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ABSTRACT 
 
This paper describes the development process of a discrete wavelet transformation (DWT) chip design.  It comprises 
three phases i.e. simulation by MATLABTM, simulation by SYNOPSYSTM and the final circuit synthesis using 
SYNOPSYSTM synthesis tools.  It also explains the existence of an entity that will ensure accurate data to be 
processed. 
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1.0 INTRODUCTION 
 
Wavelet transformation (WT) is a tool that is widely used in nearly all applications nowadays. J. Morlet [1] in the 
late 1970s introduced the concept that was the result of a drawback of Fourier transformation (FT) [2].  In FT, the 
information from the processed signal could only be extracted either in the time domain or in the frequency domain 
but not both at the same time [3].  WT, on the other hand, will cut the signal into small pieces in the same size and 
will analyse this signal mutually.  This action is achieved by using a special analyser termed as a wavelet analyser 
[2].  It can be presented in a formula shown below: 
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The above function is recursive where s and l represent integer constants for scaling and translation respectively.  
Scaling and translation will determine the type of wavelet that will be produced such as Wavelet Daubechies family 
(an example of one of them is shown in Fig. 1, i.e. Daubechies-6). 
 

 
Fig. 1: Wavelet Analyser 

 
This wavelet analyser (WA) will be used to process every small signal that has been cut off earlier.  To get a signal 
in varied resolutions, a scaling factor as shown below will be used  [2][4]: 
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where W(x) is a scaling function for wavelet analyser Φ , and  kc is a wavelet coefficient.  To make the process 

runs smoothly by using this scaling factor, the coefficient will have to meet the following linear and quadratic 
requirements: 
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where  δ is a delta function and  l is the location index for the wavelet. 
 
 
2.0 DISCRETE WAVELET TRANSFORM 
 
Discrete wavelet transformation (DWT) is a method that uses WA, where it will translate and scale the particular 
WA.  In DWT, the WA must be in discrete form as shown below: 
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where an additional range is determined by a positive value of M and C is a class of wavelet.  The conditions for the 
coefficients are the same as in functions (3) and (4) respectively.  Formula (5) is orthogonal by its own translation 

because it meets this requirement ∫ =− 0)()( dxkxx φφ .  This formula also meets the second requirement that it 

has to be orthogonal with its own translation.  The second requirement i.e. ∫ =− 0)2()( dxkxx ϕϕ , where 

function ϕ  can be given as follows: 
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In DWT implementation, the Pyramid Algorithm [5] as shown in Fig. 2, is used.  The usage of this algorithm 
follows one condition, i.e. the signal size must be a factor of 2, where t[n] and r[n] are highpass and lowpass 
functions respectively.   

 
Fig. 2: Pyramid Algorithm 

 
Both functions can be given below [5]: 
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All the theories and functions that have been discussed earlier will be translated into programming code in 
MATLABTM and simulated to get the result. 
 
 
3.0 DEVELOPMENT PHASES 
 
As mentioned earlier, the programming code in MATLABTM is simulated and before one can proceed to program in 
MATLABTM, one has to determine all the related algorithms that will meet the theories and formulae.  The result of 
the simulation process will be used for verification in a later SYNOPSYSTM process.  This is to ensure the 
simulation result from SYNOPSYSTM is just as accurate. 
 
 
4.0 MATLABTM SIMULATION 
 
In this phase, all the processes that make a DWT are divided into small units relevant to the existing sub-processes.  
One of the algorithms that has been developed is shown below: 
 

1.  Flag = 0 
2.  Calling function get_h to get highpass coefficient form  
     lowpass coefficient 
3.  while  data size >= 2 
     3.1. setting new highpass and lowpass coefficient  
     3.2. if  flag = 0 then 
            3.2.1 for I := 0 to (data size/2) do  

  3.2.1.1 calling lowpass, put result into array d.          
  3.2.1.2 calling highpass, put result into array h. 
   3.2.1.3 copy elements in d to array  temp 
   3.2.1.4 set Flag = 1 

          3.2.2  end for. 
          3.2.3 copy elements in h to final array w in  

 descending order. 
  3.3.else  

           3.3.1 repeat process 3.2.1.1 and 3.2.1.2  
     but input for both lowpass and  

  highpass is form array temp 
            3.3.2  do initialization to array temp. 
            3.3.3  repeat process 3.2.1.3. 
            3.3.4 repeat process 3.2.3 to get next output of  

   highpass  
     3..4. end if.  
      3.5. Data Size = ( Data Size /2) 
4.  end while. 
5.  end. 

 
The following data are used in the simulation exercise that represents one-dimensional data: 
Input X =  
 

[0.1708,0.5724,0.0314,0.8033,0.1000,0.1011, 0.1111, 0.9801,0.9999,0.3311,0.8900,0.1231, 
0.7651,0.0001,0.5555,0.9999] 

 
The output data after the decomposition simulation are shown below in Table 1. 
 
To check that the decomposition has completed the correct processing of the data, the processed data will have to be 
built back to produce the original data. 
 
Table 2 below shows the output data that has been produced by inversion of the lowpass filter process. 
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Table 1: The decomposition result of DWT 
 

Steps I II III IV V 

W(1) - - - - 1.8837 

W(2) - - - -0.3598 -0.3598 

W(3) - - 0.2819 0.2819 0.2819 

W(4) - - 0.5240 0.5240 0.5240 

W(5) - 0.1479 0.1479 0.1479 0.1479 

W(6) - 0.3511 0.3511 0.3511 0.3511 

W(7) - 0.5669 0.5669 0.5669 0.5669 

W(8) - 0.1852 0.1852 0.1852 0.1852 

W(9) 0.0824 0.0824 0.0824 0.0824 0.0824 

W(10) -0.0123 -0.0123 -0.0123 -0.0123 -0.0123 

W(11) -0.5533 -0.5533 -0.5533 -0.5533 -0.5533 

W(12) -0.5037 -0.5037 -0.5037 -0.5037 -0.5037 

W(13) -0.1743 -0.1743 -0.1743 -0.1743 -0.1743 

W(14) 0.6460 0.6460 0.6460 0.6460 0.6460 

W(15) 0.3325 0.3325 0.3325 0.3325 0.3325 

W(16) 0.3859 0.3859 0.3859 0.3859 0.3859 

 
Table 2: Result data of Lowpass Filter Inversion 

 
Steps I II III IV 

D_INV(1) 1.3320 0.7840 0.6628 0.6343 

D_INV(2) 1.3320 1.1414 0.2718 0.2833 

D_INV(3)  1.0997 0.3900 0.2609 

D_INV(4)  0.7423 0.9790 0.4991 

D_INV(5)   1.0227 0.3790 

D_INV(6)   0.6133 -0.0239 

D_INV(7)   0.5884 0.1586 

D_INV(8)   0.7999 0.8820 

D_INV(9)    0.9929 

D_INV(10)    0.5946 

D_INV(11)    0.4963 

D_INV(12)    0.5145 

D_INV(13)    0.4263 

D_INV(14)    0.3360 

D_INV(15)    0.4190 

D_INV(16)    0.6820 

 
Table 3 and Table 4 show the resulting data after inversion of the highpass filter process and the reconstructed data 
as a result of addition of the two results from the inversion of both highpass and lowpass processes. 
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Table 3: Result data of Highpass Filter Inversion 
 

Steps I II III IV 

H_INV(1) 0.2544 -0.3799 -0.2393 -0.4653 

H_INV(2) -0.2544 0.2098 0.4087 0.2891 

H_INV(3)  -0.1900 -0.4009 -0.2295 

H_INV(4)  0.3600 0.2313 0.3024 

H_INV(5)   -0.1330 -0.2790 

H_INV(6)   0.0889 0.1250 

H_INV(7)   -0.1114 -0.0475 

H_INV(8)   0.1557 0.0981 

H_INV(9)    0.0070 

H_INV(10)    -0.2635 

H_INV(11)    0.3937 

H_INV(12)    -0.3914 

H_INV(13)    0.3388 

H_INV(14)    -0.3359 

H_INV(15)    0.1365 

H_INV(16)    0.3179 

 
Table 4: Reconstructed data compared to the original data 

 
No H_INV D_INV H_INV + D_INV Original Data 

1. -0.4653 0.6343 0.1690 0.1708 

2. 0.2891 0.2833 0.5724 0.5724 

3. -0.2295 0.2609 0.0314 0.0314 

4. 0.3024 0.4991 0.8015 0.8015 

5. -0.2790 0.3790 0.1000 0.1000 

6. 0.1250 -0.0239 0.0101 0.0101 

7. -0.0475 0.1586 0.1111 0.1111 

8. 0.0981 0.8820 0.9801 0.9801 

9. 0.0070 0.9929 0.9999 0.9999 

10. -0.2635 0.5946 0.3311 0.3311 

11. 0.3937 0.4963 0.8900 0.8900 

12. -0.3914 0.5145 0.1231 0.1231 

13. 0.3388 0.4263 0.7651 0.7651 

14. -0.3359 0.3360 0.0001 0.0001 

15. 0.1365 0.4190 0.5555 0.5555 

16. 0.3179 0.6820 0.9999 0.9999 

 
Table 4 shows that the reconstructed data is matched to the original data and explains that all the algorithms and 
formulae used in this process were accurately designed.  All the output data will be used in the next simulation 
process using SYNOPSYSTM  tools. 
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5.0 SYNOPSYSTM SIMULATION 
 
In this phase, all the programming code that were developed using MATLABTM are translated into the VHDL 
programming code.  The new thing in this phase is the format of the data.  The floating point format, i.e. IEEE 754, 
is being used. 
 
The architecture from the previous phase will be divided into smaller units and every function of the unit will be 
interconnected with each other.  To get the accuracy in processing, an entity (as mentioned earlier) that controls all 
the flow of data is developed.  Interconnection between entities is shown in Fig. 3.  The coordination of data is also 
included in the figure. 
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Fig. 3: DWT block diagram with data coordination 

 
The following are the result of the simulation and based on this result, it is shown that the algorithm described 
earlier delivered the accurate process successfully. 
 
In Table 5, the results respectively from MATLABTM and SYNOPSYSTM are in the floating-point format.  These 
results are translated into decimal numbers so that they can be compared to the previous result in Table 1.  It shows 
that these results match the result of decomposition and concludes that all functions in VHDL code were 
successfully developed. 
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Table 5: Simulation result of MATLABTM compared to SYNOPSYSTM 
 

No MATLAB result 
simulation (Hexadecimal) 

SYNOPSYS result 
simulation (Hexadecimal) 

Output data in Decimal 

1. 3F711D14 3FF1174A 1.883523 

2. BEB837B4 BEB821D8 -0.359633 

3. 3E905530 3E906C86 0.282078 

4. 3F0624DC 3F062C50 0.524114 

5. 3E177318 3E178F8A 0.148008 

6. 3E013C360 3EB3D888 0.351261 

7. 3F11205A 3F1122C4 0.566937 

8. 3E3DA510 3E3DBAC5 0.185283 

9. 3DA8C150 3DA8D808 0.082443 

10. BC498580 BC481330 -0.012212 

11. BF0DA512 BF0DA0E0 -0.553236 

12. BF0DF27C BF00EA62 -0.503576 

13. BE327BB0 BE3253E4 -0.174148 

14. 3F256042 3F2565C8 0.646084 

15. 3EAA3070 3EAA477E 0.332577 

16. 3EC594AC 3EC59F2A 0.385980 

 
 
6.0 SYNTHESIS OF DWT 
 
After the result has been put through the verification process, the synthesis process is carried out.  In this phase, the 
gate logic diagram as shown in Fig. 4 has been successfully produced.  It shows that the chosen algorithm has met 
the requirements of the design process. 
 
 
7.0 CONCLUSION 
 
The result from the simulation has paved the way for more experiments and trials to produce DWT in a physical 
chip.  Up to this point, all the preparations to proceed to the next development are currently taking place.  The next 
target will be to fabricate the design in an FPGA chip and to test the performance of the chip against the design 
requirements. 
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Fig. 4: Gate Logic Diagram 
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