were carried out on
different sizes of finest grids 213, 214, 215 and 216 with
V(η1,η2)-cycle. The algorithms will stop when all tasks at
the finest grid, which undergo the computation, are less
than ε=10-10.

The experimental results are reported in the Table 1. The
graphs for execution time, speedup and efficiency versus
number of processors were plotted and shown in Figs. 2, 3
and 4, respectively. The temporal performance is usually
used to compare the performance of different algorithms for
solving the same problem and it is defined as,

pT
1

pP =

where the unit is work done per second, and p is the number
of processors. The algorithm with the highest performance
executes in the least time and, therefore, is the better
algorithm. Fig. 5 shows the graph of the temporal
performance versus number of processors for n=216.

Table 1: The execution time, speedup and efficiency of the parallel multigrid algorithms with full- and half- sweep
approaches

n No. of Full Half
 procs Time Speedup Efficiency Time Speedup Efficiency

213

1
2
3
4
5

4.45
2.96
2.41
2.22
1.99

1.00
1.50
1.84
2.00
2.23

1.00
0.75
0.61
0.50
0.44

2.73
2.05
1.67
1.58
1.51

1.00
1.33
1.63
1.72
1.80

1.00
0.66
0.54
0.43
0.36

214

1
2
3
4
5

8.27
5.30
3.89
3.42
3.11

1.00
1.56
2.12
2.41
2.65

1.00
0.78
0.70
0.60
0.53

5.51
3.59
2.81
2.41
2.27

1.00
1.53
1.95
2.28
2.42

1.00
0.76
0.63
0.57
0.48

215

1
2
3
4
5

16.00
9.90
7.21
6.53
5.39

1.00
1.61
2.21
2.45
2.96

1.00
0.80
0.73
0.61
0.59

10.47
6.56
4.78
4.33
3.72

1.00
1.59
2.18
2.41
2.80

1.00
0.79
0.72
0.60
0.56

216

1
2
3
4
5

31.70
18.41
13.15
10.93
9.73

1.00
1.72
2.41
2.90
3.25

1.00
0.86
0.83
0.71
0.65

20.44
12.58
9.43
7.69
6.47

1.00
1.62
2.16
2.65
3.15

1.00
0.81
0.72
0.66
0.63

Par_prolongation_procedure()
{ nprocs=m_get_numprocs(); id=m_get_myid();

inc=2*nprocs; half= 0.5*Nc;

for (i=2+2*id;i<half; i=i+2*inc) w[2*i]=u[i];
m_sync();

for (i=2+2*id;i<Nc;i=i+inc) w[i]=0.5*(w[i-2]+w[i+2]);
m_sync();

}

Othman, Sulaiman and Abdullah

4

6.0 CONCLUSION

Based on Table 1 and Fig. 1, the results show that the
parallel halfsweep multigrid algorithm with the chess board
Gauβ-Seidel grid smoother is superior to the parallel
fullsweep multigrid algorithm for any number of
processors, as n gets larger. This is due to the lower total
computational operations in the algorithm as approximately
half of the total tasks in each level are involved in the
computation. In view of this, we found that the speedup
and efficiency of the parallel halfsweep multigrid algorithm
are not as good as that for the other algorithm. It can be
improved by increasing the grid size n, (refer to Figs. 2 and
3). Furthermore, the superiority of the parallel halfsweep
algorithm is also indicated by the highest value of the
temporal performance (see Fig. 4).

In conclusion, the parallel halfsweep multigrid algorithm
with the chess board strategy is the more effective
algorithm when compared to the parallel fullsweep
multigrid algorithm.

Fig. 2: Execution time versus no. of processors for n=216

Fig. 3: Speedup versus no. of processors for n=216

Fig. 4: Efficiency versus no. of processors for n=216

Fig. 5: Temporal performance versus no. of processors for
n=216

REFERENCES

[1] T. F. Chan and Y. Saad. “Multigrid Algorithms on

the Hypercube Multiprocessor”. IEEE Transaction
on Computer, Vol. C-35, No. 11, 1986, pp. 969-977.

[2] S. N. Gupta, M. Zubair and C. E. Grösch. “A

Multigrid Algorithm for Parallel Computer:
CPMG”. Journal of Scientific Computing, Vol. 7,
1992, pp. 263-279.

[3] O. A. McBryan et al. “Multigrid Methods on Parallel

Computers - A Survey on Recent Developments”,
Impact of Computing in Science and Engineering,
Vol. 3, 1991, pp. 1-75.

[4] L. R. Matheson and R. E. Tarjan. “Parallelism in

Multigrid Methods: How Much is Too Much?”.
International Journal of Parallel Programming,
Vol. 24, No. 5, 1996, pp. 387-432.

[5] M. Othman and A. R. Abdullah. “The Halfsweeps

Multigrid Method as a Fast Multigrid Poisson
Solver”. International Journal of Computers and
Mathematics, Vol. 69, 1998, pp. 319-329.

1 2 3 4 5
5

1 0

1 5

2 0

2 5

3 0

3 5

5

1 0

1 5

2 0

2 5

3 0

3 5

N o . o f p r o c e s s o r s

E
xe

cu
tio

n
tim

e
(s

ec
.)

MG Ful lsweep

MG Ha l f sweep

1 2 3 4 5
0

1

2

3

4

5

6

0

1

2

3

4

5

6

No. o f p rocessors

S
pe

ed
up

M G F u l l s w e e p

M G H a l f s w e e p

I d e a l

1 2 3 4 5
0

0 . 2

0 . 4

0 . 6

0 . 8

1

0

0 . 2

0 . 4

0 . 6

0 . 8

1

N o . o f p r o c e s s o r s

E
ffi

ci
en

cy

M G F u l l s w e e p M G H a l f s w e e p Idea l

1 2 3 4 5
0

0.05

0.1

0.15

0

0.05

0.1

0.15

N o . o f p r o c e s s o r s

Te
m

po
ra

l p
er

fo
rm

an
ce

MG Fu l lsweep MG Hal fsweep

A Parallel Halfsweep Multigrid Algorithm on the Shared Memory Multiprocessors

5

[6] K. Sölchenbach, C. A. Thöle and U. Tröttenberg.
“Parallel Multigrid Methods: Implementation of
SUPRENUM-like Architectures and Applications”.
INRIA Rapports de Recherche, N°. 746, 1987.

BIOGRAPHY

Mohamed Othman obtained his Ph.D. from Universiti
Kebangsaan Malaysia in 1999. Currently, he is a lecturer at
the Department of Communication Technology and
Networks, Faculty of Computer Science and Information
Technology, Universiti Putra Malaysia. His research
interest includes parallel computing, high speed network,
cluster computing, artificial intelligence, expert system
design, scientific computing and programming in logic

(parallel). He has published over twenty technical papers
related to his fields of research.

J. Sulaiman completed his MSc degree from Universiti
Kebangsaan Malaysia in 1998. Currently, he is a lecturer at
the School of Science and Technology, Universiti Malaysia
Sabah. His research interest includes mathematical
modeling, scientific computing and parallel computing.

A. R. Abdullah is a Professor in Industrial Computing at
the Department of Computer Industry, Faculty of Computer
Science and Information Technology, Universiti
Kebangsaan Malaysia. His research interest includes
parallel computing, high speed network computing and
scientific computing. He has published a few books related
to his fields of research.

Appendix 1: The nested V(η1, η2)-cycle fullsweep multigrid algorithm

SMGV(Ah,vh,fh) /* compute all the points until converge */
{
 if coarset grid, solve Aheh=rh directly
 else {
 smooth η1 times on Gauβ-Seidel(Ah,vh,fh) using the three points stencil of width h
 compute residuals, rh ←fh - Ahvh

 set e2h ← 0, and restrict r2h ← h2
hR rh

 get e2h ← SMGV(A2h,v2h,f2h)

 compute prolongation and error (corr.), vh ←vh - h
h2P e2h

 smooth η2 times on Gauβ-Seidel(Ah,vh,fh) using the three points stencil of width h
 }
}
Algorithm Seq_halfsweep_mg()
{flag=0;
 while (flag != 1) do {
 flag=1;
 SMGV(Ah,vh,fh);
 if |v(k+1) - v(k)| > ε for all points, set flag=0
 iterate++; swap all tasks, v(k+1) → v(k)
 }
 return vh as an approximate solution
}

Othman, Sulaiman and Abdullah

6

Appendix 2: The parallel V(η1, η2)-cycle halfsweep multigrid algorithm

DIRECT(Ah,vh,fh) /*compute a group f red tasks in parallel */
{
compute Par_grid_direct_procedure(Ah,vh,fh)
}
PMGV(Ah,vh,fh) /* compute a group of black tasks in parallel until converge */
{
 smooth η1 times on Par_grid_smoother_procedure(Ah,vh,fh)
 compute Par_restriction_procedure(rh,e2h,r2h)
 smooth η1 times on Par_grid_smoother_procedure(A2h,v2h,f2h)
 compute Par_restriction_procedure(r2h,e4h,r4h)
 M
 if coarset grid, solve ANheNh=rNh
 M
 compute Par_prolongation_procedure(e4h,e2h)
 smooth η2 times on Par_grid_smoother_procedure(A2h,e2h,r2h)
 compute Par_prolongation_procedure(v2h,vh)
 smooth η2 times on Par_grid_smoother_procedure(Ah,vh,fh)
}
Algorithm Par_halfsweep_mg()
{Initialize();
 Set l_flag=1; g_flag=0; id=m_get_myid(); nprocs=m_get_numprocs(); bit=id2; stop=nprocs2-1;
 /* compute the following while block in parallel */
 while (g_flag != stop) do {
 PMGV(Ah,vh,fh)
 if |v(k+1) - v(k)| > ε on the black tasks, set l_flag=0
 if (l_flag == 1) {
 m_lock(); g_flag=g_flag + 1; m_unlock();
 }
 <synchronize>
 iterate++; l_flag=1; swap all black tasks, v(k+1) → v(k)
 <synchronize>
}
compute the DIRECT(Ah,vh,fh) procedure in paral lel
<synchronize>
m_kill_proc();
}

