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ABSTRACT 

 
An important aim of a database system is to guarantee database consistency, which means that the data contained 
in a database is both accurate and valid.  Integrity constraints represent knowledge about data with which a 
database must be consistent.  The process of checking constraints to ensure that update operations or transactions 
which alter the database will preserve its consistency has proved to be extremely difficult to implement, particularly 
in a distributed database.  In this paper, we describe an enforcement algorithm based on the rule mechanisms for a 
distributed database which aims at minimising the amount of data that has to be accessed or transferred across the 
underlying network by maintaining the consistency of the database at a single site, i.e. at the site where the update is 
to be performed.  Our technique referred to as the integrity test generation, derives global and local integrity rules 
has effectively reduced the cost of constraint checking in a distributed environment. 
 
Keywords: Distributed Database, Integrity Constraints, Integrity Constraint Enforcement 
 
 
1.0 INTRODUCTION 
 
Guaranteeing database consistency has been an important issue in centralised databases over the last decade and, not 
surprisingly, much attention has been paid to the maintenance of integrity in these systems.  Although this research 
effort has yielded fruitful results that have given centralised systems a substantial level of reliability and robustness 
with respect to the integrity of their data, today’s DBMS technology still offers limited support for the automated 
verification of constraint satisfaction and enforcement.  The crucial problem is the difficulty of devising an efficient 
generalised algorithm for enforcing database integrity against updates.  The growing complexity of modern database 
applications plus the need to support multiple users has further increased the need for a powerful and efficient 
enforcement strategy to be incorporated into these systems.  Most of the approaches proposed for improving the 
efficiency of constraint checking are not suited to a distributed database environment.  Moreover, devising an 
efficient algorithm for enforcing database integrity against updates is extremely difficult to implement and can lead 
to prohibitive processing costs in a distributed environment [8, 9]. 
 
In the literature, three approaches for guaranteeing database consistency have been reported.  In the first approach, 
the responsibility for ensuring the consistency of the database when a transaction occurs is part of the transaction 
design process.  The transaction designers are responsible for ensuring that transactions are safe: i.e. when executed, 
the transactions are guaranteed to bring the database from one consistent state to another.  Consequently, 
transactions can get very complex and a transaction design tool is usually incorporated into the system to assist 
designers to construct safe transactions.  In the second approach, transactions have integrity tests embedded in them 
to perform the necessary integrity checking.  The modified transactions can then be executed by standard transaction 
facilities.  This approach is based on the query modification1 and transaction modification strategies, where an 
arbitrary query or transaction that may violate the integrity of a database is modified, such that the execution of the 
modified query or transaction is sure to leave the database in a consistent state.  This is the case in the SABRE [9] 
and the PRISMA [2] projects.  In the third approach, integrity tests are general rather than transaction-specific and 
thus, no knowledge of the internal structure of a transaction is required.  Typically, this approach requires rule 
mechanisms to implement integrity constraint enforcement.  This approach is employed by the Starburst project [1] 
and the latest versions of commercial DBMSs such as INGRES and ORACLE. 
 

                                                 
1 The term query here denotes a request that requires changes to the database state. 
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In [4], we introduced an integrity constraint subsystem for a distributed database (SICSDD) that we have developed. 
By database distribution, we mean that a collection of data which belongs logically to the same system is physically 
spread over the sites (nodes) of a computer network where inter-site data communication is a critical factor affecting 
the system’s performance.  The integrity enforcement utilized by the SICSDD subsystem is based on the rule 
mechanism.  This approach is adopted because: 

(i) the integrity tests employed are not fixed at compile time and thus, tests can be selected from 
alternatives according to conditions in the database at run time – this flexibility leads to greater 
efficiency which is desirable for a distributed database; 

(ii) logical independence between update operations and integrity constraints is supported, as the binding 
between them is deferred until an update is submitted – this leads to better constraint optimization 
particularly for distributed constraints; and 

(iii) the users no longer have to worry about consistency preservation, as this is supported by the 
subsystem.  Integrity in the SICSDD subsystem is maintained by fully exploiting the available 
information at a target site.  In our work, knowledge about the database application is exploited to (i) 
derive a set of simplified constraints that can be straightforwardly used for constructing efficient 
enforcement algorithms, and (ii) infer the information stored at different sites and so minimize the 
support from remote sites required during the evaluation of these constraints. 

 
This paper proposes an algorithm for deriving efficient distributed integrity rules for maintaining semantic integrity 
in a distributed database.  The main property of the proposed algorithm is that it minimises remote access and so 
minimises the communication costs as each integrity rule is allocated to a site or minimal number of sites to exclude 
irrelevant sites from the computation of certain rules.  Also, the derived distributed rules are simpler and easier to 
evaluate than the initial constraints as they are evaluated over minimal fragments of relations and so involve less 
data access.  This paper is organised as follows.  In Section 2, the basic definitions, notations and examples which 
are used in the rest of the paper are set out.  In Section 3, we discuss the techniques used for enforcing integrity 
constraints.  The integrity rule generation technique adopted by SICSDD is discussed in Section 4.  Conclusions and 
further research are presented in the final Section 5. 
 
 
2.0 PRELIMINARIES 
 
Our approach has been developed in the context of relational databases, which can be regarded as consisting of two 
distinct parts, namely: an intentional part and an extensional part.  A database is described by a database schema, D, 
which consists of a finite set of relation schemas, <R1, R2, …, Rm>.  A relation schema is denoted by R(A1, A2, …, 
An) where R is the name of the relation (predicate) with n-arity and Ai’s are the attributes of R.  Let dom(Ai) be the 
domain values for attributes Ai.  Then, an instance of R is a relation R which is a finite subset of Cartesian product 
dom(A1) x…x dom(An).  A database instance is a collection of instances for its relation schemas.  A relational 
distributed database schema is described as a quadruple (D, IC, FR, AS), where IC is a finite set of integrity 
constraints, FR is a finite set of fragmentation rules and AS is a finite set of allocation schemas. 
 
Database integrity constraints are expressed in prenex conjunctive normal form with the range restricted property 
[6].  A conjunct (literal) is an atomic formula of the form R(u1, u2, …, uk), where R is a k-ary relation name and each 
ui is either a variable or a constant.  A positive atomic formula (positive literal) is denoted by R(u1, u2, …, uk) whilst 
a negative atomic formula (negative literal) is prefixed by ¬.  An (in)equality is a formula of the form u1 OP u2 
(prefixed with ¬ for inequality) where both u1 and u2 can be constants or variables and OP ∈ {<, ≤, >, ≥, ≠, =}. 
 
A set of fragmentation rules, FR, specifies the set of restrictions, Ci, that must be satisfied by each fragment Ri.  
These rules introduce a new set of integrity constraints and therefore, have the same notation as IC.  For simplicity, 
we will consider horizontal fragmentation only.  We assume that the fragmentation of relations satisfies the 
completeness, the disjointness and the reconstructability properties [7].  An allocation schema locates a fragment, Ri, 
to one or more sites.  Throughout this paper the same example company database is used, as given in Fig. 1. 
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Fig. 1: The Company Static Integrity Constraints 
 
 
3.0 INTEGRITY ENFORCEMENT TECHNIQUES 
 
A database state D is said to be consistent if and only if it satisfies the set of integrity constraints, IC, denoted by D 
|= IC.  A database state D may change into a new state Du when it is updated either by a single update operation or 
by a sequence of updates (transaction), u.  If a constraint is false in the new state, i.e. Du is inconsistent, the 
enforcement mechanism can either perform compensatory actions to produce a new consistent state D’u, or restore D 
by undoing u.  This is shown in Fig. 2, where the set of constraints IC partitions the space of possible states into two 
distinct regions, namely: a legal region where all constraints in IC are satisfied, and an illegal region where one or 
more constraints in IC are violated.  The initial state of a database is assumed to be in the legal region and an update 
u which falsifies one of the constraints leads to a state in the illegal region.  The dashed line (i) in the figure is the 
process of undoing the update operation u, and the dashed line (ii) is the process of bringing the database from this 
illegal state to a legal state by performing compensatory actions.  An additional requirement is that the final state 
reached by compensating a faulty update operation be chosen within a subspace of states which are as compliant as 
possible with the original intention of the user who issued the update. 
 
The process described above is known as integrity constraint enforcement and consists of the following steps: 
(i) generate the integrity tests, which are queries composed from the integrity constraints and the update 

operations; 
(ii) run these queries against the database; and 
(iii) depending on the result of the queries, trigger the appropriate actions to make the database consistent.  Steps 

(i) and (ii) here, which check whether all the integrity constraints of the database are satisfied, are referred to 
as integrity checking and can be considered under two broad headings, namely: detection methods and 
prevention methods [9]. 

 

Schema: 
emp(eno, dno, ejob, esal);   
dept(dno, dname, mgrno, mgrsal);   
proj(eno, dno, pno); 
Integrity Constraints (Global Constraints): 
‘A specification of valid salary’ 
IC-1: (∀w∀x∀y∀z)(emp(w, x, y, z) → (z > 0)) 
‘Every employee has a unique eno’ 
IC-2: (∀w∀x1∀x2∀y1∀y2∀z1∀z2)(emp(w, x1, y1, z1) Λ emp(w, x2, y2, z2) → (x1 = x2) Λ (y1 = y2) Λ (z1= 
z2)) 
‘Every department has a unique dno’ 
IC-3: (∀w∀x1∀x2∀y1∀y2∀z1∀z2)(dept(w, x1, y1, z1) Λ  dept(w, x2, y2, z2) → (x1 = x2) Λ (y1 = y2) Λ (z1 = 
z2)) 
‘The dno of every tuple in the emp relation exists in the dept relation’ 
IC-4: (∀t∀u∀v∀w∃x∃y∃z)(emp(t, u, v, w)  → dept(u, x, y, z)) 
 ‘Every manager in dept ‘D1’ earns > £4000’ 
IC-5: (∀w∀x∀y∀z)(dept(w, x, y, z) Λ (w = ‘D1’) → (z > 4000)) 
 ‘Every employee must earn ≤ to the manager in the same department’ 
IC-6: (∀t∀u∀v∀w∀x∀y∀z)(emp(t, u, v, w) Λ dept(u, x, y, z) → (w ≤ z)) 
‘Any department that is working on a project P1 is also working on project P2’ 
IC-7: (∀x∀y∃z)(proj(x, y, P1) → proj(z, y, P2)) 
Fragmentation Rules:   
FR-1: (∀w∀x∀y∀z)(emp1(w, x, y, z) → (z > 0)  Λ (z ≤ 10000)) 
FR-2: (∀w∀x∀y∀z)(emp2(w, x, y, z) → (z > 10000))   
FR-3: (∀w∀x∀y∀z)(dept1(w, x, y, z) → (w = ‘D1’)) 
FR-4: (∀w∀x∀y∀z)(dept2(w, x, y, z) → (w = ‘D2’))
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Fig. 2: A Pictorial View of Integrity Constraint Enforcement 
 
The detection methods, which are based upon the concept of post-tests, allow an update u to be executed on a 
database state D, which changes it to a new state Du, and when an inconsistent result is detected undo this update.  
An improvement to the detection method would be to prevent the introduction of inconsistencies in the database.  
This is achieved by prevention methods, which are based upon the concept of pre-tests.  These allow an update to be 
executed only if it changes the database state to a consistent state.  Due to the inefficiency resulting from post-
testing, the more recent integrity control strategies are based on pre-tests [5, 9]. 
 
For a distributed database, integrity constraint checking methods can be classified under two further headings, 
namely: global methods and local methods.  Global methods which are based upon the concept of global tests, 
perform constraint checking by accessing data at remote sites, whilst local methods which are based upon the 
concept of local tests, perform constraint checking by accessing data at the local site.  This is shown in Fig. 32.  The 
set of constraints IC partitions the space of possible states into two distinct regions, namely: a legal region and an 
illegal region.  Within the legal region is a local legal region where all constraints in IC are proven to be satisfied by 
utilising the information stored in this region.  Outside this boundary, the set of constraints can either be satisfiable 
if the database state falls in the legal region or unsatisfiable if the database state falls in the illegal region.  With 
respect to the local legal region, three cases can be considered: 

(i) the update operation u1 brings a database state D1 to a new consistent state D1u1 which is in the same 
local legal region3; 

(ii) the update operation u2 brings a database state D2 to a new consistent state D2u2 which cannot be proven 
to be consistent by the information available in the local legal region; and 

(iii) the update operation u3 brings a database state D3 to a new state D3u3 which is in the illegal region.  
 
 
 
 
 
 

 
 
 
 
 

 
 

Fig. 3: A Pictorial View of Integrity Constraint Enforcement in Distributed Databases 
 
The integrity tests that are evaluated to verify the consistency of a database within the local legal region are referred 
to as local tests.  Since these tests can only identify a subset of legal states (i.e. tests which are sufficient), alternative 
tests are required, namely those that are evaluated outside the boundary of this local legal region.  These tests are 
referred to as global tests.  Thus, in a distributed database, four types of integrity tests can be identified.  They are 
global post-tests, local post-tests, global pre-tests and local pre-tests.  These tests should possess at least one of the 
properties mentioned in [5], namely: sufficient, complete and necessary.  An integrity test has the sufficiency 
property if when the test is satisfied, this implies that the associated constraint is satisfied and thus, the update 

                                                 
2 Figure is based on the observation of sufficient tests. 
3 The initial state D1 can also be a legal state outside the local legal region.  
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operation is safe with respect to the constraint.  An integrity test has the necessity property if when the test is not 
satisfied, this implies that the associated constraint is violated and thus, the update operation is unsafe with respect 
to the constraint.  An integrity test has the completeness property if the test has both the sufficiency and the 
necessity properties.  The classification of integrity tests in distributed databases is summarized in Table 1.  For a 
more precise example, consider the referential integrity constraint and the insert operation given in Table 2.  Assume 
that both relations emp and dept are allocated to different sites of the network.  If the test is not satisfied, then the 
enforcement mechanism can either undo the insert operation or perform a compensatory action. 
 

Table 1: Classification of Integrity Tests in Distributed Databases 
 

Integrity Test Based on 
Region 

Integrity Test Based on 
Detection/Prevention Methods 

Integrity Test Based on its 
Properties 

Global Test 
- spans remote sites 

Post-Test 
- evaluated after an update is performed 

 
 

Pre-Test 
- evaluated before an update is performed 

Sufficient Test 
Necessary Test 
Complete Test 

 
Sufficient Test 
Necessary Test 
Complete Test 

Local Test 
- spans local sites 

Post-Test 
- evaluated after an update is performed 

 
 

Pre-Test 
- evaluated before an update is performed 

Sufficient Test 
Necessary Test 
Complete Test 

 
Sufficient Test 
Necessary Test 
Complete Test 

 
 

Table 2: Examples of Integrity Tests in a Distributed Database 
 

IC-4 (∀t∀u∀v∀w∃x∃y∃z)(emp(t, u, v, w)  → dept(u, x, y, z)) 
Update Operation insert(emp(a, b, c, d)) 
Complete Global Post-Test (∃x∃y∃z)(dept(b, x, y, z)) 
Sufficient Local Post-Test (∃t∃v∃w)(emp(t, b, v, w) Λ (t ≠ a)) 
Complete Global Pre-Test (∃x∃y∃z)(dept(b, x, y, z)) 
Sufficient Local Pre-Test (∃t∃v∃w)(emp(t, b, v, w)) 

 
The choice between the range of possible tests depends on many criteria such as the application domain, 
performance requirements, the nature of the database system, etc.  Because the input-output volume is generally the 
most critical factor that influences the performance of the enforcement mechanisms [9] in both centralised databases 
and distributed databases, most approaches associated with deriving improved integrity tests concentrate on 
techniques which construct tests that reduce the amount of data accessed during integrity checking.  For a distributed 
database, techniques that construct tests that avoid remote reads and transfer of information across the network also 
seem attractive.  Local pre-tests seem more effective to us than other types of test since: 

(i) only a single site is involved in evaluating the local pre-tests; 
(ii) as they are evaluated at a target site, this avoids remote reading and the amount of data transferred 

across the network during integrity enforcement is minimized – in fact, no data transfer across the 
network is required [3]; and 

(iii) they are evaluated before the update is performed, which avoids the need to undo an update in the event 
of constraint violation and thus, reduces the overhead cost of checking integrity. 
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4.0 INTEGRITY RULE GENERATION TECHNIQUE 
 
The high execution cost of constraint enforcement is one of the major problems in the field of constraint handling.  
This cost can be substantially reduced not only by applying an efficient enforcement strategy but also by generating 
a good set of integrity constraints.  The techniques incorporated into our system seek to derive efficient sets of 
fragment constraints4 and a range of possible local tests.  Here, ‘efficient’ means a set of fragment constraints which 
is semantically equivalent to the initial set, does not contain any semantically or syntactically redundant 
constructs/constraints, eliminates any constraints which contradict already existing constraints/rules, and contains 
constraints that are either more local (less distributed) or entirely local when compared to the initial set.  Our 
techniques are identified as constraint preprocessing and constraint distribution techniques.  A full description of 
these techniques can be found in [4].  Fig. 4 lists the sets of fragment constraints derived after applying the 
constraint preprocessing techniques to the initial constraints of Fig. 1.  Each FC-i is a semantically equivalent set of 
IC-i. 
 
Once integrity constraints have been specified for a database and their semantically equivalent sets of fragment 
constraints have been derived, maintaining a database’s integrity whenever the database state changes to a new state 
involves checking that these constraints are not violated by the operations that caused the transition.  Two types of 
information are required, namely: (i) when to enforce constraints, and (ii) what to do when a constraint is violated by 
the database.  Thus, a more operational form of an integrity constraint is required.  This form is called an integrity 
rule.  In our language, an integrity rule has the following template: 
 WHEN triggering operation 
 IF NOT integrity test 
 THEN then-action 
 [ELSE else-action]  
 
 
 
 
 
 
 

 
 
 
 
 

 
Fig. 4: The Sets of Fragment Constraints derived by the Constraint Preprocessing Techniques 

 
A rule is triggered when its triggering operation is verified by some database modification.  Once a rule is triggered, 
the integrity test is checked.  This is the test generated by our simplification methods.  An integrity rule is a global 
rule (local rule, respectively) if the test specified in the rule is a global test (local test, respectively).  If a test is not 
satisfied, an action is executed.  The action of a local rule consists of two parts, namely: the THEN part, which is 
performed when the test is not satisfied; and the ELSE part, which is performed when the test is satisfied.  The 
technique employed in our work to derive the integrity rules is called the integrity rule generation technique which 
consists of the three steps described in the following subsections. 
 
4.1 Constructing Update Templates 
 
The first step of the integrity rule generation process is the construction of the update templates, U which is 
performed by the update_analysis_procedure.  By analyzing each fragment constraint, syntactically, the 
update_analysis_procedure derives all possible update operations, U, that might violate the constraint.  Given a 
constraint specified in prenex conjunctive normal form, the update theorems specify the update operations that will 
never violate the constraint.  The proofs of these theorems can be found in [5, 6] and are therefore omitted here. 

                                                 
4 A fragment constraint is a constraint which is specified over fragments of relations. 
 

FC-11: (∀w∀x∀y∀z)(emp1(w, x, y, z) → (z > 0)  Λ  (z ≤ 10000))  
FC-12: (∀w∀x∀y∀z)(emp2(w, x, y, z) → (z > 10000)) 
FC-2: Λ2

i=1 (∀w∀x1∀x2∀y1∀y2∀z1∀z2)(empi(w, x1, y1, z1) Λ empi(w, x2, y2, z2) → (x1 = x2) Λ (y1 = y2) Λ 
(z1= z2)) 
FC-3: Λ2

i=1 (∀w∀x1∀x2∀y1∀y2∀z1∀z2)(depti(w, x1, y1, z1) Λ depti(w, x2, y2, z2) → (x1 = x2) Λ (y1 = y2) Λ 
(z1 = z2)) 
FC-4: Λ2

i=1V2
j=1 (∀t∀u∀v∀w∃x∃y∃z)(empi(t, u, v, w) → deptj(u, x, y, z)) 

FC-5: (∀w∀x∀y∀z)(dept1(w, x, y, z) → (z > 4000)) 
FC-6: Λ2

i=1 Λ2
j=1 (∀t∀u∀v∀w∀x∀y∀z)(empi(t, u, v, w) Λ deptj(u, x, y, z) → (w ≤ z)) 

FC-7: (∀x∀y∃z)(proj1(x, y, P1) → proj2(z, y, P2)) 
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These theorems are as follows: 
 
Theorem 1:  Whenever an update operation is dealing with the extension of a relation R, integrity constraints in 
which R does not occur are unaffected.  In other words, an update operation on a relation R will not violate 
constraints in which R has no occurrences. 
 
Theorem 2:  Integrity constraints which do not contain R in a negated atomic formula are unaffected when a tuple is 
inserted into the extension of R.  In other words, an insert operation on a relation R will not violate constraints in 
which R has no negative occurrences. 
 
Theorem 3:  Integrity constraints which do not contain R in a non-negated atomic formula are unaffected when a 
tuple is deleted from the extension of R.  In other words, a delete operation on a relation R will not violate 
constraints in which R has no positive occurrences. 
 
The derivation of a set of update templates from an integrity constraint specified in prenex conjunctive normal form 
is performed by a simple syntactical analysis of the constraint.  From the update theorems above, the following can 
be concluded: 
• For each negative occurrence of a relation R with n-arity in IC, an insert template, insert(R(t1, t2, …, tn)) is 

generated where ti is a generic constant corresponding to the attribute Ai of the relation R (from Theorem 2). 
• For each positive occurrence of a relation R with n-arity in IC, a delete template, delete(R(t1, t2, …, tn)) is 

generated where ti is a generic constant corresponding to the attribute Ai of the relation R (from Theorem 3). 
 
Fig. 5 illustrates the update_analysis_procedure.  The procedure produces a set of update templates for a given 
constraint.  It recursively traverses the literals of a constraint, and adds the appropriate update template to the 
resulting update template set whenever it encounters a literal which represents a relation.  The resulting update 
templates set does not contain duplicate operations. 
 

Given an integrity constraint IC-i in prenex conjunctive normal form  
LET Update_SetIC-i = { } 
FOR each occurrence of a relation R with n-arity in IC-i DO 
BEGIN 
         IF ¬R (the negative occurrence of the relation R in IC-i) 
         THEN Update_SetIC-i = Update_SetIC-i ∪ insert(R(t1, t2, …, tn)) 
         IF R (the positive occurrence of the relation R in IC-i) 
         THEN Update_SetIC-i = Update_SetIC-i ∪ delete(R(t1, t2, …, tn)) 
END 

 
Fig. 5:  The Update_analysis_procedure 

 
Example: Consider the sets of fragment constraints, FC-4, of Fig. 4.  The possible update templates generated by the 
update_analysis_procedure are: (∪2

i=1insert(empi(a, b, c, d))) ∪ (∪2
i=1delete(depti(a, b, c, d))) where a, b, c and d are 

generic constants. 
 
4.2 Generating the Integrity Tests 
 
The second step in the integrity rule generation process is to derive the integrity test, T, or the simplified forms of 
the integrity constraints which is performed by the integrity_test_generation_procedure.  The procedure consists of 
two algorithms.  The algorithm employed to generate local pre-tests is referred to as Algorithm-B. It is a 
modification of the algorithm proposed in [6], which is referred to as Algorithm-A.  The difference between them is 
that the tests produced by our algorithm is local pre-tests, while the tests produced by [6] are either global or local 
post-tests.  Both algorithms are based on syntactic criteria and use the substitution, subsumption and absorption rules 
to generate integrity tests.  The derivation of sets of integrity tests from a given integrity constraint specified in 
prenex normal form and its associated set of update templates is performed by employing both Algorithm-A and 
Algorithm-B.  A full description of these algorithms can be found in [4].  Fig. 6 illustrates the 
integrity_test_generation_procedure.  For a given integrity constraint and its associated set of update operations (i.e. 
the update templates which are generated automatically by the update_analysis_procedure as presented in Section 
4.1), the integrity_test_generation_procedure produces sets of integrity tests which can be global and local tests. 
This procedure takes an integrity constraint, IC-i, and its respective update operation, Uj, and generates a set of 
global and/or local post-tests (shown by Test_SetUj (Algorithm-A) in Fig. 6) by applying the Algorithm-A and a set 
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of local pre-tests (shown by Test_SetUj (Algorithm-B) in Fig. 6) by applying the Algorithm-B.  The resulting set of 
tests does not contain any duplicate tests.  This process is repeated for each of the update operations associated to 
IC-i. 
 

Given an integrity constraint IC-i in prenex conjunctive normal form 
LET Update_SetIC-i = {U1, U2, …, Un} 
FOR each Uj in Update_SetIC-i DO 
BEGIN 
         LET Test_SetUj = {} 
         APPLY Algorithm-A to IC-i and Uj to generate Test_SetUj (Algorithm-A) 
         APPLY Algorithm-B to IC-i and Uj to generate Test_SetUj (Algorithm-B) 
         Test_SetUj = Test_SetUj ∪ Test_SetUj (Algorithm-A) 
         Test_SetUj = Test_SetUj ∪ Test_SetUj (Algorithm-B) 
END 

 
Fig. 6: The Integrity_test_generation_procedure 

 
Example: Consider the sets of fragment constraints, FC-4, of Fig. 4 and the possible update templates generated 
above.  The integrity tests generated by the integrity_test_generation_procedure are in Table 3. 
 

Table 3: Generation of integrity tests 
 

Update Algorithm-A Algorithm-B 
V2

i=1insert(empi(a, b, c, d)) V2
j=1(∃x∃y∃z)(deptj(b, x, y, z)) 

FC-4 is violated if the dno b 
does not exist in any of the 
fragments deptj. 

(∃t∃v∃w)(empi(t, b, v, w)) 
The existence of dno b can be derived from 
empi if there exists at least one employee who 
is currently working in that department. 

V2
i=1delete(depti(a, b, c, d)) Λ2

j=1(∀t∀v∀w)(⌐empj(t, a, v, 
w)) 
FC-4 is violated if there exists at 
least one employee who is 
working in dno a. 

(∃x∃y∃z)(depti(a, x, y, z) Λ (y ≠ null) Λ (y ≠ 
c)) 
If a null value is not permitted in the system, 
and if the dno a exists in the depti, this implies 
that there is a manager who is currently 
working in depti. 

 
4.3 Deriving the Violation Actions 
 
The third step in the integrity rule generation process is to derive the appropriate violation action, A, for a given 
integrity constraint and its associated update operation which is performed by the violation_action_procedure.  In 
deriving the violation actions, the constraint designer is involved in choosing an action, Ai, to be taken when the test, 
Ti, does not hold.  The constraint designer is required to specify an action only when a global rule or a local rule 
whose test is derived by Algorithm-A is involved.  The action for this rule can be one of the following: 
• Reject the requested update operation – by means of an ABORT statement. 
• Initiate corrective/compensating action – by means of another sequence of data manipulation operations. 
 
For a local rule derived by Algorithm-B, the action, A, to be taken is system generated which can be one of the 
following: 
• Reject the requested update operation – by means of an ABORT statement. 
• Invoke a global integrity rule – by specifying the integrity rule name. 
 
In practice, the action in a global rule or local rule (Algorithm-A) is specified as ABORT and the action in a local 
rule (Algorithm-B) is specified with the appropriate global rule name.  The selection of these actions is sufficient to 
produce a consistent database state.  The integrity rules generated by the integrity rule generation technique for the 
sets of fragment constraints given in Fig. 4 are as shown in Table 4 where GR-FC-i and LR-FC-i are a global rule 
and a local rule, respectively.  As specified in the rules, the action of the global rule GR-FC-i in case of constraint 
violation is either to abort the update operation or to initiate corrective/compensating action while the action of the 
local rule LR-FC-i when the local test is not satisfied is to invoke the global rule GR-FC-i.  
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Table 4: The Integrity Rules derived by the Integrity Rule Generation Technique with respect to the Fragment 
Constraints given in Fig. 4 

 
FC Global Integrity Rule, GR-FC-i Local Integrity Rule, LR-FC-i 
FC-11 - WHEN insert(emp1(a, b, c, d)) 

IF NOT (d > 0) Λ (d ≤ 10000) THEN abort; 
FC-12 - WHEN insert(emp2(a, b, c, d)) 

IF NOT (d > 10000) THEN abort; 
FC-2 WHEN V2

i=1insert(empi(a, b, c, d)) 
IF NOT Λ2

j=1(∀x∀y∀z)(⌐empj(a, x, y, z) V (x ≠ b) 
V (y ≠ c) V (z ≠ d)) THEN abort;  or 
WHEN V2

i=1insert(empi(a, b, c, d)) 
IF NOT Λ2

j=1(∀x∀y∀z)(⌐empj(a, x, y, z) V (x ≠ b) 
V (y ≠ c) V (z ≠ d))  
THEN Λ2

j=1delete(∀x∀y∀z)(empj(a, x, y, z) Λ (x ≠ 
b) Λ  (y ≠ c) Λ (z ≠ d)); 

WHEN V2
i=1insert(empi(a, b, c, d)) 

IF NOT (∀x∀y∀z)(⌐empi(a, x, y, z)) 
THEN abort  ELSE GR-FC-2; 

FC-3 - WHEN V2
i=1insert(depti(a, b, c, d)) 

IF NOT (∀x∀y∀z)(⌐depti(a, x, y, z)) THEN abort;  
or 
WHEN V2

i=1insert(depti(a, b, c, d)) 
IF NOT (∀x∀y∀z)(⌐depti(a, x, y, z) V (x ≠ b) V (y 
≠ c) V (z ≠ d)) 
THEN delete(∀x∀y∀z)(depti(a, x, y, z) Λ (x ≠ b) Λ  
(y ≠ c) Λ (z ≠ d)); 

FC-4(a) 
 
 
 
 
 
FC-4(b) 
 

WHEN V2
i=1insert(empi(a, b, c, d)) 

IF NOT V2
j=1(∃x∃y∃z)(deptj(b, x, y, z))  

THEN abort; or 
WHEN V2

i=1insert(empi(a, b, c, d)) 
IF NOT V2

j=1(∃x∃y∃z)(deptj(b, x, y, z)) 
THEN V2

j=1insert(deptj(b, null, null, null)); 
WHEN V2

i=1delete(depti(a, b, c, d)) 
IF NOT Λ2

j=1(∀t∀v∀w)(⌐empj(t, a, v, w))  
THEN abort; or 
WHEN V2

i=1delete(depti(a, b, c, d)) 
IF NOT Λ2

j=1(∀t∀v∀w)(⌐empj(t, a, v, w)) 
THEN Λ2

j=1delete(∀t∀v∀w)(empj(t, a, v, w)); 

WHEN V2
i=1insert(empi(a, b, c, d)) 

IF NOT (∃t∃v∃w)(empi(t, b, v, w))  
THEN GR-FC-4(a); 
 
 
 
WHEN V2

i=1delete(depti(a, b, c, d)) 
IF NOT (∃x∃y∃z)(depti(a, x, y, z) Λ (y ≠ null) Λ (y 
≠ c)) 
THEN GR-FC-4(b); 

FC-5 - WHEN insert(dept1(a, b, c, d)) 
IF NOT d > 4000 THEN abort; 

FC-6 WHEN V2
i=1insert(empi(a, b, c, d)) 

IF NOT Λ2
j=1(∀x∀y∀z)(⌐deptj(b, x, y, z) V (d ≤ z)) 

THEN abort; 

WHEN V2
i=1insert(empi(a, b, c, d)) 

IF NOT (∃t∃v∃w)(empi(t, b, v, w) Λ (w ≤ d)) 
THEN GR-FC-6; 
 

FC-7(a) 
 
FC-7(b) 

WHEN insert(proj1(a, b, P1)) 
IF NOT (∃z)(proj2(z, b, P2)) THEN abort; 
WHEN delete(proj2(a, b, P2)) 
IF NOT (∀x)( ⌐proj1(x, b, P1)) THEN abort;  or 
WHEN V2

i=1delete(proj2(a, b, P2)) 
IF NOT (∀x)( ⌐proj1(x, b, P1)) 
THEN delete(∀x)( proj1(x, b, P1)); 

WHEN insert(proj1(a, b, P1)) 
IF NOT (∃z)(proj1(z, b, P1)) THEN GR-FC-7(a); 
WHEN delete(proj2(a, b, P2)) 
IF NOT (∃z)(proj2(z, b, P2) Λ (z ≠ a))  
THEN GR-FC-7(b); 

 
Note: a, b, c and d are generic constants. 
 
To detect the existence of cyclic compensating actions, a triggering graph is constructed.  The nodes of the graph 
correspond to the integrity rules in the set.  If the execution of an integrity rule, IR-i’s action can trigger integrity 
rule IR-j (i ≠ j) then a directed edge from node IR-i to node IR-j is constructed.  An infinite action is identified when 
a cycle in the graph is detected, i.e. a cycle is a path through the triggering graph in which a given integrity rules 
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appears more than once.  This is corrected by modifying the actions in the relevant rules appropriately.  Example of 
cyclic actions is as follows: 

IR-1:  WHEN u1 IF NOT Test_u1 THEN u2; 
IR-2: WHEN u2 IF NOT Test_u2 THEN u1; 

 
Fig. 7 illustrates the violation_action_procedure which verifies if a cyclic compensating action has occurred.  To 
check if an action Ai of an integrity rule IRi produces a cyclic path in the triggering graph, the 
violation_action_procedure recursively accumulates the integrity rules which are either directly or indirectly invoke 
by IRi, and a cyclic path is encountered when IRi is being invoke again. 
 

 
Given an integrity constraint IC-i and an update Ui 
LET selected_test = Testi % Test is selected by a constraint designer 
IF selected_test = GT or LT_A % A global test or a local test derived by Algorithm-A 
THEN get the compensating action, Ai % Specify by the constraint designer 
ELSE 
IF selected_test = LT-B % A local test derived by Algorithm-B 
THEN generate the THEN and ELSE part 
        GET compensating action, Ai, for GT and LT_A % Specify by the constraint designer 
Check for existence of cyclic action 
IF NO cyclic action 
THEN IRgr = (Testi, Ui, Ai) % Global rule/Local rule (Algorithm-A) 
            IRlr = (Testi, Ui, THEN, ELSE) % Local rule (Algorithm-B) 
ELSE invalid rule 
 
* Check for the existence of cyclic action 
Given an integrity rule with an update operation Ui and an action Ai 
RETRIEVE all IR’s whose update = Ai and LET it be IR_set 
REPEAT 
             RETRIEVE all actions in IR_set and LET it be IR_action_set (which does not include ABORT operation) 
             IF Ui ∈ IR_action_set 
             THEN cyclic = FOUND 
             ELSE 
             BEGIN 
                      Take and remove an action, Aj, from IR_action_set 
                      RETRIEVE all IR’s whose update = Aj and LET it be IR_set 
             END 
UNTIL cyclic = FOUND OR IR_action_set = {}  
 

 
Fig. 7: The Violation_action_procedure 

 
When a user requests an update, only those rules that might violate the update are selected for evaluation.  Heuristics 
are employed to reschedule the execution of the integrity rules, thereby enabling early update abortion in the case of 
constraint violation.  The heuristics applied are: 

(i) Choose a local integrity rule, i.e. an integrity rule that can be evaluated at a local site. 
(ii) Choose an integrity rule whose violation implies that no other integrity rules are triggered.  For 

example, an integrity rule for a key constraint with an ABORT action. 
(iii) An integrity rule with test Ti which subsumes another integrity rule with test Tj is preferred since the 

truth of the test Ti implies the truth of test Tj (but not vice versa).  For example, if the test of LR-FC-6 is 
satisfied then so is the test LR-FC-4(a).  In general, the following algorithm for processing the integrity 
rules is applied when an update request is made: 

 
   FOR each update request, U, 
   Let L be the set of all local rules  

whose triggering operations are U 
   Choose a local integrity rule, LR-i, from set L 
   REPEAT UNTIL no triggering rules remain: 
 Evaluate LR-i’s test  
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 IF test result is false,  
                   execute LR-i’s action 

 
 
5.0 SUMMARY 
 
In this paper, we have described an enforcement algorithm based on the rule mechanism for a distributed database 
which aims at minimising remote access by fully exploiting the available information at a target site.  This strategy 
is valuable in a distributed database where the cost of accessing remote data for verifying database consistency is the 
most critical factor influencing the performance of the system. 
 
There are a number of extensions and improvements that could be made, as follows: 

(i) the types of constraints considered are the types that are widely used in theory and practice, namely: 
domain, key, referential and simple general constraints – a broader range of constraint types such as 
aggregate constraints and transition constraints can be considered; and 

(ii) further investigation of the effect of the fragmentation and allocation strategy on the derived integrity 
rules would be worthwhile. 
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