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ABSTRACT 
 
Traditionally, the register allocation is based on the lifetime analysis of variables.  A register can be shared by 
multiple variables if they have mutually disjointed lifetime intervals.  In this paper we attempt to extend the register 
sharing by another type of analysis called equivalence analysis.  After the register allocation by a conventional 
register allocation algorithm such as left edge algorithm, some incompatible registers can possibly have the same 
content or their contents can be included in the contents of some other registers in any state of a design.  Such 
registers are totally or partially equivalent and they can be merged into a single register.  Our approach offers then 
a supplement potential for the register optimisation.   Hence, it is allowed to go beyond minimisation by lifetime 
analysis.  However, it does not only optimise the number of registers but also reduces the interconnection cost and 
the number of functional units previously allocated.  Therefore, it reduces the implementation cost and improves the 
design performance. 
 
Keywords: High-level synthesis, Register optimisation, Equivalence analysis, Interconnection cost 
 
 
1.0 INTRODUCTION 
 
High-Level Synthesis (HLS) is the design process which transforms a behavioural description of a digital design 
into its description of Register Transfer Level (RTL) structure [1].  Two major tasks are usually distinguished in 
HLS: Scheduling and Hardware allocation.  Scheduling is the process of partitioning arithmetic and logic operations 
into states (or control steps) such that operations scheduled in the same state can be executed concurrently.  
Hardware allocation is the process of selecting hardware units, that is, functional units (fu) to perform the arithmetic 
and logic operations, registers to store value of variables, and connections between the functional units and registers 
for data value transfers.  The goal of the hardware allocation is to minimise the total amount of hardware elements.  
Hardware allocation is usually subdivided into three interdependent subtasks: (1) functional unit assignment, (2) 
register allocation and (3) data transfer allocation.  The results of one subtask will affect the performance of the 
others significantly. 
 
This paper is concerned with the register allocation.  Value of variables which are generated in one state and used in 
a later state must be stored in registers.  Although we can trivially allocate a distinct register to each variable, a 
register can be shared by multiple variables if their lifetimes do not overlap.  The lifetime of a variable is the time of 
a period in which the value of the variable must be saved in a register.  Register allocation is the problem of 
mapping variables onto a minimum set of registers according to their lifetime analysis.  In order to minimise the 
number of registers, the possibility of register sharing is used.  However, having less registers does not necessarily 
guarantee that the final design will be optimal.  The register merging can have a direct impact on interconnection 
cost.  Indeed, after register merging, more traffic is needed between functional units and registers that results in an 
increase of interconnection cost. 
 
Many techniques [2-9] have been developed for allocating as few registers as possible taking advantage of the 
register sharing possibility between different variables.  However, after the register allocation by a conventional 
register allocation algorithm such as the clique partitioning algorithm [3] and [4], the left edge algorithm [5] or the 
bipartite weighted matching algorithm [6], some incompatible registers can possibly have the same content (totally 
equivalent registers) or their contents can be included in the contents of some other registers (partially equivalent 
registers).  Our approach allows us to identify and to merge such registers.  It is based on the equivalence analysis 
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that is a novel method of register optimisation.  It consists of partitioning registers whose utility phases overlap, in 
classes such as any class regroups the totally or partially equivalent registers.  Registers of a same class can be 
replaced by a single register.  The utility phase of a register is a subset of states during which the register is useful.  
If we assume that each variable is allocated to a same register, then the utility phase of a register represents the 
amount of the lifetimes of variables allocated to this register.  The utility phase of a register Ri can be represented by 
an interval <SS(Ri), ES(Ri)>, where the Starting State of the register Ri (SS(Ri)) is the state at which the register Ri 
is defined and the Ending State of the register Ri (ES(Ri)) is the state at which the register Ri is used for the last time.  
The equivalence analysis is allowed to go beyond minimisation by compatibility analysis in merging some 
incompatible registers.  Two registers are said to be incompatible if they are useful simultaneously, e.g. if their 
utility phases overlap.  Three cases are possible for utility phases of incompatible registers (Fig. 1).  In the first case 
(Fig. 1(a)), the two registers Ri and Rj can be merged if they are equivalent in any state of their utility phase.  In the 
second case (Fig. 1(b)), the register Rj can be replaced by the register Ri if they are equivalent in any state of the 
utility phase in common.  In the last case, we can decompose the utility phases of the registers Ri and Rj into three 
segments (Fig. 1(c)).  Since the registers Ri and Rj are compatible in segments 1 and 3, they can be merged into a 
single register if they are equivalent in any state of the segment 2.  However, the register merging based on the 
equivalence analysis does not require additional interconnect elements, but on the contrary, it allows to save 
registers, buses and functional units as will be proved subsequently.  Therefore, after the register allocation has been 
carried out by a conventional register allocation algorithm, our approach performs a postprocessing step to complete 
the register optimisation.  The equivalence analysis has been used in the theory of automaton to minimise the 
number of states [10] and [11]. 
 
This paper is structured as follows: Sections 2 and 3 describe the totally and partially equivalence analysis 
respectively.  Section 4 discusses the impact of register merging on the interconnection cost.  Section 5 concludes 
the paper.  Finally, some definitions of terms used in the paper are included in the Appendix. 
 

 
 
2.0 TOTAL EQUIVALENCE 
 
Some registers can possibly have the same content  in any state of digital design.  Since the state graph can be 
cyclic, the content of a register in a state can be different at every passage by this state (except the initialisation of 
the corresponding variable).  Therefore, a register cannot have one same content in any state of a design.  However, 
it is not necessary to know the explicit content of any register in the different states.  We only need to know if 
contents of two registers are identical or not in any state of the design.  To solve this problem, we will state the 
following theorems: 
 
Theorem 1: 
Two registers Ri and Rj, defined by the two following operations: Ri = Ri1 opi Ri2 and Rj = Rj1 opj Rj2 which are 
scheduled in a same state Sk, are equivalent in this state if: 

opi and opj are of the same type, 
registers Ri1 and Rj1 are equivalent , and 
registers Ri2 and Rj2 are equivalent. 

 Rj Ri 

 (a)   (c) 

 
1 
……………………… 
 
2 
……………………… 
 
3 

Rj Ri 

 (b) 

Ri Rj 

Fig. 1:  Possible cases of incompatible registers 
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Proof: 
Since the registers Ri1 and Rj1 on the one hand, the registers Ri2 and Rj2 on the other hand are equivalent, they have 
the same content.  Since the two operations opi and opj are of the same type and operands being the same, it is 
obvious that results can be the same. 
 
If the operations opi and opj are commutative, and the registers Ri1 and Rj1 and/or Ri2 and Rj2 are not equivalent, we 
can exchange the operands of one operation (for example the operation opi) and then verify if the pairs of registers 
(Ri1, Rj2) and (Ri2 and Rj1) are equivalent. 
 
Theorem 2: 
Two incompatible registers Ri and Rj are totally equivalent if they are equivalent in any state where at least one of 
them is defined. 
 
Proof: 
So that one can speak of the equivalence between two registers in a state, it is necessary that one of them is defined 
in this state.  If the two registers Ri1 and Rj1 are equivalent in any state Sk where at least one of these registers is 
defined, they are totally equivalent. 
 
2.1 Implication Graphs 
 
According to theorem 1,  in order for the registers Ri and Rj to be equivalent, it is necessary that Ri1 and Rj1 on the 
one hand, Ri2 and Rj2 on the other hand are also equivalent.  Since, the registers Ri1 and Rj1 ( item for  the registers 
Ri2 and Rj2) can be defined by others operations: 

Ri1 = Ri11 opi1 Ri12; 
Rj1 = Rj11 opj1 Rj12; 

The registers Ri1 and Rj1 are equivalent if: 
·  opi1 and opj1 are of the same type, 
·  registers Ri11 and Rj11 are equivalent, and 
·  registers Ri12 and Rj12 are equivalent. 

 
This procedure will be repeated for all corresponding used pairs of registers (Ri11, Rj11), (Ri12, Rj12), …etc.  However, 
given that the number of registers in a design is limited, this procedure converges rapidly.  We can modelise this 
procedure by a directed graph (Fig. 2).  The nodes represent  the pairs of registers and any edge directed from a node 
Xm to a node Xn means that the registers corresponding to the node Xn are equivalent if the registers corresponding 
to the node Xm are equivalent.  One can say that Xm implies Xn and the graph is known as an Implication Graph.  
Similar graphs are used in the reduction of states in a sequential machine [11]. 
 
2.2 Equivalence Table 
 
To determine the equivalent registers, we construct a table called an equivalence table.  The lines and columns of 
the equivalence table are the registers of the design.  This table is triangular because the equivalence relation 
between registers is reflexive and symmetrical.  Every cell (i, j) of the equivalence table contains: 0 if  the registers 
Ri and  Rj  are not directly equivalent, 1 if the registers Ri and Rj are directly equivalent, or the pairs of registers used 
by the source operations of the registers Ri and Rj.  However, the equivalence table can be completely specified 
while applying the following rule: 

Two registers Ri and Rj are equivalent if and only if they are not implied by any pair of registers as no 
equivalent. 
Indeed, the no equivalence of a pair of registers can imply the no equivalence of all pairs where these 
registers are reused.  The non-existence of the no equivalence for a pair of registers permits us to suppose that 
these registers are equivalent. 

 
2.3 Algorithm 
 
The totally equivalence analysis is described by the algorithm 1.  It is done separately for every type of operation.  
For each state of the state graph, we establish the equivalence relations between the registers defined by the 
operations scheduled in this state.  Then, we construct the equivalence table.  In order to completely specify the 
equivalence table, we construct the implication graphs.  The equivalence table completely specified is then treated 
from the left to the right in an iterative way.  For each iteration, we treat a column of the table.  For each column, we 
determine an equivalence class of the corresponding register.  The equivalence classes represent the maximal sets of 
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equivalent registers.  The complexity of this algorithm is O(n_o.n_s.r2), where n_o is the number of operations, n_s 
is the number of states and r is the number of registers. 

 
_____________________________________________________________________________________________ 
Algorithm 1 
For every type of operations, do  

1. For every state of the state graph, establish the equivalence relations between registers defined by 
operations scheduled in this state, 

2. Construct the equivalence table, 
3. Construct the implication graphs, 
4. Specify completely the equivalence table, 
5. The equivalence table will be treated from the left to the right, 

a- Set i = 1, 
b- Determine equivalence classes, as: 

Ci = {Ri} ∪ {Rj / Tij = 1; j = i+1, i+2,..., r} 
where Tij is the value in the cell (i, j) of the equivalence table and r is the number of registers, 

c- Point all elements of Ci, 
d- Increment i, if i = r then stop, else continue, 
e- If Ri is pointed then return to step (d), else return to step (b). 

____________________________________________________________________________________________ 
 
2.4 Example 
 
Fig. 3 shows an example of a state graph.  In this graph we have noted only operations of the addition type.  Note 
that states without operations are states where operations of others types are scheduled.  For any state, we establish 
the equivalence relations between the registers defined by the operations scheduled in this state.  From these 
equivalence relations, we construct the equivalence table (Table 1). 

(Ri22, Rj22) 

(Ri21, Rj21) 

(Ri12, Rj12) 

(Ri11, Rj11) 

(Ri1, Rj1) 

(Ri, Rj) 

(Ri2, Rj2) 

 1 

 2 

4 

5 

 3 

6 

7 

Fig. 2: An example of an Implication Graph 
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Table 1: The equivalence table incompletely specified 

 
R2 (R1, R2) 
R3 (R1, R3) & (R5, R6) (R2, R3) & (R5, R6) 
R4 0 0 0 
R5 0 0 0 0 
R6 0 0 0 0 (R2, R3) & (R5, R6) 

  R1  R2  R3  R4 R5 
 
The equivalence table (Table 1) is incompletely specified.  In particular, the registers R1 and R3 are equivalent if the 
pairs of registers (R1, R3) and (R5, R6) are equivalent.  Similarly, the registers R2 and R3 are equivalent if the pairs of 
registers (R2, R3) and (R5, R6) are equivalent.  These pairs of registers are not explicitly no equivalent.  Then, we try 
to completely specify the equivalence table.  We obtain the following implication graphs: 
 

 
 
We remark that one node can implicate itself.  Since there is not explicit no equivalence, all pairs of registers are 
assumed equivalent.  The equivalence table is now completely specified (Table 2). 
 
 

(R1, R2) 

(R1, R3) 

(R2, R3) 

(R5, R6) 

Fig. 3: An example of a State Graph 

R4 = R1 + R2 ; 

R5 = R5 + 2 ; 
R6 = R6 + 2 ; 

R5 = R3 + R4 ; 
R6 = R2 + R4 ; 

R1 = R1 + R5 ; 
R2 = R2 + R5 ; 
R3 = R3 + R6 ; 

Ri = 0, i = 1, 2, 3, …, 6. 1 

4

2 

3 5 

6 

8 

9 

7 



Fettach, Elarroum and Hamdoun 

 20 

Table 2: The equivalence table completely specified 
 

R2 1 

R3 1 1 
R4 0 0 0 
R5 0 0 0 0 
R6 0 0 0 0 1 
 R1 R2 R3 R4 R5 

 
Finally, we obtain the following equivalence classes: C1 = {R1, R2, R3}, C2 = {R4}, C3 = {R5, R6}.  Therefore, we 
need only three registers instead of five: r1 = {R1, R2, R3}, r2 = {R4},  r3 = {R5, R6}. 
 
 
3.0 PARTIAL EQUIVALENCE 
 
In the total equivalence analysis, we have assumed that all registers have the same bit width.  However, the registers 
in a digital design do not necessarily have the same bit width.  Hence, the content of a register can be included in the 
content of another register, such registers are partially equivalent.  The partial equivalence analysis allows us to 
improve the register optimisation while increasing the number of equivalent registers.  There are three possible cases 
to have the content of a register Rj included in the content of a register Ri (Fig. 4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.1 First Case 
 
The part of register Ri whose content is identical to the register Rj is completely on the right of Ri (Fig. 4(a)). 
 
Since the arithmetic and logic operations transmit bits from the right side towards the left one, we can complete the 
length of the register Rj by arbitrary bits to have two registers with the same  bit width.  The part added to register Rj 
plays no role, we can choose it identical to the corresponding part of register Ri.  Thus, this case can amount to the 
one of the total equivalence studied previously.  The registers Ri and R’j in Fig. 4(a) are totally equivalent and they 
can be replaced by one register. 

Fig. 4: Possible cases in partial equivalence analysis 

(a) 

R’j 

Rj 

Ri 

(b) 

Ri 

Rj 

(c) 

Rj 

Ri 
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3.2 Second Case 
 
The part of register Ri identical to register Rj is completely on the left side of Ri (Fig. 4(b)). 
 
The problem consists in finding a rule permitting to know if two registers Ri and Rj are partially equivalent.  We will 
limit it to operations of the following form: Ri:= Ri op c, where c is a constant. 
 
Definition: 
 
Let Ri and Rj be two registers with different bit widths.  Let wi and wj denote the bit widths of registers Ri and Rj 

respectively, with wi > wj.  We suppose that registers Ri and Rj are defined in a state Sk by: 
Ri := Ri op x; 
Rj := Rj op' y; 

The registers Ri and Rj are partially equivalent in the state Sk, if the operation op modifies the part of register Ri 
identical to register Rj in the same way as the operation op' modifies register Rj. 
 
However, it is impossible to establish a general rule for two different operations op and op'.  Therefore, we will 
search for a relative rule for every type of operation. 
 
3.2.1 Addition 
 
Example:  Let us suppose that registers Ri and Rj are defined in the state Sk by the following operations: 

Ri := Ri + 16; 
Rj := Rj + 2; 

We also suppose that registers Ri and Rj possess 8 and 5 bits respectively, and they are partially equivalent in the 
previous states.  We can represent registers Ri and Rj as well as operations as shown in Fig. 5. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: An example of the partial equivalence with addition operation 
 
We remark that everything that is on the left of the dotted vertical line is identical for the two registers.  Although 
expressions of operations that define registers Ri and Rj are different, the registers are partially equivalent in the state 
Sk.  Adding 16 to register Ri corresponds to adding 2 to register Rj. 
 
Rule 1: 
If the following operations are scheduled in a same state Sk: 

Ri := Ri + x;   
 Rj := Rj + y;   
then registers Ri and Rj are partially equivalent in the state Sk if x = y.2m, where m is the difference of bit widths of  
the two registers (m = wi - wj). 
 
If we add a constant that is a multiple of 2m to the content of register Ri, then there is no carry that passes from the 
mth  bit of register Ri to the part of register Ri identical to the content of register Rj. 
 
Examples: 
Let us assume that registers Ri and Rj have the following bit widths wi = 8 and wj = 6, (m = wi - wj = 2).  If registers 
Ri and Rj are defined by the following operations: 
1. Ri := Ri + 8; 

Rj := Rj + 2; 
Then, registers Ri and Rj are partially equivalent, since 8 = 2.22 = 2.2m. 

+                         1     0     0     0     0 

Ri Ri := Ri + 16; 

+                        1     0 

Rj Rj := Rj + 2; 
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2. Ri := Ri + 5;   
 Rj := Rj + 1;   
 Then, registers Ri and Rj are not partially equivalent, since 5 ≠1.22. 
 
Remark: 
Unlike the operation of addition, it is impossible to obtain a general rule for the operations of subtraction (Ri := Ri - 
x; Rj := Rj - y).  It is necessary to consider two possible cases for each operation, (Ri >x and Ri <x) for the first 
operation and (Rj >y and Rj <y) for the second operation.  In general, we can have the two cases in a same state Sk, 
since the state graph can be cyclic and the content of the register Ri (or Rj) can be changed at every passage by the 
state Sk.  For this reason, we will not study the partial equivalence for the operation of subtraction. 
 
3.2.2 Multiplication 
 
Let us suppose that the following operations, that define registers Ri and Rj, are scheduled in a same state Sk:  

Ri := Ri * x; 
Rj := Rj * y; 

 
Rule 2:  
The two registers Ri and Rj are partially equivalent in the state Sk  if Ri = Rj . 2

m and x = y, where m is an integer. 
 
Indeed, so that the operation (Rj * x) modifies the part of the register Ri identical to the content of the register Rj in 
the same way as the operation (Rj * y) modifies the register Rj, it is necessary that the sum of the partial products 
does not give a carry to add to the part of register Ri identical to register Rj. 
 
Example: 
Let < Rk > denotes the content of a register Rk. 
If < Ri > = 16, < Rj > = 2 and the two registers are defined by the following operations in a state Sn: 

Ri := Ri * 3; 
Rj := Rj * 3; 

Then, the registers Ri and Rj are partially equivalent in the state Sn.  The content of register Rj is included in the 
content of register Ri as shown in Fig. 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: An example of the partial equivalence with multiplication operation 
 
3.2.3 Right Shift 
 
Rule 3: 
Since, the content of register Rj is included in the one for register Ri, the registers Ri and Rj are partially equivalent 
in the state Sk  for n operations of shift, such as  n <wj,  where wj is the bit width of the register Rj. 
 

Ri 0 1 0 0  0 

Rj 1 0 

Ri := Ri * 3 ; 0 1 1 0 0 0 

Rj := Rj * 3 ; 1 1 0 



Register Optimisation by Equivalence Analysis 

23 

Example: division by 2. 
 
If < Ri > = 16, < Rj > = 2 and the two registers Ri and Rj are defined by the following operations in a state Sn:  

Ri:= Ri / 2; 
Rj := Rj / 2;  

Then, the registers Ri and Rj are partially equivalent in the state Sn, since the content of register Ri is included in the 
content of register Ri. 
 
3.3 Third Case 
 
The part of the register Ri identical to the register Rj is somewhere between the corresponding positions to the first 
and the last cases (Fig. 4(c)). 
 
Since, we can add some arbitrary bits on the left of register Rj, we recover the second case while adding on the left 
of register Rj the corresponding part of register Ri.  So the third case amounts to the second case. 
 
3.4 Algorithm 
 
The partial equivalence analysis is described by the Algorithm 2.  It is done in the same way as the total 
equivalence analysis.  They differ by the type of equivalence relations to establish between registers.  The 
complexity of this algorithm is O(n_o.n_s.r2), where n_o is the number of operations, n_s is the number of states and 
r is the number of registers. 
 
_____________________________________________________________________________________ 
Algorithm 2 
For every type of operations, do  

1. For every state of the state graph establish the equivalence relations between  registers defined by 
operations scheduled in the current state, 

2. Construct the equivalence table, 
3. The equivalence table will be treated from the left to the right, 

a. Set i = 1, 
b. Determine equivalence classes, as: 

Ci = {Ri} ∪ {Rj / Tij = 1; j = i+1, i+2,..., r} 
where Tij is the value in the cell (i, j) of the equivalence table and r is the number of registers, 

c. Point all elements of Ci, 
d. Increment i, if i = r then stop, else continue, 
e. If Ri is pointed then return to step (d), else return to step (b). 

_____________________________________________________________________________________ 
 
 
4.0 IMPACT ON INTERCONNECTION COST 
 
We will focus our discussion on the interconnection between functional units and registers.  As stated earlier, the 
register merging can have a direct impact on interconnection cost.  Indeed, it can cause additional data transfers 
which require additional interconnection elements.  It especially occurs if the register merging is based on the utility 
phase analysis where the contents of the registers to be merged are not necessarily the same, as shown in Fig. 7.  
Since, the two operations of addition are scheduled in different states Si and Sj, they can be bound to a same 
functional unit fu (see Fig. 7(b)).  If the registers R11 and R21 ( the registers R12 and R22 respectively) have disjoint 
utility phases, they can be merged into a single register. Fig. 7(b) and Fig. 7(c) show the Register-Transfer Logic 
(RTL) structure before and after the register merging respectively.  We remark that the RTL structure after merging 
has less registers but at the expense of two added connections.  However, if the registers to be merged have the same 
content, e.g. if they are totally equivalent, then the register merging in this case does not require additional 
interconnection elements but unlike, it allows immediate saving of registers, buses and functional units, as illustrated 
by the example in the Fig. 8.  Since the two operations of addition are scheduled in a same state Sk, they are bound 
to two functional units fu1 and fu2.  The registers R1 and R2 are equivalent in the state Sk if the registers R11 and R21 
on the one hand and the registers R12 and R22 on the other hand are equivalent (Theorem 1).  If all these pairs of 
registers are equivalent in any state of the design, then these registers can be merged.  If we compare the RTL 
structure before merging (Fig. 8(b)) with the RTL structure after merging (Fig. 8(c)), we remark that the latter one 
has less registers, functional units and interconnections than the former one.  Thus, the register merging based on 
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totally equivalence analysis does not only reduce the number of registers but also reduces the interconnection cost 
and the number of functional units previously allocated.  This can result in a lower cost implementation.  Similarly, 
the register merging based on the partial equivalence analysis can also reduce the implementation cost of a design as 
indicated in Fig. 9.  We assume that the registers Ri and Rj have 8 and 5 bits respectively and they are partially 
equivalent in any state.  After the register merging, the two operations can be implemented by the sub-circuit 
required for the execution of the first one.  The result of the operation Rj = Rj + 2, e.g. the content of register Rj can 
be extracted from the content of register Ri.  Fig. 9(c) shows the necessary interconnect at the output port of register 
Ri in the third case (Fig. 4(c)).  Consequently, the register optimisation by equivalence analysis leads to a lower cost 
implementation of a design.  In addition, it improves the speed of the digital systems since this parameter depends 
on the number of the interconnection elements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7: Register merging based on utility phase analysis 

4 registers 
2 mux 
1 UAL 
10 connections 

R11 or R21 R12 or R22   

 R2 R1 

fu 
+ 

  

(c) After merging 

(b) Before merging 

fu 
+ 

R21  R11 

 R2 R1 

R12  R22 

6 registers,  
2 mux, 
1 UAL, 
8 connections. 

(a) 

 
 
Si : R1 = R11 + R12 ; 
 
 
 
Sj : R2 = R21 + R22 ; 
 



Register Optimisation by Equivalence Analysis 

25 

 
 

 

Fig. 9:  Register merging based on partial equivalence analysis 

(b) Before register merging 

8 

8

  Ri 

ROM

fu1  + 

16 

5 

5

 Rj 

ROM

fu2  + 

 2 

(a) 

 
Sk-1 :    ….. 
 
Sk : Ri = Ri + 16 ; 
       Rj = Rj + 2 ; 
 
Sk+1 :  ….. 

8

ROM 

(c) After register merging 

fu1 or fu2 + 

Ri  16 

8 From Rj From Ri 

Ri 

(d) Interconnects at output port of the register Ri 

Fig. 8:  Register merging based on total equivalence analysis 

(c) After merging 

3 registers 
 1 UAL 
 3 connections 

R1 or R2 

R11 or R21 

  

fu1 or fu2 

R12 or R22 

+ 

  

(a) 

 
Si-1 :    ….. 
 
Si : R1 = R11 + R12 ; 
      R2 = R21 + R22 ; 
 
Si+1 :  ….. 

(b) Before merging 

fu2 + 

R22 R21 

R2 

6 registers,  
1 UAL, 
6 connections. 

fu1 + 

R12 R11 

 R2 
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5.0 CONCLUSION 
 
In this paper, we have proposed a novel register optimisation method.  The method is based on the equivalence 
analysis between registers before hand allocated by a conventional register allocation algorithm.  Our approach is a 
post-processing step that allows to go beyond minimisation by existing approaches based on the lifetime analysis.  It 
reduces the implementation cost of a design at several levels.  It allows to optimise the number of registers and 
functional units previously allocated as well as the interconnections. 
 
We will extend the partial equivalence analysis between registers defined by operations having general forms. 
 
 
APPENDIX 
 
Our approach is applicable to scheduled behavioral descriptions with functional unit assignment information, that 
we represent by state graphs. 
 
A State Graph SG = (S, ES) is a directed graph possibly cyclic.  Any node Si∈S represents a state and any 
unidirectional edge eij = (Si, Sj) ∈ ES represents a state transition from the state Si to the state Sj. 
 
The state graph includes information on both control and data flows, and on the schedule.  Each state of the SG is 
annoted by operations scheduled in this state. 
 
Since we assume that the register allocation is done previously, then the operations manipulate registers. 
 
A register is said to be defined in a state if there exists an operation scheduled in this state that can possibly modify 
its content. 
 
A register is said to be used in a state if it appears as operand in the expression of a arithmetic or logic operation 
scheduled in this state. 
 
A register is said to be useful in a state, if it contains the value of a variable that might be used later.  A register is 
useful from the time when it is first written until the time that its content is last read. 
 
Two registers are said to be compatible if they are not useful simultaneously, e.g. if their utility phases do not 
overlap. 
 
Two registers are said to be totally equivalent if they have the same content in any state of a design. 
 
Two registers are said to be partially equivalent if the content of one register is included in the content of the other 
register in any state of a design. 
 
A source operation of a register is the operation whose output operand should be bound to this register. 
 
A destination operation of a register is an operation whose one of its input operands has been bound to this register. 
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