
Malaysian Journal of Computer Science, Vol. 14 No. 2, December 2000, pp. 95-105

95

SEALED-BID AUCTION PROTOCOL IMPLEMENTATION OVER CORBA ARCHITECTURE

Mohammad Zahidur Rahman and Sai Peck Lee
Faculty of Computer Science & Information Technology

University of Malaya
Kuala Lumpur, Malaysia

saipeck@fsktm.um.edu.my

ABSTRACT

Verifiable secret and polynomial sharing (VSPS) scheme can be adopted in the development of a sealed-bid auction
protocol for secure sealed-bid auction service. In this paper, issues related to the implementation of VSPS scheme
for sealed-bid auction service is discussed. Distributed object computing over Common Request Broker
Architecture (CORBA) is deployed in the protocol. To allow the access of an auction server simultaneously by more
than one bidder, the concept of concurrent processing is introduced.

Keywords: Distributed computing, Object-Orientation, Electronic auction

1.0 INTRODUCTION

The sealed-bid auction protocol is used for auctioning services or goods, which requires an extended time to prepare
the counter bid, and where it is not possible to gather all the prospective bidders at a common place at a specific
time. The trend in the last decade is that trading over the Internet was increasingly common though there were some
security glitches yet to be taken care of. The designed sealed-bid auction protocol in [8] is based on the object-
oriented Common Request Broker Architecture (CORBA) [1]. CORBA encompasses a series of standards and
protocols for inter-process communication in a heterogeneous environment. The CORBA application is based on
objects. Objects reside on different machines throughout the distributed environment. A client object can
communicate with a server object through an object reference. This object reference is resolved by the object
request broker (ORB). When a request is reached to the ORB, the request is passed to an object adapter. The object
adapter forms a link between an object’s implementation and its presence on the ORB.

In order to reap the benefit of the distributed nature of CORBA, several auction servers are distributed over the
network such that the availability of all servers is not compromised. The security of the distributed servers is
achieved by using the secret sharing scheme, known as verifiable secret and polynomial sharing (VSPS) [2]. The
interfaces between the auction server objects and the bidder objects are designed using CORBA IDL (interface
definition language). As the IDL of these objects defined always remain constant, any change or improvement to
any bidder object and/or auction server object will not be detected. The portable object adapter (POA), a refined
concept of basic object adapter (BOA), is proposed in the new CORBA specification [4]. The advantage of using
POA is that it enables porting one version of the server object to a new version without requiring to notify the clients
who are using that server object. In this paper, we give some lights on the software development aspects of the
auction protocol, both in secret sharing scheme and CORBA implementation.

The online auctions currently available use the features of the hyper text markup protocol (HTTP). The web -based
auction systems suffer from the disadvantages like requirement of reloading and resubmitting of data, which takes
quite some time to perform. To perform a data transfer, the web server has to recreate a HTML page and then sends
the whole file back to the browser. On the contrary, the Internet Inter-ORB Protocol (IIOP) of CORBA consists of a
common data representation (CDR), an interoperable object reference (IOR) format, interoperable TypeCodes for all
data types and Inter-ORB Protocol (IOP) message contents, formats, and semantics mapped to TCP/IP. This
configuration results much faster data transfer in comparison with a web-based application.

Section 2.0 briefly describes the auction protocol implemented. In Section 3.0, we discuss about the VSPS related
problems. The usage of portable object adapter (POA) and the naming service of CORBA are discussed in Section
4.0. In Section 5.0, the concurrency related problems are addressed and shown how they can be solved.

Rahman and Lee

96

2.0 OVERVIEW OF PROTOCOL FOR SEALED -BID AUCTION SERVICE

Our auction protocol stated in [8] starts from the registration of bidders. There should be some registration policy
under which the prospective bidders register themselves and get a certificate. The registration is important in the
serious real-life, sealed-bid auction. Some sealed-bid auctions require bidders to submit a bid deposit in the form of
a bank cheque or some other means. In some cases, the bidder should support bid with some documents such as tax
returns, etc. The bank or government agency normally issues these instruments. The presence of a registration
server can ease the operation of the auction protocol in future when these types of services mature in electronic
form.

After a predefined time, the registration of bidders will be closed. Bidding can start immediat ely or after some
predefined time when all good auction servers are ready to start auction service. At the beginning of the bidding
service, each bidder sends his/her own certificate to all auction servers as the prerequisite for bidding. When a
certificate is verified by all the auction servers, an independent private channel based on the Internet will be
established between the bidder and each of the auction servers. The context diagram of our sealed-bid auction
scheme is shown in Fig. 1. The private channel between the bidder and an auction server is built over the Internet
using available cryptographic technology.

Fig. 1: Sealed-bid auction scheme

A session key and some parameters like n, the number of auction servers, and t, the degree of polynomial, will be
passed by each auction server to the bidder. Then the bidder will choose an auction item, price quote and auction ID
to form a secret bid. The bidder now randomly chooses a polynomial f(x) of degree t with a free term equals to the
secret bid, and another random polynomial r(x) of degree t. He/she then computes the share values of the secret
bid, αi =f(i) and ρi =r(i), based on the algorithms of the polynomials chosen, where i is for all n participating
auction servers. Before sending to ith auction server via the private channel, the bidder encrypts ith pair of αi and ρi
with the session key of ith participating auction server. The commitments of αi and ρi, where i=0 to n, are
broadcasted to all participating auction servers openly. According to the current protocol, the commitment of a
secret is the one-way hash of that secret. The individual ith auction server compares the received pair (αi and ρi),
which was passed via the private channel, with the corresponding broadcasted commitment. If the validity fails, the
auction server informs all other participants including the bidder that some problem has occurred. Each auction
server also verifies that the broadcasted commitments lie within a committed polynomial. If a bidder receives a
broadcasted complaint from the ith auction server, he/she openly broadcasts αi, ρi and the corresponding
commitments to defend his/her integrity. If the bidder does not follow certain step s, he/she will be disqualified;
otherwise it should be concluded that the bid from the bidder is shared perfectly.

In the sealed-bid auction, a negotiation process ends with the seller closing the auction at a time based on pre-agreed
rules, such as at a previously agreed time, or after a certain duration of inactivity, or a combination of the two.
When the auction time is over, all the auction servers close the receiving of bids. Depending on the auction rules,
after a predefined time, the auction servers send each other all the shares that they had received in earlier sessions to
reconstruct each bid. Before reconstructing a bid, the auction servers have to check that the shares received are
valid by checking with the commitments published during the bidding session. When all the bids have been
reconstructed, the winner is declared according to the predefined rule. There is a deal if there is at least one bidder
who has the highest bid that exceeds the reserved price, if the seller has specified one.

Sealed-Bid Auction Protocol Implementation-Over Corba Architecture

97

3.0 VSPS IMPLEMENTATION ASPECTS

The secret bid sharing in the proposed sealed-bid auction protocol uses the simplified verifiable secret and
polynomial sharing (VSPS) scheme. Before starting the shares calculation, the bidder should choose two large
prime numbers, p and q, such that p=µq+1 , where µ is a small integer. These two prime numbers are to be known
to all the parties involved. This requirement is necessary because we need the numerical group Zp

* which contains a
subgroup of large prime order. Recalling from the basic algebra that Zp

* has a cardinality of p-1; and for each
prime divisor of the cardinality of a group, we can come to the conclusion that there is a subgroup of that order.
Another two integer variables g and h , such that h = g z mod p, are required for calculating verifiable hash, where
z should be unknown to all parties. This raises a question: who should know it? There is one possibility of a
presence of an Arbitrator. Normally p, q and g are generated by the bidder, then the Arbitrator calculates h and
publishes it. Another possibility is to take a random number r (for example, the hash of the current date and time)
and set h=rµ mod p (this will make sure that h is an element of order q). As h is pseudo-randomly generated,
nobody knows z. If q divides p-1 but q2 does not divide p-1 , an easy way to do this is to choose two random
numbers r1 and r2 in Zp

* , then set g=r1
(p-1/q) and h=r2

(p-1/q) . Thus g and h as generators of the subgroup of order q
in Zp

* is accomplished. For the implementation of the secret sharing scheme, the latter solution is used.

According to the VSPS algorithm, for constructing verifiable commitments, two polynomials are used in the
preparation of shares. These polynomials are to be computed over modulo q and not over modulo p. For the
reconstruction of a bid, the shares from the first polynomial (f(x)) are fitted over the polynomial and the interpolated
free term will be the reconstructed secret. The process of reconstruction uses the inverse of a matrix. The
verification of hash also uses the inverse of a matrix. The inverse of a matrix should not be computed over the reals
or the rationals, but all the computations should be done over the modulo of the large prime q. For these
mathematical implementations, LiDIA [5], an object-oriented mathematical framework for large numbers, is used.

4.0 SEALED-BID AUCTION PROTOCOL IMPLEMENTATION OVER CORBA ARCHITECTURE

A common idea is derived from the middleware approach which introduces a new layer into the program that keeps
the complexity away from the developer by hiding as many details of distributed programming as necessary. To the
developer, the middleware presents seemingly local objects, and invocations on the local proxy cause the necessary
data to be transparently sent to the recipient. This allows clients to invoke operations on distributed objects without
concern for object location, programming language, operating system (OS) platform, communication protocols and
interconnections as well as the hardware [7]. One popular example of such middleware is the Common Object
Request Broker Architecture (CORBA), which is part of the Object Management Architecture as specified by the
Object Management Group (OMG). CORBA uses the Object Request Broker (ORB) as the glue between individual
pieces, which is responsible for directing a client's method invocation to the appropriate object implementation.

While CORBA can indeed hide many details of client/server programming from the client, experience has shown
that a much tighter involvement with the ORB is necessary on the server side. For this, CORBA uses the concept of
object adapters which mediate between the ORB and the server on how to represent servants to the outside world.
The server can choose an object adapter that best fulfills its requirements. CORBA is scalable and its location
forwarding mechanism provides basic support for coarse-grained server mobility, but a vendor-specific forwarding
service (i.e. an Implementation Repository) is necessary on the server side to employ the feature [6].

A programming concept with CORBA is that a remote method invocation causes a request to be sent from the client
to the server, and the client usually waits synchronously until the reply is received [9, 14]. CORBA uses a
declarative language, the Interface Definition Language (IDL), to describe an object's interface. This description is
used by an IDL compiler to generate stubs for the client side and skeletons on the server side. Using this generated
code, a remote method invocation looks like an invocation on a local object, at least in an object-oriented
programming language like C++. The encoding of parameters is hardware-independent, which is referred to as
CDR (Common Data Representation).

The nature of the proposed sealed-bid auction protocol demands a greater speed by spreading complex tasks over
many computers working in parallel and increased fault tolerance can be achieved by using more than one server as
described in the VSPS scheme. According to the protocol, a bidder contacts several server objects as defined by the
auction rules to perform the auction service. The offering and using of services are of particular interest for the
Internet today. Companies are not satisfied with presenting information on the World Wide Web only, but also keen
to present their services online to the world-wide user community. The main challenges focus on the operating

Rahman and Lee

98

system (OS) platform portability, connection management and service initialisation, event demultiplexing and event
handler dispatching, synchronisation, fault tolerance and fault detection. CORBA helps to overcome these
challenges. As such the proposed sealed-bid auction protocol is implemented over CORBA architecture. In the
following subsections, we discuss several CORBA concepts and their usage in auction system implementation.

4.1 The Portable Object Adapter (POA)

The concept of portable object adapter (POA) is augmented with the basic object adapter (BOA) in the new CORBA
specification 2.3 [4]. The POA is designed keeping in mind the portability and flexibility of objects. The POA
comes with its own set of concepts. Many POA instances can exist in a server, organised in a hierarchical structure.
The RootPOA is created by the ORB and subsequent POAs can be children of existing ones which were created by
the working server. Each POA maintains its own Active Object Map so that it can map currently active objects to
servants. Each object is identified by a unique Object ID within its name space and is activated by a particular POA
instance.

Fig. 2: Portable Object Adapters (POA) and its interaction with managers and servants

The POA managers are responsible for synchronising the different POAs, i.e. managers control the readiness of one
or more POAs to receive requests. The other responsibility of the managers are to control and monitor the life cycle
of the servants. RootPOA is created by ORB as shown in Fig. 2. POA1 and POA2 are children of RootPOA and
POAa and POAb are children of POA2 . The new four POAs (i.e. POA1 , POA2 , POAa and POAb) are now
registered to servants, which adjust different aspects of a POA’s behaviour. For example, RootPOA is registered
with two servants servant#1 and servant#3 , which are kept in the active object map. During the life cycle of a POA,
the POA changes its states according to the stimulation it receives. The state transition of a POA is shown in Fig. 3.

Fig. 3: State transition diagram of a POA

4.1.1 Policies Related to a POA

Each of the POAs has its own separate policies. Policies are selected by the user upon the POA creation and cannot
be changed over its lifetime. Since objects are associated with a fixed POA instance, some policies can also be said
to be that of an object, for example, the lifespan policy. According to the CORBA 2.3 specification, the following
are the available policies regarding the portable object adapters.

Sealed-Bid Auction Protocol Implementation-Over Corba Architecture

99

Thread It can be set to either “Single Thread” if the servants are not thread-aware and that requests must be
serialised, or set to “ORB controlled” if servants are reentrant and requests can be processed
regardless of ongoing invocations.

Lifespan Lifespan of an object can either be a “transient” or a “persistent”. The lifespan of transient objects

(i.e. objects that are registered in a POA with the transient lifespan policy) is limited by the lifespan of
the POA instance they were activated in. Once their POA is destroyed, for example, as part of server
shutdown, object references to transient objects become permanently invalid. Persistent objects can
outlive their original POA and even their original server. Missing POAs for persistent objects can be
recreated, and if their server is shut down, it may be restarted at a later time and continue serving the
object. The usage of the term “persistency” here is very different from its meaning as a Basic Object
Adapter’s (BOA) activation policy. All BOA servers satisfy the POA’s persistent lifespan policy,
because the servers could be stopped and restarted.

Object An object can be activated with the POA more than once to serve more than one object. ID

Assignment Policy defines whether Object IDs are generated by the POA, or selected by the user, for
example, to associate objects with “human-readable” names or to hold identity information. If a
single servant is registered more than once to serve multiple objects, it could use a user-selected
Object ID (which would be different for multiple activations) at runtime to discriminate between
them.

Servant When an object is activated, the association between the object (or rather, Object ID) and the servant

is stored in the Active Object Map. This behaviour can be changed if desired, for example, if a default
servant is prepared to handle requests for newly-activated objects.

Request Object Map When trying to serve a request, whether a servant manager is available, or whether the

request should be delegated to a default servant, Request Object Map policy selects the
option.

Implicit Some operations on a servant require its activation, for example, the request of an object reference.

Depending on this policy, performing such an operation on an inactive servant can either cause an
error, or transparent activation.

4.1.2 Servant Manager

The usage of a servant manager is focused in the following cases. Like adapter activators for POAs, a servant
manager can be used to activate servants on demand after a partial shutdown or after a server restart. The servant
manager receives the request’s Object ID and could use that information to read back the object’s state from the
persistent storage. Another interesting feature possible with servant managers are virtual objects, i.e. object
references that refer to non-existent servants. References to virtual objects can be passed to a client; on the server
side, a servant manager is then registered with the POA to incarnate the virtual object on demand.

Servant managers come in two different flavours with slightly different behaviour and terminology, depending on
the servant retention policy. If this policy’s value is "retain,'' a servant activator is asked to incarnate a new servant,
which will, after the invocation, be entered into the Active Object Map itself - this would be sensible in the sketched
file service example, since the newly incarnated file object would be needed more than once. If an object is
deactivated, either explicitly or because of a server shutdown, the servant activator’s etherealize method is called to
get rid of the servant - at which point the object's state could be written to the persistent storage.

The POA servant managers are of two types: one activates a new servant called Servant Activator. POA’s Active
Object Map retains the information of the servant to serve further requests on the same object. The other servant
manager type is Servant Locator which is used to locate a servant for a single invocation and then forgets the object.
This type of servant will not be retained for future use.

If the servant retention policy is “non-retain”, the servant manager would have to be a servant locator, whose task is
to locate a servant suitable only for a single invocation. A servant locator supplements the default servant
mechanism in providing a pool of default servants; it is the flyweight factory according to the flyweight pattern. It
can also be used for load balancing, as the example of a print service shows, in which the print method is directed to
the printer with the shortest queue.

Rahman and Lee

100

4.1.3 Auction Protocol Implementation over CORBA

In a dis tributed system development using CORBA, a servant manager is responsible to manage the bids. The
implementation of the auction service over CORBA uses the benefits of POA [12, 11]. The auction house is
responsible for creating bid objects. However, the content for the bid object, such as its shares, is generated by the
bidder. In the case of an auction server, the servant activator is chosen so that whenever the bid object is first used,
the servant manager will incarnate and activate a new servant. Further operations on the same object reference will
use the already active servant. The auction server's create operation executes the create_reference() operation on
the POA, which does not cause an activation to take place. It only creates a new object reference encapsulating
information about the supported interface and a unique system-generated Object ID. This reference is returned to
the client bidder. For example, the pointer for the auction server, Nilam_ptr, is returned when it is created.

Nilam_ptr Auction_impl::create()
 {
 Nilam_ptr retref;
 CORBA::Object_var obj = newpoa-> create_reference (char'IDL:Nilam:1.0char');
 retref = Nilam::_narrow(obj);
 return retref;
 }

When the client invokes an operation on the returned reference, the POA will first search the Active Object Map. If
the desired object is not found, the servant manager will be referred to serve the request and to find an appropriate
implementation for the request. The collaboration diagram of the object finding is shown in Fig. 4.

Fig. 4: Finding a Nilam object in CORBA implementation

The problem regarding the persistence of the auction server is important. A persistent object's lifetime is not
bounded by the process that implemented it. If the object is not of persistent type, then due to some reason if the
server is down and then restarted, and whenever the client invokes a service from the server, it will receive an
exception that its object reference has become invalid. According to the CORBA specification of POA, an object is
persistent if the servant that implements it is activated in POA that has PERSISTENT lifespan policy. Due to the
persistent lifespan policy, the disruption of server service will not be noticed by the client object as long as the
server is running whenever an invocation is performed.

In the case of the auction service, it requires to create persistent bids. When the server is down, it writes its states to
a disk file and when the server is restarted, the states are read again. To accomplish this, a persistent POA is used to
create the auction server object. A servant manager provides the necessary hooks to save by issuing etherealising to
the auction server object, which writes the states to the disk and restores the states by incarnating a bid, which
checks if an appropriate named file with the states exists. The following code snap shows how to use this technique.

Sealed-Bid Auction Protocol Implementation-Over Corba Architecture

101

 CORBA::PolicyList pl;
 pl.length(2);
 pl[0] = poa->create_request_processing_policy (PortableServer::USE_SERVANT_MANAGER);
 pl[1] = poa->create_lifespan_policy (PortableServer::PERSISTENT);
 PortableServer::POA_var nilampoa =
 poa->create_POA (char'Nilamschar', PortableServer::POAManager::_nil(), pl);
 PortableServer::POAManager_var nilammgr = nilampoa->the_POAManager();
 /* * Activate ServantManager */
 NilamManager * am = new NilamManager;
 PortableServer::ServantManager_var amref = am->_this();
 nilampoa->set_servant_manager (amref);

By using different POAs to activate the auction server, the auction server can be made persistent. In the example,
two different servants are used instead of using the same POA which requires to distinguish two objects while
etherealizing or incarnating . At creation of the bid object (using create operation), the bid object is extended to
activate itself with a specific Object ID which is used as the name for the state file on disk. A shutdown operation in
the auction server interface is included to terminate the server process. This is accomplished by calling ORB’s
shutdown method. Invoking shutdown() on the ORB first of all causes the destruction of all object adapters.
Destruction of the bid’s POA next causes all active objects to be ethera lised by invoking the servant manager.
Consequently, the servant manager plays the major role to save and to restore the states. The auction house POA
can be created as in the following code:

 CORBA::PolicyList pl2; pl2.length(2);
pl2[0] = poa->create_lifespan_policy(PortableServer::PERSISTENT);
 pl2[1] =poa->create_id_assignment_policy(PortableServer::USER_ID);
 PortableServer::POA_var auctionpoa = poa->create_POA(char'Auctionchar', mgr, pl2);

 /* * Create and activate an auction house */
 Auction_impl * myaucthouse = new Auction_impl (nilampoa);

4.2 Naming Service

The CORBA services extend the core CORBA specification with a set of optional utilities that are useful for
different applications. The CORBA naming service [3] is one of the simplest and the most useful utilities. Its role
is to allow a name to be bound to an object and to allow that object to be found subsequently by resolving that name
within the naming service.

Fig. 5: Naming service invocation sequence

An auction server holds an object reference and registers it with the naming service, giving it a name that can be
used by other components of the system subsequently to find the object. The CORBA object is the object which
gives the reference of the remote object. The naming service invocation sequence is shown in Fig. 5.

Rahman and Lee

102

One of the advantages of the naming service is that the names associated with objects are independent of any
properties of the objects referred by them. In particular, a name is independent of an object’s interface, server, or
host name. In the case of a primitive bind operation, which is mainly vendor specific, for obtaining an object
reference, it requires that the client knows the objects marker, server and host name. In contrast, finding an object
using the naming service simply requires the caller to know the name that has been bound to the object.
Successfully resolving a name within the naming service gives an object reference to the required object.

There are two ways in which an application can use the naming service. Firstly, the naming service can be used to
name a significant number of objects in the system. Alternatively, some important objects in each service can be
named, and these objects can act as entry points for the other objects. In the case of the auction service, the later is
suitable for development. The auction house POA is registered with the naming service. The following code
segment shows how a server registers its POA object with the naming service.

CORBA::Object_var nsobj = orb->resolve_initial_references(char'NameServicechar');
 assert (! CORBA::is_nil (nsobj));
 CosNaming::NamingContext_var nc = CosNaming::NamingContext::_narrow(nsobj);
 ...
 CosNaming::Name name;
 name.length(1);
 name[0].id=CORBA::string_dup (servername);
 name[0].kind=CORBA::string_dup(char'char');
 nc->bind(name, ref);

When the client invokes a POA object, the POA object in turns invokes the other servant objects. Now the client
invokes a naming service to resolve the object reference for the servant object. When it gets the reference, it can
directly invokes the methods of the object.

 CORBA::Object_var nobj = orb->resolve_initial_references(char'NameServicechar');
 assert (! CORBA::is_nil(nobj));
 CosNaming::NamingContext_var nc=CosNaming::NamingContext::_narrow(nobj);
 CosNaming::Name name;
 name.length (1);
 name[0].id = CORBA::string_dup (char'myNilamchar');
 name[0].kind = CORBA::string_dup (char'char');
 CORBA::Object_var obj;
 obj = nc->resolve(name);
 Auction_var auction = Auction::_narrow(obj);

The client bidder object creates a bid object in the auction server by calling a create to the auction house object.
The auction house object returns a virtual object reference to the client object. Using this object reference, the client
bidder object can directly communicate with the target object Nilam. The object management is done by POA
manager nilammgr. The manager is responsible for the states of the objects, i.e. if the server has to shut down, the
manager first calls etherealise to save the states of the object. When the server restarts, the manager calls incarnate
to return the previous states of the objects. The underlying CORBA chosen for the implementation is Mico. The
details of Mico is available in [10]. The asynchronous nature [13] of the bidding process for the sealed-bid auction
will be discussed in the following section.

5.0 CONCURRENT PROCESSING AND SYNCHRONISATION

The implemented sealed-bid auction protocol uses both synchronous and asynchronous remote method calls. Fig. 6
illustrates the differences between synchronous and asynchronous processing of a cancelled order, for example. A
synchronous process is a process, before processing the next process, has to wait for the acknowledgement of the
responder. On the other hand, for an asynchronous process, the process continues without waiting for a response
from the receiver of the message.

Sealed-Bid Auction Protocol Implementation-Over Corba Architecture

103

Fig. 6: Asynchronous process versus synchronous process

Synchronisation choices are crucial in the case of systems that support concurrent processing. In an auction, bidders
can invoke two processes:

1. Submit a new bid.
2. Cancel an open bid.

The auction server can execute the following two processes simultaneously:

1. Route all open bids in the bid-table to the sharing program.
2. Process cancelled bids.

Therefore bidders can submit new bids, while the auction server routes open bids to the sharing program, which
implements the sharing algorithm. If sharing is successful, the bid execution system updates the bid-table and
notifies the corresponding bidder. These multiple processes use threads to execute concurrently. A new thread is
invoked every time a bidder sends a request to the server. Threads require fewer system resources than
computations. In a multi-processor workstation, multiple threads can operate simultaneously to take advantage of
different processors. In a single processor machine, multiple threads can run in an interleaved manner so that
different tasks run simultaneously. Thus the auction server can concurrently perform intensive computations for bid
sharing, and at the same time, support interactive access. However, multiple threads are not protected; more than
one thread can access the same data item. The most common way to implement concurrency control is to use
exclusive locks. By locking the data, the application is in effect serialising access to the data. For example, when a
bidder submits a bid, a new thread is launched at the auction server. The thread operation has three parts :

1. Assign the current BidID to the new bid.
2. Increment the BidID.
3. Add the bid to the bid-table.

Now suppose two bidders submit bids and the resulting threads interrupt each other:

1. Bidder A starts to submit a bid.

Thread A executes Part 1 of the submitted bid.
2. Bidder B starts to submitted a bid.

Thread B interrupts Thread A.
Thread B executes Part 1 of the submitted bid.

1. Thread A interrupts Thread B.
2. Thread A executes Part 2 and Part 3 of the submitted bid.
3. Thread B finishes Part 2 and Part 3 of the submitted bid.

This scenario causes the two bids sent by bidders A and B to have the same BidID. We can solve this problem by
adding the synchronised keyword to the distribute share method, distSHR(). This keyword serves as a mutually
exclusive lock for the method, allowing only one thread to call the method. Upon completion of the method, the
thread automatically releases the lock. Locks are useful if the portion of the data that must be serialised remains as
small as possible. If unnecessary locks are applied, program performance becomes less efficient. For example, if a
bidder cancels a bid right after it was routed to the sharing program, it is immediately deleted from the bid-table.
The sharing program may then calculate and update shares, only to find that the bid has been deleted. To solve this
problem, the bid-table is locked while matching is conducted, but this approach would freeze the bid-table
constantly. Instead, asynchronous processing can be implemented. In a synchronous remote call, object A sends a

Rahman and Lee

104

message to object B and waits for the feedback. Thus, the sending and receiving processes synchronise with every
message. To continue, object A has to wait for the feedback from object B. Object B has to respond
instantaneously to object A’s request as well as to other remote calls. Otherwise, object A and other objects will be
delayed while waiting for replies. CORBA implements asynchronous call by using oneway operation. If an IDL
operation can be defined to be oneway, most implementations of CORBA will not block the caller of a oneway
operation, but allow the caller to safely continue in parallel with the process of the request. A oneway operation
must specify a void return type and cannot have out or inout parameters, and it also cannot have a raises clause [1].
With asynchronous communication, the server can schedule its operations more efficiently because it does not have
to reply to each order immediately. Meanwhile, the client application does not have to wait for an immediate reply
in order to conduct the next task. Asynchronous communication for cancelled bids is used because it does not need
the bidding process to wait for the replies of the cancelled process. Using asynchronous communication, the
cancelled requests are stored in a queue at the server side. After submitting the cancelled requests, the client
application can proceed without waiting for the replies. The server side empties the cancelled queue each time
before it restarts the sharing program.

The following shows the main algorithm of the cancelled process.

 {
 store cancelled bidID in a cancelled queue;
 .
 }

The main part of the sharing routine is as follows:
 {
 ...
 if(sharing is completed and bidID found in cancelled queue)
 delete the bid from bid-table;
 remove cancelled bidID from cancelled queue;
 notify bidder;
 }

6.0 CONCLUSION

Our sealed-bid auction protocol uses verifiable secret and polynomial sharing algorithm. In this paper, we focus on
the implementation issues of VSPS algorithm for the auction. We also focus on the implementation scenarios of the
sealed-bid auction protocol over CORBA framework. The implementation techniques used for CORBA is portable
object adapter (POA) whose specification is newly published by the OMG. The paper allows a reader to be familiar
with the complex world of CORBA and its application. The total implementat ion is done in CORBA 2.3
implementation MICO-2.3. The platform used is Linux and implementation language used is C++ over IIOP. The
multi-threads are implemented using POSIX compatible thread of Linux.

ACKNOWLEDGEMENT

The authors wish to thank Dr. Rosario Gennaro for his valuable suggestions in the implementation of VSPS scheme
for auction service.

REFERENCES

[1] Sean Baker, CORBA Distributed Objects. Addison-Wesley, 1997.

[2] Rosario Gennaro, Michael O. Rabin, and Tal Rabin, “Simplified VSS and Fast-Track Multiparty

Computations with Application to Threshold Cryptography”, in Seventeenth ACM Symposium on Principles
of Distributed Computing, PODC'98. ACM, 1998, pp. 101-111.

[3] Interoperable Naming Service Preliminary Specification, Technical Report, Object Management Group,

October 1998.

Sealed-Bid Auction Protocol Implementation-Over Corba Architecture

105

[4] “The Common Object Request Broker: Architecture and Specification”, 2.3 ed. Technical Report, Object
Management Group, June 1999.

[5] The LiDIA Group. LiDIA - A Library for Computational Number Theory . TH Darmstadt, Fachbereich

Informatik, Institute fur Theoretische Informatik, Alexanderstr. 10, D-64283 Darmstadt, Germany, 1996.

[6] Michi Henning, “Binding, Migration and Scalability in CORBA”. Communications of the ACM , Vol. 41,

No. 10, October 1998.

[7] Michi Henning and Steve Vinoski, Advanced CORBA Programming with C++. Newblock Addison-Wesley,

1999.

[8] K. M. Yew, Mohammad Zahidur Rahman, and Sai Peck. Lee, “Specification of a Secure Fault Tolerant

Pseudo-Anonymous Electronic Sealed-Bid Auction Protocol”, in MICC'99 , IEEE Malaysia, December 1999,
pp. 218-223.

[9] Robert Orfali, The Essential Distributed Objects Survival Guide. John Wiley & Sons, 1996.

[10] Arno Puder and Kay Römer, MICO - MICO is CORBA. Morgan Kaufman Publishers, 1998.

[11] Douglas C. Schmidt and Steve Vinoski, “C++ Servant Classes for the POA”. SIGS, Vol. 10 No. 6, June

1998.

[12] Douglas C. Schmidt and Steve Vinoski, “Using the Portable Object Adapter for Transient and Persistent

CORBA Objects”. SIGS , Vol. 10, No. 4, April 1998.

[13] Douglas C. Schmidt and Steve Vinoski, “Programming Asynchronous Method Invocations with CORBA

Messaging”. SIGS, Vol. 11 No. 2, February 1999.

[14] J. Siegel, CORBA: Fundamentals and Programming . John Wiley & Sons, New York, 1996.

BIOGRAPHY

Sai Peck Lee is currently an Associate Professor at Faculty of Computer Science & Information Technology,
University of Malaya. She obtained her Master in Computer Science from University of Malaya in 1990, her D.E.A
of Computer Science from Universit y of Paris VI Pierre et Marie Curie in 1991 and her Ph.D. in Computer Science
from University of Paris I Panthéon-Sorbonne in 1994. Her current research interests include Software Engineering,
Object -oriented Methodologies, Software Reuse, E-Commerce, Information System and Database Engineering.

Zahidur Rahman, M. is currently an Associate Professor at Department of Electronics and Computer Science,
Jahangirnagar University, Savar, Dhaka, Bangladesh. He obtained his B.Sc. Engineering in Electrical and
Electronics from Bangladesh University of Engineering and Technology in 1986 and his M.Sc. Engineering in
Computer Science and Engineering from the same institute in 1989. He obtained his Ph.D. degree in Computer
Science and Information Technology from University of Malaya in 2001. His Ph.D.’s thesis work is on designing a
secure protocol for electronic commerce transactions. His current research includes the development of a secure
distributed computing environment using formal method for E-commerce.

