
Malaysian Journal of Computer Science, Vol. 16 No. 1, June 2003, pp. 37-46

37

MODELLING VARIABILITY FOR SYSTEM FAMILIES

Shamim Hasnat Ripon and Kamrul Hasan Talukder

Computer Science and Engineering Discipline
Khulna University, Khulna 9208, Bangladesh

email: sh_ripon@yahoo.com

Md. Khademul Islam Molla

Department of Computer Science and Technology
University of Rajshahi, Rajshahi 6205, Bangladesh

email: khadem_ru@yahoo.com

ABSTRACT

In this paper, an approach to facilitate the treatment with variabilities in system families is presented by explicitly
modelling variants. The proposed method of managing variability consists of a variant part, which models variants
and a decision table to depict the customisation decision regarding each variant. We have found that it is easy to
implement and has advantage over other methods. We present this model as an integral part of modelling system
families.

Keywords: Product line, System families, Variability model, Traceability, Software reuse

1.0 INTRODUCTION

Designing, maintaining and developing a good software system is a major challenge still in this 21st century.
Reusing [1] of existing good solutions or techniques is currently a promoting solution approached by researchers,
whereas reusing is not always a better offer when this is done in the code level.

In [2], a definition of a software product line is given as “a set of software-intensive systems sharing a common,
managed set of features that satisfy the specific needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way”.

Presently, product line technology is a way of improving the software development lifecycle and reuse by providing
facilities to reuse the model of the system family. By reusing rather than recreating the work products of the system
families, it is possible to increase the productivity and decrease the possible errors significantly [2].

The main idea of software product line is to explicitly identify all the activities which are common to all members of
the family as well as which are different and then arrange them in a model. This implies a huge model which will
help the stakeholders to be able to trace any design choices and variability decisions as well. Finally, the derivation
of the product is done by selecting the required variants from the model and configuring them according to product
requirements.

The system family approach adopts ideas from domain engineering [2] which comprises three parts. Firstly, the
domain analysis forms the commonality and variability data basis. Following this, the domain design phase forms
the flexible generic architecture. Finally, based on this architecture, an application is derived in the implementation
phase.

Today, most of the efforts in product line development are relating to software architecture [3], detailed design and
code. Our work focuses on the variability issues in the domain modelling phase.

Our particular interest is to model variabilities in system families. The commonalities found across the system
families are easy to handle as they are simply integrated into the generic architecture and a part of every family
member. However, intricate problems arise for the variabilities found across members. There is a need to take
proper treatment for these variabilities.

In this paper, we describe our approach to facilitate the treatment with variabilities in system families by explicitly
modelling variants. The model comprises all the information concerning the variants, and according to our
approach, this model will be an indivisible part of modelling system families. We present our approach using a very
simple example of Hall Booking System, a system used both academically and commercially.

Ripon, Talukder and Molla

 38

The remaining part of the paper is organised as follows. Section 2 describes about variability and system family.
Related works are presented in Section 3. A brief introduction of the Hall Booking System is described in Section 4.
Section 5 describes the proposed variability model and its customisation process is illustrated in Section 6. In
Section 7, we give a brief discussion of the proposed model, and following this, Section 8 concludes with the
summary of the work and future direction.

2.0 VARIABILITY AND SYSTEM FAMILY

An explicit variability model as a carrier of all variability related information like specifications, interdependencies,
origins, etc., can play an important and maybe the central role in successful variability management.

In developing a system family, a variability model is to be created in the domain engineering phase which scopes the
system families and develops the means to rapidly produce the members of the family. It serves two distinct but
related purposes. First, it can record decisions about the product as a whole including identifying the variants for
each member of the product line. Second, it can support the application engineering phase by providing proper
information and mechanism for the required variant during product generation (Fig. 1).

Sys tem 1 Sys tem 2 Sys tem n

Sys tem
F am ily M od el

Generate Varia bility M ode l

Fig. 1 : Systems derived from System Family model using Variability Model

Though it is possible to create a software system family without developing a distinct variability model where the
domain is well understood by all members (i.e. developer, stakeholders), the variability model offers some potential
advantages:

• It provides a distinct document characterising all the variants of the family as a whole for both domain
engineers and stakeholders interested in the product line.

• It has a place for recording the selection and application related decision of each variant which is part of a

family and provides support to implement any member product.

• The required variant of any particular product can be validated and verified by it.

While developing the variability model, we have some objectives to be met by the model. The model should specify
both the commonalities and variants of the family members. In the case of variants, it should contain their
application areas, constraints, possible values, dependencies, etc. Along with these objectives, the variability model
should contain the customisation and configuration structure of each variant of the system family which will guide
the application engineer to generate any product from the system family.

3.0 RELATED WORK

Modelling variability resembles with feature modelling as both the approaches model the variabilities found among
system family members. Feature modelling is described in FODA [4]. In this method, features are modelled
hierarchically in a graphical form which classifies the features as mandatory, optional or alternative. Some features

Modelling Variability for System Families

39

can also be classified as “OR” features [5]. A coupling of feature and variability can be found in [6] where
variabilities are represented throughout the development process with features.

In Reuse driven Software Engineering Business (RSEB) approach [1], the UML notations are extended with
variation points to cater for variant requirements and a generic software model is customised by attaching one or
several variants to its variation points.

Several other methods use UML for modelling system families with some extension of UML to represent the
variabilities [7, 8]. In this paper, we will use some of these extensions. Object oriented method is integrated with
feature oriented method in FeatuRSEB [9] which extended the UML based RSEB method with feature model.

Most of the above mentioned methods use the feature diagram of FODA for representing the variabilities of a
product line. Whereas the feature diagram has some restrictions of variability to specify features to some binding
times as well as decomposition types. There are some attributes needed to choose a variant which are absent in the
feature diagram like availability sites (i.e. when, where and whom for a feature is available), variability mechanisms,
binding models (static or dynamic), binding occurrences, description, etc. There are several approaches for solving
variability at the code level like using macros, templates, meta-programming techniques [5] and frame technology
[10]. However, in the domain modelling of product line, there is a lack of approaches for modelling variabilities.

In our approach, we use some simple UML extension to model the system family and we propose a variability
model for system families.

4.0 HALL BOOKING SYSTEM OVERVIEW

We use Hall Booking System family to illustrate our variability modelling mechanism. The system is used in
academic institutions to reserve tutorial rooms and lecture halls, at companies to reserve meeting rooms, and at
hotels to reserve rooms and conference facilities, etc. In another sense, the system can be used for either academic
or non-academic purposes. Users can manage their own reservation with the system. The main purpose and the
core functionality are similar across the Hall Booking System family; however, there are many variants on the basic
theme. One of the basic variants is the charging of booking system. Whenever the system is used for academic
purposes, no charge is needed for booking halls, whereas there may be a need to charge for booking halls in other
areas. In some systems, there are facilities available for seasonal booking as well as multiple bookings.

The descriptive part of the hall booking system consists of feature diagrams, domain defaults modelled in UML and
domain defaults instrumented with variants in UML. Domain defaults describe a typical system in a domain. Our
Hall Booking System default models cover the functionalities shown in Fig. 2.

Fig. 2: Functionalities covered by default Hall Booking System

Feature models are often used to depict the different features of a system. A part of the features of Hall Booking
System is shown in Fig. 3. Extensions of feature diagram described in [5] have been used here. Mandatory features
appear in all the members of the family whereas variant features appear in some members of the family. Variant
features are also classified as Optional, Alternative and Or features. An example of optional feature is Reservation
Charge option. An alternative feature describes one of many features. An example of alternative feature is
Reservation Mode which can be either Single or Block. An or-feature describes any of many features. For example
a Block Reservation can be made by multiple rooms or multiple times or by both. Variants may depend on other
variants.

Make reservation
Delete reservation
Modify reservation
Search/Retrieve reservation
Add a resource (Hall)
Delete a resource (Hall)
Modify a resource
Search/receive a Hall

Ripon, Talukder and Molla

 40

 Legends

 Mandatory Requirements OR Requirements

 Optional Requirements
 Alternative Requ

Fig. 3: Partial feature diagram of Hall Booking System

5.0 THE PROPOSED VARIABILITY MODEL

Our proposed solution consists of a variant model and a decision table, upon which a mo
system family can be developed. The variability model is shown in Fig. 4.

5.1 Model Organisation

The left part of the Fig. 4 depicts the system family model. The system family model cons
and a Variant part. The commonalities found across the members of the system family are
modelled as Default. This will be the main part which will remain in all the products of
hence, they are called default part. These defaults are modelled using UML diagrams. T
help the developer to develop the common part of the product easily. After comparing di
the variant parts are also identified. The default parts as well as the variant parts can al
feature diagrams which hierarchically describe the features of the system.

After identifying the default part and the variant part, models are drawn by combining all th
part as it will give a clear view of the whole system family to both the developers and the sta
help during the selection of product variants.

The feature model as described earlier depicts the features hierarchically and is also used to g
features of the system family as well as the variant model. However, all the variant related
represented by it. We use it only to show the output of the variability model.

When there is a need to generate a product from the system family then requirements
stakeholders. These requirements consist of the default part of the family and some selected
During product generation, these requirements are checked against the variability model.

The main focus of Fig. 4 is the ‘Variability Model’ which consists of a Variant Model and
Variant Model contains the configuration and application information of each variant. Ev
application area and configurability. They have dependencies on other variants and som
depends on some special criteria of the required product. There is also a need of traceability

Reservation Charge

Deposit

Functional features of Hall
Booking System

Notification Reservation Mode
Reservation
Management

H

Block Single DAdd, Modify

Multiple Rooms Multiple Time

Fax

Email

Printed paper Discount
Tax

Basic charge
andle Conflicts

irements

del of a member of the

ists of a Default Model
 identified and they are
 the system family, and
hese UML models will

fferent family members,
so be represented using

e variants to the default
keholders, and this will

raphically represent the
 information cannot be

 are captured from the
 parts from the variants.

 a Decision Table. The
ery variant has its own
etimes, their selection

 of each variant with the

elete

Modelling Variability for System Families

41

model elements to identify which variants are responsible for modelling which part of the family. Along with these
variant properties, there are some basic properties of variants like each variant has some possible values and these
values have some relationships among them and they are considered during the selection of these values. The
variant model contains all these information.

R equ ire m en ts

Va riants

D e fa ult M o de ls
W ith

Va riants

Va riant M odel D ec is ion T a ble

R equ ire d
Pro du ct M od el

F ea tu re D iag ram

S y s te m Fa m i ly
M od e l

D efa ult M o de l

V a ria b i l i ty M od e l

Fig. 4: Proposed Variability Model with System Family model

A decision table is then created for the system families. This table represents the set of choices which differentiate
the family members of the system family. The decision table captures those decisions which an application engineer
must make to define a member of the system family, such as the decision table captures the variant dependencies
among the variants, e.g., if the selection of variant Y is dependent on selection of any values of variant X. The
decision table guides the derivation of any family member from the system family.

The variant model that we have created here can be represented using the usual textual notation arranged in
hierarchical order or it can be represented in a tabular format where each row represents a variant and the columns
represent the individual properties such as values, dependencies, applicable areas, etc. Both the textual and tabular
approaches have equal significance. We are using XML (Extensible Markup Language) to represent the variant
model which will help in future to construct a tool for developing the system family.

5.2 Applying the Model

We have experimentally validated our approach by applying the Variability Model to a portion of the product line:
Hall Booking System. This system can be used in both academic and commercial purposes. UML diagrams are
used to represent the model of the system family. Simple extension mechanisms of UML, namely stereotypes and
tagged values, are used here. The stereotype <<variant>> designates a model element as a variant and the tagged
values are used to keep trace of the models and their corresponding variant elements. The activity diagram in Fig. 5
shows the steps to reserve a hall of Hall Booking System, which combines both the default elements as well as the
variants. The tagged values in the UML models are pointing to the corresponding entry in the variant model as well
as decision table which keep traces of each modelling element, e.g. in Fig. 5, the tagged value of the variant
Notification is given V.4 which means that the variant has corresponding entity in the variant model and in the
decision table whose number is V.4. However, adding these types of stereotypes and tagged values to all modelling
elements possibly results in a complex model which will be difficult to understand and maintain.

Tabular representation has been used in this paper to represent the variability model. The rows in the table represent
the variants and their properties are represented in the columns. Any number of columns can be added to the table
according the number of the properties required to represent the variants. Whenever there is a new variant, it is just
needed to add another entry at the end of the table to place the variant in the variability model. Every variant is
uniquely identified by their number which keeps traceability of the variant. If a variant has multiple choices, then

Ripon, Talukder and Molla

 42

they are considered as values of the variant and they are given the numbers followed by the variant which identify
them clearly.

S tart Reservation

Input

Check A vaialble

S ys tem Confirm s
Reservation

Charge Calculat ion
{Trace= V 2}

< < variant> >

Reservation Not
success

Notificat ion(failure)
{Trace= V 4}

< < variant> >

Notificat ion
{Trace= V 4}

< < variant> >

Handle Conflic t
{Trace= V 10}

< < variant> >

W aiting Lis t S elec t A gain New Tim e

Opt ional

E nd Reservat ion

Reservation
S earch

[Reservarion ok] [Reservation not ok]

Fig. 5: Activity diagram of reserving a hall of Hall Booking System

The OR and Alternative relations of variant values show the relationships among them and they have their usual
meaning like in the feature diagram (as shown in Fig. 6). Applicable Area denotes the particular areas applicable for
any variant. The Hall Booking System has two major applicable areas for the variants which are Academic and Non
Academic. When a variant is applicable to both areas, then it is mentioned as ALL. The dependency is identified by
the numbers given to the variants or their values.

Variant Values of variant Relations Applicable Area Dependency
V1.
Reservation
Mode

V1.1 Single
V1.2 Block

Alternative All None

V2.
Reservation
Charge

V2.1 Deposit
V2.2 Tax
V2.3 Discount
V2.4 Refund

OR Non Academic None

V3.
Block
Reservation

V3.1 Multiple Room
V3.2 Multiple time

OR All V1.2

V4.
Notification

V4.1 Fax
V4.2 Email
V4.3 Printed Paper

OR All None

V5.
Reservation
Discount

V5.1 Block Discount
V5.2 Seasonal
discount

OR Non Academic V2.3, V1.2

Fig. 6: Variant Model for Hall Booking System (Partial)

Modelling Variability for System Families

43

A decision table is then derived from the variant model. A small part of the decision table is given in Fig. 7. In the
table, each variant is placed in a column. Its description, possible choices and traces to the variant are shown in
other columns. When inclusion or exclusion of any variant depends on a variant or its values then that variant is
placed in the subordinate position showing the values for which it can be chosen. For example, Reservation Mode
variant has two possible values either Single or Block. So these two values are placed in the subordinate position of
the parent variant (Reservation Mode) in the decision table (Fig. 7). Similarly when Block reservation is to be
considered then it needs to check its values (Multiple Room and Multiple Time) and these values along with their
other information will be also be subordinated. For each variant and for each of their values, the decision table can
have a corresponding entity.

Variant Description Values Traces
Reservation
Mode

What is the reservation mode? Single, Block
V1

Block
reservation

Block What is the type of
block reservation?

Multiple Room, Multiple
Time

V3

Reservation
charge

Single How is the charge for
reservation?

Deposit, Tax, Discount
V2

Fig. 7: Decision Table for Hall Booking System (Partial)

So, after getting requirements from stakeholders, those are checked with the variant model and the decision table.
The variability model will guide the application engineer to properly choose the required variants very easily.
Therefore, the overall product generation process will be faster and less erroneous.

6.0 CUSTOMISATION PROCESS

By using the proposed variability model, it is now possible to derive any member product from the system family
model according to the user’s requirements. In the proposed variability model, all the possible variants are added to
the default models, which help the developer to select the proper variants according to the user’s requirements.
Suppose there is a need for a Hall Booking System for the university purpose where the user wants to be notified by
printed paper and there is no need to handle conflicts when a reservation is not available. When the developer gets
the above requirements, the required variants are extracted from the variant model. As the required system is for the
academic purpose, those variants which are only for non-academic purposes like reservation charge, are discarded.
Using the variant dependency information given in the variant model, other dependant variants are also extracted
along with the required variants. So the developer does not need to check all the dependencies of the system family.
This results a smaller variant model as shown in Fig. 8.

Variant Values of variant Relations Applicable
Area

Dependency

V1.

Reservation Mode

V1.1 Single

V1.2 Block
Alternative All None

V3.

Block Reservation

V3.1 Multiple Room

V3.2 Multiple time
OR All V1.2

V4.

Notification
V4.3 Printed Paper All None

Fig. 8: Variant model for customised Hall Booking System (Partial)

Similarly, the decision table is also reduced containing only the decisions for the required features. By using the
decision table, the user can take decisions on variants. Suppose the user wants to reserve a hall for multiple time
slots. Using the dependency information of the decision table and the variant model, it is clear that if this variant is
required then there is a need to choose the reservation mode to Block. Following this way the developer can select
the proper variants according to the requirements and consequently can derive the proper product model. A
customised UML activity diagram is shown in Fig. 9. By using this customised model, the developer can now
develop the required customised product in a suitable developing language.

Ripon, Talukder and Molla

 44

S tart Res ervat ion

Input

Chec k A vaialb le

S y s tem Confirm s
Res ervation

Res ervation Not
s uc c ess

Not ific ation(failure)
{Trac e= V 4}

< < variant> >Not ific ation
{Trac e= V 4}

< < variant> >

E nd R eservat ion

Res ervation
S earc h

[Res ervarion ok] [Res ervation not ok]

Fig. 9: Customised Activity diagram of reserving a hall

7.0 DISCUSSION

The proposed variability model that we have described in this paper offers some features which are useful in
handling variants of system family. However, the experiment we have done to explain the model has some
limitations.

Some of the important and valuable features of the variability model are listed below:

• The proposed method contains two parts; the variant model is one of them. The variant model grasps the
variant related information very easily when all the possible variants of the family are available, whereas
when any new variant appears for any members, it can be easily included in the model without intervening
other variants. Similarly, unwanted variants can be removed from the model.

• After developing the variant model, it is very easy to locate any variant and its related dependency

information just by looking the corresponding table entry without going through every possible entry in the
model.

• During application engineering process, it is possible to extract a smaller model from the whole variant

model for the required product by selecting only those variants which have the required application area and
this is done by looking only at the corresponding entry in the model. So having a smaller model, the
application engineer can generate the required application very easily. This also helps in creating a smaller
decision table for the variants.

• The decision table derived from the variant model helps the application engineer take the variant related

decision for selecting any variant for the product he/she is generating.

• The variability model is presented in a text based format which helps better in any kind of processing of the

variants than that of graphical representation.

We believe that our approach has the potential to reduce the complexity in modelling the variabilities of system
families. At the same time, our approach and scope of the experiment have the following limitations:

• Experiment on larger scale
 We have experimented with selective views of the system family and on a small-sized scale. We plan to

cover a wider spectrum of modelling variants on a larger scale in future. We believe that the proposed model

Modelling Variability for System Families

45

can be applied to other views of system families such as state-transition diagram, object-collaboration
diagram, etc.

• Address complex variant dependencies
 So far, we have been dealing with relatively simple functional variant dependencies. We have yet to extend

research to non functional variants. Also, other system families may give rise to different types of
dependencies (such as time-based dependencies) that will require specialised approach.

8.0 CONCLUSIONS

Successful development of software system families requires appropriate organisation and management of the
products involved. A significant characteristic of developing system families is the management of variabilities,
which is a crucial factor for the success of system family approach.

Most of the system family development approaches do not focus on the variant related information. In this paper,
we presented an innovative approach for modelling variants based on the ideas of existing approaches. UML
models have been used to model the system family with their simple extension mechanisms. We propose the variant
modelling approach as an integral part of developing a system family. This model helps the application engineers in
implementing any product from the system family by providing a systematic representation of the variants.

Much work remains to be done. Currently, we are using a XML based prototype for representing the variability
model and we are focusing on creating a tool to support the overall modelling process in an automotive and effective
way.

REFERENCES

[1] I. Jacobson, M. L. Griss, and P. Jonson, Software Reuse Architecture, Process and Organisation for Business

Success. Addison-Wesley, 1997.

[2] P. Clements, and L. Northrop, Software Product Lines: Practices and Patterns. Boston, MA: Addison-

Wesley, 2002.

[3] J. Bosch, Design and Use of Software Architectures. Adopting and Evolving Product Line Approach.

Addison-Wesley, 2000.

[4] K. Kang et al. “Feature Oriented Domain Analysis (FODA) Feasibility Study”. Technical Report, CMU/SEI-

90-TR-21, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Nov. 1990.

[5] K. Czarnecki and U. Eisenecker, Generative Programming: Methods, Tools and Applications. Addison-

Wesley, 2000.

[6] G. J. Van, J. Bosch, and M. Svahnberg, “On The Notion of Variability in Software Product Lines”, in

Proceedings of WICSA 2001, August 2001.

[7] M. Morisio, G. H. Travassos, and M. E. Stark, “Extending UML to Support Domain Analysis”, in

Proceedings of the 15th International Conference on Automated Software Engineering (ASE’00), September
11 - 15, 2000 pp. 321-324.

[8] M. Riebisch et al., “Extending the UML to Model System Families”. Integrated Design and Process

Technology (IDPT) Dallas, Texas, June 2000.

[9] M. L. Griss, J. Favaro, and M. d’Alessandro, “Integrating Feature Modelling with the RSEB”, in Proceedings

of the Fifth International Conference on Software Reuse. Victoria, B.C., June 2-5, 1998. Los Alamitos.

[10] P. Basset, Framing Software Reuse-Lessons from Real World. Yourdon Press, Prentice Hall, 1997.

Ripon, Talukder and Molla

 46

[11] M. Becker et al., “Comprehensive Variability Modelling to Facilitate Efficient Variability Treatment”, in
Fourth International Workshop on Product Family Engineering (PFE-4), Bilbao, Spain, October 2001.

[12] J. Rumbaugh, I. Jacobson, and G. Bosch, The Unified Modelling Language, Reference Manual. Addison-

Wesley, 1999.

BIOGRAPHY

Shamim Hasnat Ripon obtained his B.Sc in Computer Science and Engineering from Khulna University,
Bangladesh in September 1997. He joined as a lecturer at Computer Science and Engineering Discipline, Khulna
University after completing his B.Sc. His research areas include Software Engineering, Software Product Line and
Software Reuse.

Kamrul Hasan Talukder completed his BSc in Computer Science and Engineering (CSE) from Khulna University,
Bangladesh in December 1999. He has been a lecturer in CSE Discipline of Khulna University since May 2000.
His research interest mainly includes Embedded Systems, Formal Verification, Software Engineering, Complier
Construction and Algorithms.

Md. Khademul Islam Molla obtained his B.Sc and M.Sc in Electronics and Computer Science (ECS) from
Shahjalal University of Science and Technology, Sylhet, Bangladesh in 1995 and 1997 respectively. After
completing his Masters he joined as a lecturer at ECS Department in September 1997. Then he joined as a lecturer
of the Department of Computer Science and Technology, University of Rajshahi, Bangladesh. He is presently
serving as an Assistant Professor at Computer Science and Technology Department of Rajshahi University,
Bangladesh. His research interest includes Speech and Language Processing, Computer Vision and Pattern
Recognition, Model Verification for Embedded System Design and Software Engineering.

	1.0	INTRODUCTION
	2.0	VARIABILITY AND SYSTEM FAMILY
	3.0	RELATED WORK
	4.0	HALL BOOKING SYSTEM OVERVIEW
	5.0	THE PROPOSED VARIABILITY MODEL
	Model Organisation
	Applying the Model

	6.0	CUSTOMISATION PROCESS
	7.0	DISCUSSION
	8.0	CONCLUSIONS
	REFERENCES

