
Malaysian Journal of Computer Science, Vol. 14 No. 2, December 2001, pp. 26-37

26

PROCESS MODELING LANGUAGES: A LITERATURE REVIEW

Kamal Zuhairi Zamli
School of Electrical and Electronics Engineering

Universiti Sains Malaysia
14300 Nibong Tebal

Pulau Pinang
email: kamal_zamli@hotmail.com

ABSTRACT

A software process is defined as a sequence of steps that must be carried out by the human agents to pursue the
goals of software engineering. In order to achieve a precise specification of what these steps actually are, a
software process can be represented using a process modeling language (PML). A representation of the software
process in a PML is called a process model. Through a process enactment mechanism, which allows execution of
the process model, a software process can automate, guide, and enforce software engineering practices and
policies. These technologies are often collected together into what are referred to as process-centred
environments or process centred software engineering environments (PSEE). Over the past 12 years, there have
been many PSEEs (and PMLs) developed. However, the use of PSEEs and PMLs are not widespread. We envisage
that these technologies provide a vital support for software engineering in the future. This article surveys the
current state of the art of the PMLs including the second generation PMLs, which have not been included in other
surveys in the literature, and discusses the possible research agenda for future work in the area.

Keywords: Software Process, Process Modeling Languages, Software Engineering Support

1.0 INTRODUCTION

A software process is defined as a sequence of steps that must be carried out by the human agents to pursue the
goals of software engineering. In order to achieve a precise specification of what these steps actually are, a software
process can be represented using a pro cess modeling language (PML). A representation of the software process in a
PML is called a process model.

A process model must constitute four important process elements namely activity, products, roles, and tools [15].
Activity consists of one or more process steps 1, which may run in parallel with other process steps. Products are
artifacts which are normally under configuration control. Roles describe the responsibility and rights of the human
who performs the process steps or who is in charge of the human agents. It should be noted that a person may play
more than one role and a role may be associated with several people. Tools covers any tools used in the production
of the software including compilers, debuggers, editors and even CASE tools.

Through a process enactment mechanism which allows execution of the process model, a software process can
automate, guide, and enforce software engineering practices and policies. These technologies are often collected
together into what are referred to as process-centred environments or process centred software engineering
environments (PSEE).

Over the past 12 years, there have been many PSEEs (and PMLs) developed. However, the use of PSEEs and PMLs
are not widespread. We envisage that these technologies provide a vital support for software engineering in the
future. This article surveys the current state of the art of the PMLs including the second generation 2 PMLs, which
have not been included in other surveys in the literature (such as [12], [20] and [23]), and discusses possible research

1 Process step is an atomic action of a process that has no externally visible substructure (i.e. the smallest possible
representation in a software process).
2 Generally speaking, a second generation PML, the distinction first noted by Sutton and Osterweil [38], is one
published after 1996.

Process Modeling Languages: A Literature Review

27

agenda for future work in the area.

2.0 CLASSIFICATION OF PMLs

The best-known classification is probably that of Ambriola et al [1]. Ambriola et al classifies PMLs into three
categories namely Process Specification Languages (PSL), Process Design Languages (PDL) and Process
Implementation Languages (PIL). Process specification languages, typically formal languages, are languages that are
in use in the specification phase of the process lifecycle. Process design languages are languages that are in use in
the design phase of the process lifecycle. Process implementation languages are languages that are in use in the
implementation phase of the process lifecycle.

Clearly, the classification according to the process lifecycle, helps to distinguish the lifecycle each PML supports.
Arguably, it is difficult to classify existing PMLs into well-defined groups since some PMLs, for instance, being
process specification languages yet support process enactment. In some cases, some researchers are using more
than one PMLs in different phases of the process lifecycle in the modeling of software process.

In our previous work [41], we proposed a simpler classification based on process enactment support. While Huff [23]
has also proposed a similar classification, her work suffers from the inclusion of implementation details of each PML,
which makes it difficult to classify the second generation PMLs. In summary, our classification recognized the PML
as being:

• Non-enactable
• Simulated
• Enactable

Non-enactable PMLs support only process modeling and understanding and not process enactment. Simulated
PMLs enable a high-level simulation of the process model, which normally aids in the design of new software
processes, but does not provide fine-grained guidance or control of the software process. Enactable PMLs permit
the process model specified using that PML to be enacted to actively guide or even to control a software process.

3.0 AREAS OF SUPPORT FOR NON-ENACTABLE, ENACTABLE AND SIMULATED PMLs

There are five important areas that a PML must support namely, modeling support, enactment support, evaluation
support, evolution support and human dimension support [41]. Modeling support refers to the ability of the PMLs to
express the precise specification of steps involved in the software process. Enactment support refers to whether the
syntax of the PML has an underlying executable semantics, allowing it to be executed. Evaluation support refers to
whether the PML has some support for evaluation of the process model either quantitatively or qualitatively.
Evolution support relates to the ability of the process model through its PML syntactic support to recover from its
current state of enactment after some changes to the process model. Human dimension support is a new area of
support for PML, which considers augmentation of some human dimension issues in the design of a PML [41].

Table 1: Classification of PMLs and their areas of support

Support Areas Process Modeling Languages
 Non-Enactable Simulated Enactable
Modeling Support √ √ √
Enactment Support x x √
Evaluation Support x √ √
Evolution Support x x √
Human Dimension Support x x √

Table 1 tabulates the comparison in terms of support areas among the three classifications of PMLs. It can be seen
that enactable PMLs cover a wider spectrum of support areas. Simulated PMLs tend to cover modeling support and
evaluation support. Non-enactable PMLs, on the other hand, mainly concentrate on modeling aspects of software
process. The general common support area of the PMLs is mainly the modeling support.

Zamli

28

Having established the common ground of non-enactable, enactable and simulated PMLs, we would proceed to
survey the current state of the art of PMLs and relate them in terms of their classification.

4.0 SURVEY OF EXISTING PMLs

This section uses the classification derived from our previous work, which is discussed in Section 2.0 and 3.0, to
survey the state of the art of PMLs.

4.1 Non-Enactable PMLs

Table 2 lists PMLs in the non-enactable group in chronological order of major publications. Entry Condition, Tasks,
Verification activities and Exit criteria (ETVX) existed long before interest to support software process started. ETVX
was started by IBM in the early 1980s to write the procedure and quality manuals. A software process model is
expressed as a set of interdependent activities, each of which has four attributes: entry (E) criteria, task to be
accomplished (T), task to be validated (V), and exit (X) criteria. The software process model indicates the
relationships and flow among the four attributes of an activity and between activities. Early publication such as that
of Humprey [25] uses an ETVX variation to model software process.

Table 2: Non-enactable PMLs

Year PML PSEE
1989 ETVX -
1994 E3 -
1994 Limbo Oikos
1994 Base Model PADM
1999 UML -
2000 UPM -

E3 [3] is an object-oriented language designed to aid the understanding of software processes. It provides four
views of a software process model namely: inheritance view, task view, functional decomposition view and
informational perspective view. A software process is modeled in each view using pre -defined classes and relations
that are denoted by graphical symbols.

Limbo is a specification language, which has been created for reactive systems. It is the PML used during the
specification and design phase of the process lifecycle of OIKOS [31]. OIKOS is derived from an ancient Greek word
to mean the environment for software development. A software process model consists of a hierarchy of entity
structure that includes process, office, environment, desk, role, service instance and coordinator. Entities can
interact and influence each other by message passing controlled by coordinator agents. Limbo is actually a
compatible specification language for Pate, an enactable PML used during the implementation phase of the process
lifecycle. Pate is discussed in an enactable PML group.

Base Model (BM) is a specification language for the Process Analysis and Design Methodology (PADM) [7],
formerly known as Integrated Process Support Environment (IPSE). It is used during the specification and design
phases of the process lifecycle of PADM. BM employs temporal logic to allow formal representation of processes. It
supports gradual refinement from high-level specification to detailed design. Actually, BM is a specification
language for Process Management Language (also called Process Wise Integrator PML), the implementation
language for PADM. Process Wise Integrator PML is described in an enactable PML group.

Unified Modeling Language (UML) [35] is a language that is used for object-oriented software design. Jager [27]
reported the use of UML class diagrams with modified stereotype constructs to aid the construction of dynamic task
net (DYNAMITE) model. In this case, UML is used as the process design language to support construction of
software process model for DYNAMITE. DYNAMITE uses a separate PML called Programmed Graph Rewriting
System (PROGRESS), which is discussed in the enactable PML group.

Process Modeling Languages: A Literature Review

29

In other works, Franch and Ribo [17] used the extended meta-model of UML to model the static part of software
processes, essentially a conceptual model that defines the elements participating in a software process model. This
work is performed as a basis of further work in designing Process Oriented Modeling and Enactment of Software
Developments (PROMENADE), which is discussed in the enactable PML group.

Unified Process Modeling Language (UPM) [32] is a PML that shares some of its constructs with UML. It is
developed by the Object Management Group (OMG) specifically to aid understanding of software processes. The
modeling of software processes is done almost exclusively using the UML-like activity diagram and some extended
notations.

4.2 Simulated PMLs

Table 3 lists PMLs in the simulated group in chronological order of major publications. The Statemate system is
based on the work of David Harel on state-charts. State-charts are enhancements to traditional state transition
diagrams. Statemate system was originally developed to support the construction of complex reactive systems.
Statemate provides three graphical languages to represent structural, functional, and behavioural views of complex
reactive systems. Humprey and Kellner [26] reported a successful attempt of representing behavioural modeling
perspectives of software process using state-charts and simulated through Statemate tools.

Table 3: Simulated PMLs

Year PML PSEE
1989 Statemate -
1994 Socca -
2000 SDL -

Specification of Coordinated and Cooperative Activities (Socca) [16] is a specification language based on
PARADIGM, which is the specification language for specification of coordinated parallel processes. Socca describes
a software process model in three different perspectives, namely data perspective, behaviour perspective and
process perspective. It describes its data perspective using class diagram. Behaviour perspective is described using
internal and external state transition diagram. The communication between each internal and external state transition
diagram, which constitutes process perspective, is expressed using PARADIGM.

Specification and Design Language (SDL) is a formal language, with both graphical and textual representations, for
specifying and describing real-time communication systems consisting of concurrent process. The top abstraction
level of a system is hierarchically structured as a set of interrelated diagrams mainly consisting of blocks whose
behaviours are controlled by the system specification. Typically, blocks contain one or more SDL processes, an
instance of SDL process types, which are allowed to communicate among themselves and the system environment.
In the work by Podnar et al [33], a software maintenance process for a large telecommunication company is modeled
using SDL. In the work, software process elements consisting of role, artifact and tools are modeled as SDL process
type. An activity is modeled with a particular role in SDL process type. Through SDL Development Tool (SDT), the
role, artifact, tools, and activity are instantiated to process instances, which allow simulation and verification of the
software maintenance process produced.

4.3 Enactable PMLs

Table 4 lists all PML in the enactable group in chronological order of major publications. Marvel Strategy Language
(MSL) is the PML for Marvel [29]. The software process model in Marvel is an extensible collection of rules for the
process steps with preconditions and post conditions, stored in an object-oriented database. Marvel interprets its
rules using forward and backward chaining. Forward chaining lets Marvel perform opportunistic execution of
process steps as soon as their pre -condition are satisfied as a result of prior steps perfo rmed. Backward chaining
helps Marvel find the process steps whose post-conditions satisfy the pre-condition of other process steps that
have been activated.

Zamli

30

Table 4: Enactable PMLs

Year PML PSEE
1988 MSL Marvel
1988 Grapple Grapple
1989 HFSP -
1990 Melmac Melmac
1994 Slang Spade
1994 Pate Oikos
1994 PWI PML PADM
1994 Merlin/PML Merlin
1994 Spell Epos
1994 MASP/DL Alf
1994 Peace/PDL Peace
1994 Adele -Tempo Adele -Tempo
1995 APPL/A Arcadia
1996 PROGRESS Dynamite
1997 JIL Julia
1997 CSPL CSPL
1998 Little JIL Juliette
1998 EVPL Serendipity
1998 APEL -
2000 PROMENADE -

Grapple [24] uses the artificial intelligent planning paradigm, an artificial intelligent approach to a theory of action to
model the software process. Processes are formally defined in a hierarchy using plan operators with multiple levels of
abstraction. Each operator has some precondition defining the state that must hold in order for action to be legal,
and a set of effects that defines the state changes that result from performing the action. A plan places stress more
on goals rather than activities. Grapple combines plan generation with plan recognition. Plan generation
automatically executes process steps to achieve a goal while plan recognition attaches steps executed by the process
performer to the current set of plans.

Hierarchical and Functional Software Process (HFSP) [30] is based on attribute grammars and functional
programming. In HFSP, a software process is described as a collection of activities, which a re characterised by their
input and output relationship and defined as mathematical functions. Complex relationships can be decomposed into
sub -activities together with the definition of their input and output. The enactment mechanism in HFSP provides
activity scheduling, activity execution management, tool invocation, access to input and output of the software
process model, and user interaction. Activity scheduling allows concurrent activities to execute when their input
becomes available.

Melmac [14] is the pioneering system that uses Petri Nets extension called FUNSOFT nets as its base. FUNSOFT
nets represent the general structure of the software process. From within the net, Melmac denoted a number of views
including:

• Object Type and Activity View
• Process View
• Project Management View

The Object Type and Activity View describe the activity, types and tools involved. The Process View defines the
data flow constraints between the software development activities. The Project Management View specifies the roles
and temporal constraint for each activity.

Slang is a PML for SPADE [4]. Like Melmac, Slang also uses a Petri Net extension, called ER nets, as its base.
Nevertheless, unlike Melmac, Slang process model can be hierarchically structured as a set of activities, each is
described by a net that may include invocation of other (sub) activities. An activity is the Slang modularisation

Process Modeling Languages: A Literature Review

31

facility. Since Slang is based on high-level Petri Nets, process data are represented as tokens. Slang is integrated
with object-oriented database O2, which serves as repository for process models.

Pate is an implementation language for OIKOS [31]. The bulk of modeling software process is actually done by its
specification language Limbo, discussed as non-enactable PML. Step-wise refinement of the Limbo specification
produces Pate executable code.

Process Management Language (PWI PML) is the class based implementation language for PADM [7] that allows its
user to write process program. PADM provides three views of the software process models:

• The User Model
• The Environment Model
• The Application Model.

The User Model describes the interaction between roles, tasks and artifacts. The Environment Model shows the
infrastructure support for process enactment. The Application Model depicts the actual executable software process
model. PWI PML is used in the Application Model where software process is modeled as a set of interacting
“system” roles, which may be user role or user tasks. Each system role communicates with each other using message
passing.

Merlin PML is a Prolog-like language to support process enactment for Merlin [28]. Process modeling in Merlin is
done in 2 levels: process design and process enactment. Process design is supported using a graphical notation
called Entity Relationship Models and State-charts Combined for Advanced process Engineering (ESCAPE). State-
charts, which are enhanced state transition diagrams, are used to specify the behaviour of the process models.
ESCAPE design is automatically mapped to Merlin PML to support process enactment.

Spell is the PML for Expert System for Program and System Development (EPOS) [10]. Software process is modeled
as a typed network of chained and decomposed tasks, an instantiation of task type. These are linked to other tasks,
products, tools and roles. Tasks interact with each other and with tools and humans. A task type in Spell defines
input output parameter for the task, decomposition that defines task breakdown, static and dynamic pre-conditions
and post-conditions around a script code to be executed using textual Prolog-like notation. Spell is integrated with
object-oriented database called EPOSDB.

Model for Assisted Software Process Description Language (MASP/DL) is the PML for Alf [8]. MASP/DL describes
a generic MASP software process model. A generic MASP software process model is composed of software process
fragments consisting of:

• An Entity Relationship Attribute
• A set of operator types
• A set of rules of type event-condition-action
• A set of ordering constraints
• Characteristics

An Entity Relationship Attribute describes all the data used in the fragments. Operator types allow abstraction of
tools and pre/post-conditions. Rules of type event-condition-action express how to react to some predefined events.
Ordering constraints express how operator invocation can occur with respect of precedence rules, simultaneity
constraints between operators and condition on object instances. Characteristics are expressions used as invariants
and/or as objectives. A generic MASP model can be tailored and instantiated for a specific project or specific
organisation.

Process Centered Enactable and Adaptable Computer Aided Environment (Peace) [2] adopted a goal-oriented
approach, considering goal rather than activities as the fundamental concepts of modeling. A Peace software
process model is a set of Process Model Fragments (PMF) similar to Alf. Peace/PDL is a PML, which describes the
generic Peace PMF software process model. PMF specification is described in terms of object model using data
definition language called PCTE Object Management System (OMS) and an operator model. The operator model
formally describes the process steps associated with a PMF in terms of its name, input and output, i ts intrinsic role,

Zamli

32

pre/post-conditions and its incoming and outgoing events. An improvement of Peace called Peace+ extends
enactment support for distributed process model and support for process evolution.

Adele -Tempo [6] provides two enactable PMLs. The first language, Adele, is an object -oriented language for
manipulating database contents in Adele database. Data, in Adele database, is organised as objects with
relationships. Adele PML provides support for modeling the entity relationship data model with trigger support
mechanism, which automatically responses to prescribed database operation events. A trigger program is actually
executed each time the corresponding event is true. Artifacts and workspace support is described at this level with
sets of events, actions, conditions and coupling associated with database operation. As Adele PML was found to
be difficult to understand, language and trigger execution is difficult to control, the second PML called Tempo was
developed on top of Adele PML. Tempo defines a process model based on the concepts of role and connection. A
role, if granted permission, can dynamically redefine the static and behavioural property of an object. A connection
expresses how the process collaborates.

APPL/A [37] is one of the pioneering PML. It runs under a PSEE called Arcadia. APPL/A extends the ADA
programming language with shared persistence relations, concurrent and reactive triggers, optionally enforceable
predicates and five transactions-like composite statements. As with ADA, APPL/A abstractions and
modularisations are obtained via procedures and packages.

In Dynamic Task Nets (DYNAMITE) [22], a software process is modeled via hierarchies of tasks that are connected
to various kinds of relationships (control flo w, data flow and feedback). State transition diagrams are used to model
the dynamic behaviour of a task. As the name suggests, tasks can be dynamically created. Dynamic Task Nets are
formally defined in an executable specification language called Progra mmed Graph Rewriting System (PROGRESS),
which is based on graph rewriting systems.

JIL [38], the APPL/A successor, which runs on a PSEE called Julia, emphasises two elements:

• Process Steps
• Control Paradigms and Exception Handling

A JIL step represents a step in a software process. In JIL, a step in the software process provides abstraction for
individual process steps. JIL control paradigms, recognise proactive and reactive control, integration of pre/post-
condition and ability to loosely organise an incomplete process model. Proactive control allows one or more process
steps to be imperatively programmed in a JIL step. Reactive control reacts on stimuli or events by executing one or
more process steps. JIL reactive control recognizes four types of events related to product state, process state,
resource state and exceptions.

Little JIL [40] is a scaled down version of JIL. However, unlike JIL, Little JIL is a visual language. Some features from
JIL, such as events related to product states and data type model, are dropped in Little JIL. A software process
model is a tree of steps whose leaves represent the smallest specified unit of work and whose structure represents
the way in which this work will be coordinated. Little JIL provides four kinds of non-leaf step kinds called sequential,
try, parallel and choice, to capture process steps ordering.

Concurrent Software Process Language (CSPL) [9] is a PML that shares most of its syntax with object-oriented
ADA95. CSPL adopts a unique approach by in tegrating object-oriented ADA95 for its modeling support with UNIX
shell scripts for its enactment support. Besides the usual ADA95 syntax, CSPL adds special language constructs to
model software processes consisting of:

• Work assignment statement
• Communication-related statements
• Role unit
• Tool unit
• Relation unit

The work assignment statement allows assignment of work to multiple developers. Communication-related
statements allow synchronisation of tasks with other tasks. The role unit defines the mapping of a role to the

Process Modeling Languages: A Literature Review

33

developers. The tool unit specifies the tools needed to complete the tasks. The relation unit allows modeling of
dependency between artifacts.

Extended Visual Planning Language (EVPL) [21] is the PML derived from the Swenson’s Visual Planning Language
(VPL) [37]. VPL is originally developed to model the process and plan work for multiple collaborating users in the
CSCW community. EVPL extends VPL with new visual notation such as identifiers for process stages, representation
of role, artifact and tools, usage connection between process stages and roles, and various usage annotations to
indicate work context. Software processes are modeled in EVPL as work plans with a retrievable history of work. A
work plan consists of various stages with indication of roles, artifacts and tools used. EVPL’s work plan captures the
work context for the tasks in the form of tools and artifacts used in each stage, and communication and coordination
needed between stage roles.

Abstract Process Engine Language (APEL) [13] is a graphical high-level language designed to model a software
process and can be enacted by two commercial process engines, ADELE [6] and Process Weaver [18]. In APEL,
software process is described using Object Management Techniques-like diagrams, data flows, control flows,
workspaces and cooperation and roles, and state transition diagrams. APEL provides support for Goal Question
Metrics (GQM) model from the Quality Improvement Paradigm [5]. GQM is an approach for goal-oriented
measurement in software projects which support measurement of products and processes for further process
improvements. The GQM plan actually consists of a goal, questions related to the process model achieving the goal,
and metrics to quantify the questions.

Process Oriented Modeling and Enactment of Software Developments (PROMENADE) [34] concepts and techniques
have been influenced by UML. In PROMENADE, UML meta-model is extended to allow modeling of both the static
and the dynamic aspects of software processes. The static aspect of software processes is given by a conceptual
model that defines the elements that participate in a software process model. The dynamic aspect of software
processes consists of the way in which a model is enacted, such as the ordering of tasks. The process of building a
software process model in PROMENADE mainly consists of creating instances of the extended UML meta-model
class. In addition, PROMENADE introduces both proactive control-flow (enactment of some actions according to a
pre -establish plan) and reactive control-flow (enactment of some actions in response to events) mechanisms as
means to model the dynamic behaviour of the software processes.

5.0 DISCUSSION

The survey in Section 4.0 raises an old issue of whether to have a single large PML or more than one compatible
PMLs for different phases of the process lifecycle [11]. The vast majority of the work has opted for a single PML
supporting the design and implementation phase of the process lifecycle. As the survey illustrates, there has also
been work that uses more than one PMLs in different phases of the process lifecycle. It seems that PROMENADE is
the only language that attempts to cover all the phases of the process lifecycle in a single language. The question
remains unanswered since no single PML has claimed dominance for the modeling of software process.

While APEL has already integrated a form of measurement of the software process through GQM, which is an
informal experienced-based measurement, PMLs are still lacking in support for empirical evaluation such as software
metrics. Software metrics would allow effective quantitative comparison, for instance, of two software processes,
which are performing the same tasks. In fact, this finding is also consistent with the views of Fuggetta [19] and Zamli
and Lee [41].

Besides, the work of EVPL, PMLs have not fully exploited experience from other similar research areas such as
Computer Supported Cooperative Work (CSCW) and Workflow Management Systems (WFMS). In fact, we are
currently investigating an enactable PML, called VRPML, which exploits research in virtual environment particularly
Collaborative Virtual Environment (CVE), a subset of CSCW. Our work mainly concentrates on improving the human
dimension issues at the PML level.

While outsourcing of software is now common in the industry, it can be seen that PMLs are still lacking in support
for modeling and enactment of distributed software process across organisational boundary. This raises issues such
as security and rights to access shared artifacts, which could be explored.

Zamli

34

Application of the ideas in software process to open source development [36], such as Linux-like development, is
another exciting possible area of research. One reason is that open source development seems to need some notion
of guidance such as that of conventional software development process.

6.0 CONCLUSION

In summary, this article presents a survey of PMLs which highlights the current state of the art of the technology and
discusses the possible areas of research in the area of software process. The survey has also incorporated the
second generation PMLs, which previously have not been included in other surveys in the literature.

The contribution of second generation PMLs particularly PROMENADE, APEL, EVPL suggest areas of research
worth exploring such as the use of one or many PMLs, the application of software metrics and possible integration
with research in computer supported cooperative work (CSCW) and Workflow Management Systems (WFMS).
Other possible research areas also include open source and cross-organisational boundary developments.

REFERENCES

[1] V. Ambriola, R. Conradi and A. Fuggetta, “Assessing Process-Centered Software Engineering Environments”.

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 3, July 1997, pp. 283-328.

[2] S. Arbaoui and F. Oquendo, “PEACE: Goal-Oriented Logic -Based Formalism for Process Modeling”, in A.

Finkelstein, J. Kramer and B. Nuseibeh, eds., Software Process Modelling and Technology . Research Studies
Press, Taunton, England, 1994, pp. 249-278.

[3] M. Baldi, S. Gai, M. L. Jaccheri and P. Lago, “Object-Oriented Software Process Model Design in E3”, in A.

Finkelstein, J. Kramer and B. Nuseibeh, eds., Software Process Modelling and Technology. Research Studies
Press, Taunton, England, 1994, pp. 279-290.

[4] S. Bandinelli, A. Fuggetta, C. Ghezzi and L. Lavazza, “SPADE: An Environment for Software Process Analysis,

Design, and Enactment”, in A. Finkelstein, J. Kramer and B. Nuseibeh, eds., Software Process Modelling and
Technology . Research Studies Press, Taunton, England, 1994, pp. 223-247.

[5] V. R. Basili and H. D. Rombach, “The TAME Approach: Towards Improvement-Oriented Software

Environments”. IEEE Transactions on Software Engineering, Vol. 14, No. 6, June 1988, pp. 758-773.

[6] N. Belkhatir, J. Estublier and W. Melo, “ADELE-TEMPO: An Environment to Support Process Modelling and

Enaction”, in A.Finkelstein, J. Kramer and B. Nuseibeh, eds., Software Process Modelling and Technology.
Research Studies Press, Taunton, England, 1994, pp. 187-222.

[7] R. F. Bruynooghe, R. M. Greenwood, I. Robertson, J. Sa and B. C. Warboys, “PADM: Towards a Total Process

Modelling System”, in A. Finkelstein, J. Kramer and B. Nuseibeh, eds., Software Process Modelling and
Technology . Research Studies Press, Taunton, England, 1994, pp. 293-334.

[8] G. Canals, N. Boudjlida, J. C. Derniame, C. Godart and J. Lonchamp, “ALF: A Framework for Building Process-

Centered Software Engineering Environments”, in A. Finkelstein, J. Kramer and B. Nuseibeh, eds., Software
Process Modelling and Technology. Research Studies Press, Taunton, England, 1994, pp. 153-185.

[9] J. J. Chen, “CSPL: An Ada95-Like, Unix-Based Process Environment”. IEEE Transactions on Software

Engineering, Vol. 23, No. 3, March 1997, pp. 171-184.

[10] R. Conradi, M. Hagaseth, J. O. Larsen, M. N. Nguyen, B. P. Munch, P. H. Westby, W. Zhu, M. L. Jaccheri and

C. Liu, “EPOS: Object Oriented Cooperative Process Modeling”, in A. Finkelstein, J. Kramer and B. Nuseibeh,
eds., Software Process Modelling and Technology. Research Studies Press, Taunton, England, 1994, pp. 33-
64.

Process Modeling Languages: A Literature Review

35

[11] R. Conradi and C. Liu, “Process Modelling Languages: One or Many?”, in W. Schafer, ed., Proceedings of the
4th European Workshop on Software Process Technology (EWSPT-4), Noordwijkerhout, The Netherlands.
Lecture Notes in Computer Science, Vol. 913, Springer, April 1995.

[12] R. Conradi and M. J. Jaccheri, “Process Modelling Languages”, in J. C. Derniame, B. A. Kaba and D. Wastell,

eds., Software Process: Principles, Methodology and Technology. Lecture Notes in Computer Science, Vol.
1500, Springer, 1999, pp. 27-51.

[13] S. Dami, J. Estublier and M. Amiour, “APEL: A Graphical Yet Executable Formalism for Process Modeling”.

Automated Software Engineering , Vol. 5, No. 1, January 1998, pp. 61-96.

[14] W. Deiters and V. Gruhn, “Managing Software Processes in the Environment MELMAC”, in Proceedings of

the 4th ACM SIGSOFT Symposium on Software Development Environment , 1990, pp. 193-205.

[15] J. C. Derniame, B. A. Kaba and D. Wastell, eds. Software Process:Principles, Methodology and Technology .

Lecture Notes in Computer Science, Vol. 1500, Springer, 1999.

[16] G. Engels and L. Greonewegen, “SOCCA: Specification of Coordinated and Cooperative Activities”, in A.

Finkelstein, J. Kramer and B. Nuseibeh, eds. Software Process Modelling and Technology . Research Studies
Press, Taunton, England, 1994, pp. 71-102.

[17] X. Franch and J.M. Ribo, “Using UML for Modelling the Static Part of a Software Process”, in Proceedings of

2nd Unified Language Conference (UML’99). Lecture Notes in Computer Science, Vol. 1723, Fort Collins,
Colorado, USA, Springer, October 1999, pp. 292-307.

[18] C. Fernstrom, “Process Weaver: Adding Process Support to Unix”, in Proceedings of 2nd International

Conference on the Software Process, 1993, pp. 12-26,

[19] A. Fuggetta, “Software Process: A Roadmap”, in A. Finkelstein, ed., The Future of Software Engineering

(FOSE 2000) in Conjunction with the Proceedings of the 22nd International Conference on Software
Engineering (ICSE 2000), Limerick, Ireland. ACM Press, June 2000.

[20] P. Garg and M. Jazayeri, “Process Centered Software Engineering Environments: A Grand Tour”, in A.

Fuggetta and A. Wolf, eds. Trends in Software Process. John Wiley & Sons, 1996, pp. 25-49.

[21] J. C. Grundy and J. G. Hosking, “Serendipity: Integrated Environment Support for Process Modelling,

Enactment and Work Coordination”. Automated Software Engineering, Vol. 5, No. 1, January 1998, pp. 27-60.

[22] P. Heiman, G. Joeris, C. A. Krapp and B. Westfechtel, “DYNAMITE: Dynamic Task Nets for Software Process

Management”, in Proceedings of the 18th International Conference on Software Engineering, Berlin,
Germany. IEEE Computer Press, March 1996, pp. 331-341.

[23] K. E. Huff, “Software Process Modeling”, in A. Fuggetta and A. Wolf, eds. Trends in Software Process, John

Wiley & Sons, 1996, pp. 1-24.

[24] K. E. Huff and V. Lesser, “A Plan-Based Intelligent Assistant that Supports the Software Development

Process”, in Proceedings of the 3rd ACM Symposium on Practical Software Development Environments .
ACM Press 1988, pp. 97-106.

[25] W. S. Humprey, Managing Software Process. Addison Wesley, Reading, Mass, 1989.

[26] W. S. Humprey and M. I. Kellner, “Software Process Modeling: Principles of Entity Process Models”, in

Proceedings of the 11th International Conference on Software Engineering . IEEE Computer Press 1989, pp.
331-342.

Zamli

36

[27] D. Jager, A. Schleicher and B. Westfechtel, “Using UML for Software Process Modeling”, in Proceedings of
the Joint 7th European Software Engineering and Foundation of Software Engineering ESEC/FSE99,
Toulouse, France, 1999, pp. 91-108.

[28] G. Junkermann, B. Peuschel, W. Schafer and S. Wolf, “MERLIN: Supporting Cooperation in Software

Development Through a Knowledge-Based Environment”, in A. Finkelstein, J. Kramer and B. Nuseibeh, eds.
Software Process Modelling and Technology. Research Studies Press, Taunton, England, 1994, pp. 103-129.

[29] G. Kaiser, P. H. Feiler and S. S. Popovich, “Intelligent Assistance for Software Development and Maintenance”.

IEEE Software , No. 5, May 1988, pp. 40-49.

[30] T. Katayama, “A Hierarchical and Functional Software Process Description and its Enaction”, in Proceedings

of the 11th International Conference on Software Engineering, Pittsburgh, Pensylvania, USA. IEEE
Computer Press, March 1989, pp. 343-352.

[31] C. Montangero and V. Ambriola, “OIKOS: Constructing Process-Centred SDEs”, in A. Finkelstein, J. Kramer

and B. Nuseibeh, eds. Software Process Modelling and Technology. Research Studies Press, Taunton,
England, 1994, pp. 335-353.

[32] Software Process Engineering Management, “The Unified Process Model (UPM)”, Document Number ad/2000-

05-05, May 12, 2000.
 http://www.omg.org

[33] I. Podnar, B. Mikac and A. Caric, “SDL Based Approach to Software Process Modeling”, in R. Conradi, ed.,

Proceedings of 7th European Workshop on Software Process Technology (EWSPT 2000), Kaprun, Austria,
Springer, February 2000, pp. 190-202.

[34] J. M. Ribo and X. Franch, “PROMENADE: A PML Intended to Enhance Standarization, Expressiveness and

Modularity in Software Process Modelling”. Research Report LSI-00-34-R, Llenguatges I Sistemes
Informatics, Politechnical of Catalonia, 2000.

[35] J. Rumbaugh, I. Jacobson and G. Booch, The UML Reference Manual. Addison Wesley, 1999.

[36] S. Mc Connel, “Open Source Methodology”. IEEE Software , Vol. 4, July/August 1999, pp. 6-8.

[37] S. Sutton Jr., D. Heimbigner and L. J. Osterweil, “APPL/A: A Language for Software Process Programming”.

ACM Transaction on Software Engineering Methodology, Vol. 4, No. 3, July 1995, pp. 221-286.

[38] S. Sutton Jr. and L. J. Osterweil, “The Design of a Next-Generation Process Language”, in Proceedings of the

Joint 6th European Software Engineering Conference and the 5th ACM SIGSOFT Symposium on the
Foundation of Software Engineering ESEC/FSE’97. Lecture Notes in Computer Science, Vol. 1301, Springer,
1997, pp. 142-158.

[39] K. D. Swenson, “A Visual Language to Describe Collaborative Work”, in Proceedings of the 1993 Symposium

on Visual Languages, Bergen, Norway. IEEE Computer Science Press, 1993, pp. 298-303.

[40] A. Wise, “Little JIL 1.0 Language Report”. Technical Report 98-24, Department of Computer Science,

University of Massachusetts at Amherst, April 1998.

[41] K. Z. Zamli and P. A. Lee, “Taxonomy of Process Modeling Languages”, in Proceedings of ACS/IEEE

International Conference on Computer Systems and Applications AICCSA 2001 , Beirut, Lebanon. IEEE
Computer Science Press, June 2001.

Process Modeling Languages: A Literature Review

37

BIOGRAPHY

Kamal Zuhairi Zamli obtained his BSc in Electrical Engineering from Worcester Polytechnic Institute, USA in 1992,
and his MSc in Real Time Software Engineering from the Centre For Advanced Software Engineering, Universiti
Teknologi Malaysia in 1999. He is currently a PhD candidate at the University of Newcastle upon Tyne, UK. His
research areas include Software Process, Software Engineering and Object-Oriented Analysis and Design. He has
published a number of papers related to these areas.

