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ABSTRACT 
 
In this work, we present a heuristic method to reduce the computational time and the absolute error from the exact 
solution for obtaining a k-node set with capacity constraint.  This method uses an efficient objective function to 
select an adequate node when deriving the k-node set process.  Reliability computation is performed only once, 
thereby spending less time to compute the reliability.  Moreover, the absolute error of the proposed algorithm from 
exact solution is smaller than that of k-tree reduction method.  Computational results demonstrate that the 
proposed algorithm is a more efficient solution for a large distributed system then conventional ones. 
 
Keywords: Heuristics; Distributed systems; Reliability optimisation 
 
 
1.0 INTRODUCTION 
 
The network reliability problem with respect to a network with a general structure is NP-hard [1, 2].  Efficient 
algorithms easily implemented on a computer are needed to analyse the reliability of large networks.  In addition, 
such algorithms should yield good approximations of the reliability when the networks are so large that the 
computational time becomes prohibitive. 
 
The topology of a network can be characterised by a linear graph.  These network topologies can be characterised 
by their network reliability, message-delay, or network capacity.  These performance characteristics depend on 
many properties of linear graphs that represent the network topology [3-7]: the number of ports at each node (degree 
of a node), and the number of links.  Notably, the number of links directly impacts the system reliability. 
 
This work largely focuses on how to compute nearly maximum system reliability subject to the capacity constraint.  
In the k-tree reduction method [8], the starting node is the first node v1.  To select other adequate nodes in a 
sequential manner depends on the maximum product of reliability by capacity of the k-node set with another node 
until the capacity constraint is satisfied.  The number of reliability computation is still large.  In addition, the 
above product heavily relies on the total capacity of each node but only slightly depends on the k-node set reliability; 
therefore, it barely derives the optimal solution. 
 
In light of the above discussion, this work presents a heuristic algorithm by carefully selecting the starting node 
according to a node’s weight.  Before assigning a node to the selected set, the proposed algorithm probes those 
nodes that are adjacent to any node of a selected node except for the selected nodes.  After obtaining the k-node set, 
SYREL [9] is applied to compute the reliability.  For a large distributed system (DS) on various DS topologies, our 
results demonstrate that the proposed algorithm is more reliable and efficient than conventional algorithms, the exact 
method (EM) [10] and the k-tree reduction method [8] in terms of execution time. 
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2.0 PROBLEM DESCRIPTION 
 
In this section, we describe the problem addressed herein to clarify our research objectives. 
 
2.1 Notations and Definitions 
 
Notations 
G=(V,E) an undirected DS graph where V denotes a set  n the number of nodes in G, n = |V|. 
 of processing elements, and E represents a set  c(Gk) the sum of capacity of k-node set of a DS graph  
 of communication links.  G. 
vi the ith processing element or the ith node. w(Gk) the weight of Gk obtained by the object function. 
c(vi) the capacity of the ith node. d(vi) the number of links connected to the node vi. 
e the number of links in G, e = |E|. w(vi) the weight of the ith node. 
ei,j an edge represents a communication link  w(ei,j) the weight of the link ei,j. 
 between vi and vj. Vadj(Gk) a set of nodes which are adjacent to any node of  
pi,j the probability of success of link ei,j.  Gk. 
qi,j the probability of failure of link ei,j. VGk a set of nodes of Gk. 
P the link reliability matrix where  

kGn  the number of nodes of VGk. 

 P(i,j) = P(j,i)= pi,j , if ei,j exists in G, )(
kGVw  kGn

j 0=∑ w(vj), where vj ∈
kGV . 

 P(i,j) = P(j,i) = 0, otherwise 
kGE  a set of direct links between any two nodes in Gk. 

 for i, j = 1, 2, …, n. 
kGe  the number of links of 

kGE . 

Climit total capacity constraint in a DS. )(
kGEw  ∑ w(ei,j), where ei,j ∈

kGE . 

Gk the graph G with the set K of nodes specified, vs a starting node for deriving a k-node set. 
 and |K| ≥ 2. εs j,  the direct link es,j does not exist, but there are at 

R(Gk) the reliability of k-node set solution of a DS  least two paths whose length is two between vs  

 graph G.  and vj. 

yi,j the number of paths whose length is two  )( kGVε  a set of nodes which εs j, exist in Gk. 

 between vi and vj. )( kGEε  a set of εs j, . 

CD a value of C c v nit i
n

ilim /([ ( )]/ )Σ =1 for tuning w( εs j, ) the weight of εs j, . 

 the rang of capacity constraint , i.e., cd the maximal value of max( c(vi) ) / min( c(vi) ) 
 Climit  = [( ( ))/ ]Σi

n
i Dc v n C= ×1   for tuning the range of each node’s capacity. 

 
Definitions 
Definition 1. A k-node set reliability (KNR) is defined as the probability that a specified set, K, of nodes is 

connected (where K denotes a subset of the set of processing elements). 
 
Definition 2. A node vi is directly connected to a set VGk of nodes if and only if there is a link between vi and a node 

in VGk. 
 
Definition 3. Capacity constraint is defined as the total memory size required when some files are loaded into the 

system. 
 
Definition 4. An number of reliability computations (NRC) is the number of computations of a k-node set reliability 

R(Gk) that the total capacity of Gk are sufficient the capacity constraint. 
 
Definition 5. Absolute error is defined as the value of subtracting an approximate solution from an exact solution of 

KNR. 
 
Definition 6. Relative error is defined as the value of dividing an exact solution into the absolute error. 
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Definition 7. The ratio of average relative error is defined as the value of dividing the summation of relative error 
by the number of the total simulation cases under consideration. 

 
2.2 Problem Statement 
 
Bi-directional communication channels operate between processing elements.  A distributed system can be modeled 
by a simple undirected graph.  A k-node set reliability can be obtained using the sum of mutually disjoint events 
[11]. 
 
A set, K, of nodes can be derived from the given set V that constitutes a DS in that k-node set reliability is adequate 
and the total capacity satisfies the capacity constraint.  The main problem can be mathematically stated as follows: 

Object: Maximize R(Gk) 

subject to: iti
Gv

Cvc
ki

lim)( ≥∑
∈

 

where R(Gk), c(vi), Climit are defined in section 2.1. 
 
Obviously, the problem for a large DS, as in a metropolitan area network, requires a large execution time.  Herein, 
we develop an efficient method that allows the k-node set reliability optimisation in the DS to achieve the desired 
performance.  Owing to its computational advantages, the proposed method may be preferred to the EM and the 
k-tree reduction method when the DS is large. 
 
 
3.0 HEURISTIC ALGORITHM FOR K-NODE SET RELIABILITY 
 
In this section, we present a heuristic algorithm to maximise system reliability.  The analyses performed herein 
assumes that all of the nodes are perfect and the links are unreliable. 
 
3.1 The Concept of Proposed Algorithm 
 
As generally known, the EM [6] spends long execution time in a large DS.  The EM, an optimal solution, cannot 
effectively reduce the problem space.  Occasionally, an application requires an efficient algorithm to compute the 
reliability due to its resource considerations.  Under this circumstance, achieving optimal reliability may not be 
desirable.  Instead, an efficient algorithm with an approximate reliability computation algorithm is highly attractive.  
The topologies of most DS are large and an increasing number of nodes causes the execution time for a solution to 
exponentially grow.  Although capable of reducing computational time, the k-tree reduction method barely derives 
the optimal solution.  Therefore, this work presents an algorithm capable of reducing the total execution time to 
achieve the sub-optimal KNR of DS. 
 
Consider a DS with n nodes and e links.  The capacity constraint is Climit, where its optimal DS topology is the set K 
of nodes.  Restated, the set K of nodes has the maximum reliability and its total capacity exceeds the capacity 
constraint Climit. 
 
The reliability of a set of selected nodes depends on their links and the link reliability.  For any node, the degree of 
that node affects the number of paths of the information that can be transferred from others’ nodes.  Therefore, in 
this work, we employed a simple means of computing the node weight, which takes less time and can quickly 
compute the weight of every node.  The following formula is used to compute the weight of node vi. 

∏−=
=

)(

1
1)(

ivd

z
zii kqvw  (1) 

 
The above formula is easily programmed and reduces many multiplicative operations.  If the degree of vi is d(vi), 
the weight of vi can be computed in one subtraction and d(vi) multiplication.  Thus, we can obtain the weight of 
every node in n subtractions and 2e multiplication. 
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In the network, two nodes may contain many paths between them.  A path’s length is between one and n-1.  To 
reduce the computational time, we consider the path in which the length is not greater than two.  The following 
formula is used to evaluate the weight of link ei,j.  Where yi,j denotes the number in which the length of a path 
between vi are vj is two.  In addition, yi,j is not greater than n-2.  The weight of ei,j can be computed in one 
subtraction and 2(yi,j +1) multiplication.  Thus, in the worst case, when the graph is a complete graph, we can obtain 
all of the weights of each link in n × (n-1)/2 subtractions and n × (n-1)× (n-2)/2 multiplication. 

)(1)( ,,
1

,,

,

jkki

y

z
jiji zz

ji

pqqew
=

Π−=  (2) 

 
In the same manner, if no direct link exits between vi and vj, the following formula is used to evaluate the weight of 

εi j,  whose path’s length is two. 

)(1)( ,,
1

,

,

jkki

y

z
ji zz

ji

pqw
=

Π−=ε  (3) 

 
The following observations can be made on how to reduce the order of a k-node set.  For a given selected k-node 
set, the reliability of this k-node set is not greater than the reliability of its subset.  Thus, during the reliability 
evaluation process, if the total capacity of the subset of the k-node set satisfies the capacity constraint, the k-node set 
should be replaced by its subset. 
 
Assume not only that we have a selected set Gk of nodes with reliability R G k( ), but also that the nodes in Gk are 

all directly connected.  If another set ′G k
 of nodes exists in which just one node is different from Gk and ′G k

 has 

one node which is not directly connected with other nodes in ′G k
, then we say that R G k( )≥ R G k( )′  for R G k( )′  

the reliability of set ′G k
. 

 

v1 v4

v3

v1 v4

v2 v3v2

:denotes unselected node

:denotes selected node

 
         

Fig. 1: Gk ={ v1, v2, v3} Fig. 2: ′G k
={ v1, v2, v4} 

 
By assuming that the 2-terminal reliability between v1 and v2 is R1, this relation can be represented as R({v1, v2}) = R1, 
and R({v1, v3}) = R2, R({v2, v3}) = R3, R({v3, v4}) = R4.  In Fig. 1,we select nodes v1, v2 and v3.  Therefore, R({v1, 
v2}) = R1, R({v1, v3}) = R2, R({v2, v3}) = R3.  According to Fig. 2, we select nodes v1, v2 and v4.  Therefore, R({v1, 
v2}) = R1, R({v1, v4}) = R2 × R4 and R({v2, v4}) = R3 × R4.  Because R2 ≤  1, R3 ≤  1 and R4 ≤  1, R2 × R4 ≤  R2 
and R3 × R4 ≤  R3, the reliability of node v1, v2, v3 ≥  the reliability of node v1, v2, v4.  Restated, R({v1, v2, v3}) ≥  
R({v1, v2, v4}).  However, this assumption is not always true if (a) a path exists between v4 and v1 or between v4 and 
v2, and (b) the reliability of the path is larger than the reliability between v3 and v1 and between v3 and v2.  For this 
reason, in some cases, the maximum reliability cannot be achieved using the proposed method. 
 
This assumption is true if the reliability of any path between X and K is less than that of links between the set K of 
nodes.  Restated, the proposed method can be used to achieve maximum reliability. 
 
In each set of nodes, if the number of members of a set is k, the following formula can be used to compute its weight 
value. 

w(Gk) = { [ )(
kGEw  + w( εs j, )] / [k(k-1)/2] + )(

kGVw  / [(n-1)× k] }� 2+k  (4) 
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According to )(
kGEw  and )(

kGVw  in formula (4), only the sum of the weight of the links between vi and Gk 

and the weight of node vi should be derived.  Therefore, the weight of the k-node set with another node, say vi, can 
be obtained easily and efficiently using the following formula (5). 

w(Gk {vi}) = { [ )(
kGEw  + w( εs j, ) +

kGjikGikGj EeVvVv
jiew

∉∉∈
Σ

,,,
, )( ] / [( (k+1) k) / 2 ] + 

[ )(
kGVw  + w(vi)] / [(n-1)× (k+1)] }� 3+k  (5) 

 
The function of divisor 2+k  in formula (4) is to ensure that the weight of a k-node set is less than the weight of its 

subsets.  Because the k-node set is appended in a sequential manner, the divisor 2+k  can be omitted without 

making a mistake.  Therefore, we use formula (6) instead of formula (4). 
w(Gk) = { [ )(

kGEw  + w( js,ε )] / [k(k-1)/2] + )(
kGVw  / [(n-1)× k] } (6) 

 
Same as the function of divisor 3+k  in formula (5). we use formula (7) instead of formula (5). 

w(Gk {vi}) = { [ )(
kGEw  + w( js,ε ) +

kGjikGikGj EeVvVv
jiew

∉∉∈
Σ

,,,
, )( ] / [((k+1)k)/2] + 

[ )(
kGVw +w(vi)] / [(n-1)× (k+1)] } (7) 

 
Herein, a node of the heaviest weight is selected and serves as the starting node for deriving an adequate k-node set.  
Before assigning one node to a selected set, the k-tree reduction method must probe all nodes except for the selected 
nodes.  To reduce computation time, the proposed algorithm only inspects those nodes that are adjacent to any node 
of the selected node.  In the first node assigned to a selected set, the proposed algorithm also probes nodes in 

)( kGVε .  

In addition, the proposed algorithm selects an adequate node according to maximum [w(Gk {vi})] instead of 

maximum [ ∑× ∈ )()( iGvk vcGR
ki

] of the k-tree reduction method.  The limitation of the latter expression is that 

the product is more sensitive by the total capacity than the k-node set reliability.  Therefore, it barely obtain the 
optimal solution. 
 
3.2 The Proposed Heuristic Algorithm 
 
In the following, we present a heuristic algorithm to maximise K-node reliability optimal design of a DS under 
capacity constraint. 
 
Algorithm KNR 
Step 0. Initialise, read system parameters: n, e, Climit, P, c(vi), i = 1, …, n. 
Step 1. Evaluate the weight of each node using formula (1) and choose the heaviest one as the starting node, say vs, 

for deriving an adequate k-node set.  Notably, Gk is initialised to {vs}. 
Step 2. Find each js,ε  and insert it into

)( kGEε . 

Step 3. Evaluate the weight of each link using formula (2). 
Evaluate the weight of each js,ε in )( kGEε  using formula (3). 

Step 4. Let Vtmp = 
)( kGVε .   /* Vtmp denotes a set of nodes */ 

 Let )(
kGVw  = w(vs). 

 Let )(
kGEw  = 0. 

Step 5. Find vi, in (Vadj(Gk) Vtmp), so that c(Gk) + c(vi) ≥  Climit. 

Step 6. Switch vi 
case 1: No such vi found 

/* find an adequate vi after evaluating each w(Gk {vi}) by formula (7)*/ 

Find vi, such that w(Gk {vi}) = max{w(Gk {vi}) | vi ∈(Vadj(Gk) Vtmp)}. 

Let Gk = Gk {vi}. 
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Let )(
kGVw  = )(

kGVw  + w(vi). 

Let )(
kGEw  = )(

kGEw  +

kGjikGikGj EeVvVv
jiew

∉∉∈
Σ

,,,
, )( . 

Let Vtmp = ∅ . 

∀
js,ε ∈

)( kGEε , let w( js,ε ) = 0. 

Go to step 5. 
case 2: Exact one vi found 

Let Gk = Gk {vi}. 

Break. 
case 3: Many vi found 

/* find an adequate vi after evaluating each w(Gk {vi}) using formula (7)*/ 

Let N = {vi | c(Gk) + c(vi) ≥  Climit} ⊆  (Vadj(Gk) Vtmp). /* N is a set of nodes*/ 

Find vi, such that w(Gk {vi}) = max{w(Gk {vj}) | vj ∈N}. 

Let Gk = Gk {vi}. 

Break. 
Step 7. /* If the total capacity of a subset of the k-node set satisfies capacity constraint, the k-node set is replaced by 

the subset. */ 
Find vi, such that c(vi) = min{c(vi) | vi ∈Gk }. 
Dowhile ((c(Gk) - Climit) > c(vi)) 

Let Gk = Gk - {vi}./*discard vi from Gk*/ 
Let c(Gk) = c(Gk) - c(vi). 
Find vi, such that c(vi) = min{c(vi) | vi ∈Gk }. 

end dowhile 
Step 8. Compute R(Gk) using SYREL, output the k-node set Gk and its reliability. 
End KNR 
 
3.3 Illustrative Example 
 
Fig. 3 illustrates the topology of a DS with eight nodes and eleven links.  The problem involves determining a 
subset of the DS which includes some of the nodes v1, v2, …, v8 whose total capacity exceeds the capacity 
constraints of one hundred units. 

  v2     v3      v4 e2,3    e3,4 

v1   e1,2    v8    e4,8         v5 

 v7            v6 
e6,7 

e1,7         e6,8 
e4,6 

e4,5 

e5,6 

c(v1)=39  c(v2)=45  c(v3)=38  c(v4)=53 
c(v5)=47  c(v6)=49  c(v7)=51  c(v8)=41 

p1,2=0.89  p1,7=0.81  p1,8=0.93  p2,3=0.85 
p2,4=0.91  p4,5=0.82  p4,6=0.83  p4,8=0.96 
p5,6=0.87  p6,7=0.84  p6,8=0.88 

Climit ≥100 

e1,8 

 
 

Fig. 3: The DS with eight nodes and eleven links 
 
In step 1, each node’s weight is evaluated using formula (1).  The weight of v1, v2, …, and v8 are 0.998537, 0.9835, 
0.9865, 0.9998898, 0.9766, 0.9995756, 0.9696 and 0.999664, respectively.  Therefore, v4 is the node with 
maximal weight and is served as starting node for obtaining an adequate k-node set.  Notably, Gk is {v4}. 

In step 2, because εs j,  does not exist, set )( kGEε  to empty. 

In step 3, each link’s weight is evaluated using formula (2). 
In step 4, let Vtmp = 

)( kGVε  = ∅ , )(
kGVw  = w(vs), )(

kGEw  = 0. 
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In step 5, for the set of nodes, (Vadj(Gk) Vtmp)={v3, v5, v6, v8}, find vi, in (Vadj(Gk) Vtmp).  By doing so, c(Gk) + c(vi) 

≥  Climit.  Consequently, c(v4) + c(v5) ≥  100 and c(v4) + c(v6) ≥  100 are obtained. 
In step 6, switch vi is described in step 5.  Because many vi are found, case 3 is executed.  The set of nodes, N = 
{v5, v6} satisfy {vi | c(Gk) + c(vi) ≥  Climit} ⊆  (Vadj(Gk)  Vtmp).  Using formula (7) to evaluate weight, we have 

w({v4, v5}) = 0.5455779 and w({v4, v6}) = 0.5491064, respectively.  Therefore, v6 is selected and Gk = Gk {v6}. 

In step 7, because c(Gk) = 102, Climit = 100, c(Gk) - Climit = 2 < 49 = c(v6) = min{c(vi) | vi ∈Gk}, the k-node set {v4, v6} 
can not be replaced by its set. 
In step 8, the reliability of the k-node set {v4, v6} is computed using SYREL. We have R({v4, v6}) = 0.9974378 
which has the maximum reliability under the capacity constraint. The number of reliability computation is exactly 
one. 
The result is the same as in the k-node set, which is derived by an exhaustive method. 
 
 
4.0 COMPARISON AND DISCUSSION 
 
Results obtained from our algorithm were compared with those of EM and k-tree reduction method.  Although 
capable of yielding the optimal solution, conventional techniques such as EM cannot effectively reduce the reliability 
count.  An application occasionally requires an efficient algorithm to compute reliability owing to resource 
considerations.  Under this circumstance, deriving the optimal reliability may not be feasible.  Instead, an efficient 
algorithm yielding approximate reliability is preferred.  Although the k-tree reduction method can reduce 
computational time in a moderate DS, the error from an exact solution is relatively high. 
 
In contrast to the computer reliability problem, which is static-oriented, the KNR problems in the DS are 
dynamic-oriented since many factors, e.g. node capacity, DS topology, link reliability, and the number of paths 
between each node, can significantly affect the efficiency of the algorithm [12].  Thus, quantifying the time 
complexity exactly is extremely difficult.  Next, the accuracy and efficiency of the proposed algorithm are verified 
by implementing simulation programs in C language that are executed on a Pentium 100 with 16M-DRAM on 
MS-Windows 95.  We use many network topologies and generated several hundreds of data for simulation.  The 
reliability of each link, the capacity of each node and the total capacity requirement were generated using a random 
number generator. 
 

Table 1: Comparison with other methods 
 

Size Exhaustive Method EM KM Proposed Method 
n e Max_Rel k-node set NRC NRC NRC err NRC err 
5 6 0.9462500 1,2,3 32 10 7 0.0122881 1 0 
6 8 0.9383065 4,5,6 64 15 9 0.0444220 1 0 
6 9 0.9950069 1,3,5 64 20 9 0.0280687 1 0 
7 8 0.9187206 1,2,4 128 35 11 0 1 0 
7 11 0.9967785 1,2,3 128 35 11 0.0200188 1 0 
8 10 0.9894613 6,7 256 45 13 0.0390236 1 0 
8 11 0.9974378 4,6 256 44 13 0.0361958 1 0 
10 13 0.9347952 1,7,8,9,10 1024 255 24 0.2155169 1 0 
10 17 0.9994068 2,8,9 1024 119 17 0.0074441 1 0 
10 19 0.9995282 1,5,6 1024 150 17 0.0019527 1 0 
11 17 0.9974023 1,10,11 2048 135 19 0.0120129 1 0 
12 18 0.9858263 3,4,5,6 4096 538 30 0.0299250 1 0 
12 21 0.9990777 1,3,5,6 4096 537 30 0.0056617 1 0.0006069 
13 20 0.9978402 4,6 8192 246 45 0.0189070 1 0 
19 31 0.9979870 6,8,9 524288 2369 37 0.0856661 1 0 

Average   303.53 19.46 0.0371401 1 0.0000404 
 

n: the number of nodes in G, n = |V| e: the number of links in G, e = |E| 
NRC: the number of reliability computation k-node set: the nodes we selected 
Max_Rel: maximum reliability satisfies our constraints KM: k-tree reduction method 



Chiu and Yeh 

52 

Table 2: The results obtained by k-tree reduction method for three DS topologies with eight nodes 
 

T(s) Lr cd CD AES HitR ARErrR UpErrBnd UpErrBndR ARErrRlnk ARErrRT 
4 6 0.354597 20 0.334339 0.288172 0.744694   

3 4 0.444389 40 0.344601 0.610110 0.918607   

0.
0~

1.
0 

2 3 0.797079 20 0.206886 0.606823 0.663967 0.295275  

4 6 0.663204 30 0.218068 0.375427 0.422088   
3 4 0.715659 10 0.260751 0.350206 0.328726   

0.
5~

1.
0 

2 3 0.950087 40 0.139155 0.467417 0.547818 0.205991  
4 6 0.885318 20 0.051238 0.087854 0.100641   
3 4 0.961860 10 0.067056 0.185605 0.188950   

R
in

g 
(n

8e
8)

 

0.
8~

1.
0 

2 3 0.983184 10 0.044877 0.083906 0.085232 0.054390 0.185219 
4 6 0.488085 0 0.227047 0.337566 0.588117   
3 4 0.789343 10 0.295517 0.473265 0.514837   

0.
0~

1.
0 

2 3 0.921606 20 0.281299 0.513867 0.582140 0.267954  

4 6 0.957204 0 0.063099 0.124063 0.130684   
3 4 0.961134 0 0.095304 0.185281 0.186788   

0.
5~

1.
0 

2 3 0.993096 40 0.024850 0.075325 0.076523 0.061084  
4 6 0.992293 30 0.007936 0.012622 0.012670   
3 4 0.998827 0 0.024049 0.026125 0.026133   B

ri
dg

e 
(n

8e
12

)(
Fi

g.
 3

.)
 

0.
8~

1.
0 

2 3 0.998632 0 0.003233 0.003307 0.003321 0.011739 0.113593 
4 6 0.542984 0 0.155424 0.526773 0.233754   
3 4 0.824934 0 0.375674 0.490780 0.643362   

0.
0~

1.
0 

2 3 0.856004 0 0.123988 0.139418 0.185177 0.218362  
4 6 0.930334 0 0.042077 0.058103 0.063987   
3 4 0.960704 0 0.044191 0.060399 0.064188   

0.
5~

1.
0 

2 3 0.993787 0 0.035937 0.059887 0.059991 0.040735  
4 6 0.996169 30 0.000639 0.002053 0.002058   
3 4 0.998619 30 0.000473 0.001379 0.001381   H

yp
er

cu
be

 (
n8

e1
2)

 

0.
8~

1.
0 

2 3 0.999448 0 0.000464 0.000735 0.000735 0.000525 0.086541 
Average  13.3 0.128451 (0.227647) (0.273431) 0.128451 0.128451 

T(s): represents the topology (size) of a DS. 
Lr : the range of link’s reliability, the reliability is obtained by random generator. 
cd : the maximal value of max(c(vi))/ min(c(vi)) for tuning the range of each node’s capacity. 

CD : the value of C c v nit i
n

ilim /([ ( )]/ )Σ =1  for tuning the rang of capacity constraint, i.e. 

 Climit =[( ( ))/ ]Σ i
n

i Dc v n C= ×1  

AES : the value of average exact solution whose value is )/(]([ casessimulationtotalDSRoptΣ . 

HitR : the ratio of obtaining exact solution. 
ARErrR : the value of (Σ[1-(DSRapp / DSRopt)])/(total simulation cases). 
UpErrBnd : the upper error bound whose value is the max(DSRopt-DSRapp) in total simulation cases. 
UpErrBndR : the value of  the max[(DSRopt-DSRapp)/ DSRopt] in total simulation cases. 
ARErrRlnk : the value of average of ARErrR which are in same Lr and T(s). 
ARErrRT : the value of average of ARErrR which are in same T(s). 
(.) : denotes the value is just for reference 
DSRapp : approximation solution which obtained by running heuristic algorithm 
DSRopt : optimal solution which obtained by running exhaustive search algorithm 
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Table 3: The results obtained by the proposed method for three DS topologies with eight nodes 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The mean of notations is described in footnote of Table 2. 
The value of AES is same as Table 2. 

 
For verifying the sensitivity of our proposed algorithm, three data categories were given in different ranges.  For the 
link reliability, we considered the following range: 0.0~1.0, 0.4~1.0 and 0.7~1.0.  For the capacity of each node in 
the system, we consider that the quotient of max(c(vi)) / min(c(vi)), i = 1, …, n, to be not greater than 4, 3 and 2, 
respectively.  For the total capacity requirement, which must be greater than max(c(vi)), we considered the value of 

)/])([(/ 1lim nvcC i
n
it =Σ  to be not greater than 6, 4 and 3, respectively.  Table 1 presents the data on the results 

obtained using different methods for various DS topologies.  In contrast to the EM and the k-tree reduction method, 
the number of reliability computations grew rapidly when the DS topology size is increased.  Tables 2, 3 and 4 list 
the results obtained using the k-tree reduction and our proposed method for three different topologies (ring, bridge, 
hyper-cube) with eight nodes, respectively.  These data show that the proposed method is more effective than the 
conventional method.  When the DS topology and the link reliability are fixed, the parameters cd and CD affect the 
average exact KNR solution.  For example, the average exact KNR solution when cd is set to four and CD is 
assigned to six is worse than when cd is set to three or two and CD is assigned to four or three. 
 
Without loss of generality, the ratio of the average relative error was negatively correlated with the link reliability 
range and the number of links.  The complexity of EM is O(2e × 2n) [10], where e denotes the number of edges and 
n represents the number of nodes.  The complexity of the k-tree reduction method is O(2e × n2) [8].  In the 
proposed algorithm, in the worst case, the complexity of evaluating the weight of each node is O(e) and each link is 
O(e× n), selecting an adequate k-node set is O(n3), and computing the reliability of the k-node set using SYREL is 
O(m2) [9]. 

T(s) Lr cd CD AES HitR ARErrR UpErrBnd UpErrBndR ARErrRlnk ARErrRT 
4 6 0.354597 80 0.035301 0.030782 0.272066   
3 4 0.444389 70 0.016145 0.058998 0.015123   

0.
0~

1.
0 

2 3 0.797079 80 0.000818 0.004899 0.006532 0.017421  
4 6 0.663204 90 0.010678 0.045114 0.106777   
3 4 0.715659 60 0.012166 0.036455 0.055116   

0.
5~

1.
0 

2 3 0.950087 100 0.0 0.0 0.0 0.007615  
4 6 0.885318 30 0.014791 0.037574 0.033226   
3 4 0.961860 90 0.005105 0.049394 0.051054   

R
in

g 
(n

8e
8)

 

0.
8~

1.
0 

2 3 0.983184 100 0.0 0.0 0.0 0.006632 0.010556 
4 6 0.488085 60 0.018571 0.025672 0.068629   
3 4 0.789343 80 0.002145 0.016444 0.018691   

0.
0~

1.
0 

2 3 0.921606 80 0.005562 0.027008 0.030916 0.008759  

4 6 0.957204 70 0.006989 0.029705 0.030067   
3 4 0.961134 30 0.005784 0.015228 0.016305   

0.
5~

1.
0 

2 3 0.993096 100 0.0 0.0 0.0 0.004258  
4 6 0.992293 70 0.003717 0.012292 0.012391   
3 4 0.998827 40 0.000954 0.001759 0.001763   B

ri
dg

e 
(n

8e
12

)(
Fi

g.
 3

.)
 

0.
8~

1.
0 

2 3 0.998632 100 0.0 0.0 0.0 0.001557 0.004858 
4 6 0.542984 60 0.045530 0.087907 0.138565   
3 4 0.824934 70 0.005258 0.017527 0.019959   

0.
0~

1.
0 

2 3 0.856004 100 0.0 0.0 0.0 0.016929  
4 6 0.930334 60 0.005276 0.023076 0.024289   
3 4 0.960704 70 0.019345 0.064484 0.074382   

0.
5~

1.
0 

2 3 0.993787 70 0.004912 0.016157 0.016374 0.009844  
4 6 0.996169 40 0.000493 0.000917 0.000919   

3 4 0.998619 40 0.000394 0.000895 0.000896   H
yp

er
cu

be
 (

n8
e1

2)
 

0.
8~

1.
0 

2 3 0.999448 100 0.0 0.0 0.0 0.000296 0.009023 
Average  71.8 0.008146 (0.022307) (0.042274) 0.008146 0.008146 
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Table 4: The average k-tree reduction method execution time and the proposed method for three DS topologies with 
eight nodes. 

 
     k-tree reduction metohd  the proposed method 

T(s) Lr cd CD  AT(sec) ATlnk(sec) ATT(sec)  AT(sec) ATlnk(sec) ATT(sec) 
4 6  0.189    0.033   
3 4  0.098    0.027   

0.
0~

1.
0 

2 3  0.058 0.1154   0.017 0.0256  
4 6  0.140    0.027   
3 4  0.098    0.055   

0.
5~

1.
0 

2 3  0.049 0.0961   0.011 0.0311  
4 6  0.124    0.044   
3 4  0.098    0.038   

R
in

g 
(n

8e
8)

 

0.
8~

1.
0 

2 3  0.098 0.1071 0.1062  0.027 0.0366 0.0311 

4 6  0.115    0.055   
3 4  0.115    0.038   

0.
0~

1.
0 

2 3  0.041 0.0906   0.022 0.0384  

4 6  0.107    0.033   
3 4  0.115    0.022   

0.
5~

1.
0 

2 3  0.065 0.0962   0.027 0.0274  
4 6  0.123    0.038   
3 4  0.091    0.044   B

ri
dg

e 
(n

8e
11

)(
Fi

g.
 3

.)
 

0.
8~

1.
0 

2 3  0.082 0.0989 0.0952  0.027 0.0366 0.0342 
4 6  0.412    0.098   
3 4  0.247    0.061   

0.
0~

1.
0 

2 3  0.223 0.2939   0.076 0.0787  
4 6  0.395    0.121   
3 4  0.263    0.098   

0.
5~

1.
0 

2 3  0.148 0.2692   0.055 0.0915  
4 6  0.330    0.109   
3 4  0.272    0.071   H

yp
er

cu
be

 (
n8

e1
2)

 

0.
8~

1.
0 

2 3  0.247 0.2830 0.2820  0.066 0.0824 0.0842 
Average  0.1612 0.1612 0.1612  0.0498 0.0498 0.0498 

AT : the seconds of average execution time, 
 AT = (Σ (execution time)) / (total simulation time. 
ATlnk : the seconds of average execution time of same Lr and T(s). 
ATT : the seconds of average execution time of same T(s). 

The mean of other notations is described in footnote of Table 2. 
 
Therefore, the complexity of the proposed algorithm is max(O(n3), O(m2)), where m represents the number of paths 
of a selected k-node set [9].  In the k-tree reduction method, which obtains the exact solution below 13.3%, the 
average error from exact solution surpasses 0.12.  In our simulation case, the reliability count for the proposed 
algorithm is exactly one.  The exact solution can be obtained above 71.85%, in which the average error from exact 
solution is under 0.008.  In a few cases, an adequate node which has arrived for selected node set through many 
paths and the length of a great number of those paths exceeds two, the node may be lost when using our formula for 
computing link’s weight.  Notably, the proposed algorithm cannot obtain the exact solution. 
 
 
5.0 CONCLUSIONS 
 
DS provides a cost-effective means of enhancing a computer system’s performance in areas such as throughput, 
fault-tolerance, and reliability optimisation.  Consequently, the reliability optimisation of a DS has become a critical 
issue.  When some data files are allocated into DS, a specified set, K, of nodes in a DS must be selected to allocate 
the data files such that k-node set reliability is adequate under constraints. 
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Computing DS reliability is generally NP-hard.  Because the k-tree reduction method derives a k-node set reliability 
according to the product of reliability by capacity, it barely obtains an optimal solution.  In this work, we presented 
a heuristic algorithm to obtain a k-node set with sub-optimal reliability.  The proposed algorithm is based on not 
only a simple method to compute each node’s weight and each link’s weight, but also an efficient and effective 
objective function to evaluate the weight of node sets.  Before appending one node to k-node set, instead of 
computing the weight of all links and all nodes of set, only the weight of node vi and links between vi and Gk are 
accumulated.  The proposed algorithm depends on the maximum weight to find an adequate node and assign it to 
k-node set in a sequential manner until the capacity constraint is satisfied.  The reliability computation in our 
algorithm is only exactly one.  The reduction processing is also performed for purifying an adequate k-node set.  
Therefore, KNR in the DS can provide the desired performance. 
 
In addition, the algorithm proposed herein is compared with the EM and k-tree reduction method for various 
topologies.  According to that comparison, the proposed algorithm is more efficient in terms of execution time for a 
large DS.  When the proposed method fails to provide an exact solution, the error from the exact solution is only 
slight. 
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