
Malaysian Journal of Computer Science, Vol. 17 No. 1, June 2004, pp. 65-73

65

PERFORMANCE PREDICTION FOR PARALLEL SCIENTIFIC APPLICATIONS

Rafiqul Zaman Khan
Information & Computer Science Department

King Fahd University of Petroleum and Minerals
P.O.Box: - 1394, Dahran -31261

K. Saudi Arabia
email: rafiq@ccse.kfupm.edu.sa

Abdul Quaiyum Ansari
Department of Computer Science

Faculty of Management Studies & IT
Jamia Hamdard, New Delhi -62, India

email: aqansari@ieee.org

Kalim Qureshi

Information & Computer Science Department
King Fahd University of Petroleum and Minerals

P.O.Box: - 30, Dahran -31261
K. Saudi Arabia

email: qureshi@ccse.kfupm.edu.sa

ABSTRACT

In this paper we studied performance predictions for parallel scientific applications on a homogeneous cluster of
workstations. Performance prediction is important for analyses of the scalability of parallel applications and the
estimation of the processing time for the application in a loaded/unloaded environment. We developed Automatic
Parallel Application Prediction System (APAPS) for cluster computing environments. Here we are reporting the
accuracy of the APAPS using two scientific applications. The measured result shows that APAPS has high
prediction accuracy.

Keywords: Performance Tool, Prediction of Resources, Computational & Communication Modeling,

Performance Predictions, Parallel Program Performance Predictions

1.0 INTRODUCTION

Message passing parallel programs that run on a cluster of workstations are often used to solve problems that would
take too long to run on conventional sequential machines. Understanding and predicting the performance of such
programs is a complex task. It is important to understand the performance characteristics of computation,
communication and message passing software used for parallelization [1].

One of the keys to making useful, accurate performance predictions in such situations is to have a clear picture of
the communication characteristics of the application. There are many hurdles to obtaining useful, accurate
performance measurements of communications operations for parallel computers and applications.

Performance prediction is an important tool for the performance analysis and debugging of scalable parallel
applications [2]. A performance prediction system models the program performance as a function of the hardware
and software parameters of the system. The execution time of a program can be predicted by changing the software
and hardware parameters in the model on a variety of platforms and configurations. Performance prediction tools
have been implemented for several high-level parallel languages [3, 4].

Due to the popularity of workstation clusters as a parallel computing platform, there is a growing need for
performance tools that support these platforms. One of the most common ways to write parallel programs for a
workstation cluster environment is to use a sequential language augmented with a message-passing library such as
Message Passing Interface (MPI). Although there are some performance debugging tools that work with MPI
programs, to our best knowledge there are no tools capable of accurate performance prediction.

This paper presents the APAPS model as a performance prediction tool designed to solve many MPI programs.
Performance prediction tools and performance debuggers are designed to solve different types of problems. For
example, a debugging tool such as Paradyn [5] would be well suited to discovering deadlocks in a parallel
algorithm, while a performance prediction tool such as APAPS would be better at assessing an application’s
sensitivity to network latency.

Khan, Ansari and Qureshi

66

2.0 RELATED WORK

There are several performance debugging tools that support MPI. The Paradyn [5] performance tools, which were
designed for runtime performance monitoring and bottleneck detection, have been ported to the MPI platform.
Other debuggers are available, including [6, 7] and [8].

Performance prediction tools and performance debuggers are designed to solve different types of problems. For
example, a debugging tool such as Paradyn would be well suited to discovering deadlocks in a parallel algorithm,
while a performance prediction tool such as one similar to APAPS would be better at assessing an application’s
sensitivity to network latency.

3.0 PERFORMANCE MODELS

Performance Models are used to represent the performance aspects based on the hardware and software of the
system. This section describes the performance models used to represent different performance aspects of different
parallel programs. In our designed system several performance models were used which are discussed in the
following subsections.

3.1 Computation Model

In our computational model computational costs are assigned to each operation. To model computation costs, we
assign a cost factor Ci, measured in execution time, to each of the Nops different operations that may be performed
during program execution. We use simple benchmark programs to obtain values and confidence intervals for each
Ci on hardware platforms of interest. It is observed that, on the workstations used, some operations have
significantly different costs than others. For example, a division operation takes over twice as long as a
multiplication and some integer operations take significantly longer than their floating-point counterparts.

Given the cost factors Ci, the predicted computation time Tcomp spent during program execution can be obtained by
the equation given below:

 ∑
=

=
opsN

i
iopicomp NCT

1
)((1)

Where Nop(i) is the number of times operation i is performed during program execution.

3.2 Communication Model

The communication model developed is used to represent the performance of MPI communications over Ethernet.
Similar models could be developed for other networking technologies such as Asynchronous Transfer Mode (ATM).
Many researchers who have modeled the performance of inter-processor communication report that a simple model
that accounts for message latency and network bandwidth gives adequate results [10]. According to this model, the
predicted communication time Tcomm spent during program execution can be expressed in the equation given below:

 ∑
=

+=

cN

i

i
comm

B
T

1 β
α (2)

where Nc is the total number of communications per processor, α is the message latency, β is the network
bandwidth, and Bi is the size of message i. With shared-medium networks such as Ethernet, contention for
bandwidth can significantly affect network throughput. Therefore, to model the performance of MPI
communications over Ethernet, a contention factor is added to Equation (2),

 ∑
=

 ×
+=

cN

i

i
comm

BT
1 β

γα (3)

where a contention factor of λ = P, in which P is the number of processors, gives a good approximation of Ethernet
contention, assuming that all P processors are communicating simultaneously.

Performance Predition for Parallel Scientific Applications

67

3.3 Parallel Application Model

Adding together equations 1 and 3 provides a general equation for predicted execution time.

∑
=

++∑
=

×=+=
cN

i

opsN

i iopNiCcommTcompTtotalT
1
(

1)(α)
β

λ iB×
 (4)

In this equation Nop(i), Nc and Bi vary with the application, the problem size N, and the number of processors P. An
MPI application model consists of equations for these parameters expressed as functions of N and P.

Setting λ to 1.0 effectively provides the communication Equation (2) for local area connections. By adjusting the
value of λ Equation (4) may be used for a variety of network connections.

4.0 SYSTEM STRUCTURE

The APAPS system is designed based on several assumptions. First, the system is restricted to the set of programs
that conform to the SPMD (single program, multiple data) model. As many of the scientific problems are amenable
to the SPMD model, this is not a serious limitation [11]. Another assumption concerns the homogeneity of the
workstations used in the cluster of parallel machines. In our mode, al homogeneous environment is considered to
reduce the complexity of performance prediction. A block diagram of the APAPS system is shown in Fig 1. The
performance prediction process consists of three main phases: static analysis, dynamic analysis, and prediction.
These are explained in detail in the following subsections.

Fig. 1: Structure of the APAPS Performance Prediction System

4.1 Static Analysis

In the static analysis phase, the source-to-source compiler constructs a call graph of the MPI program. For each
basic block, the compiler records the number of times that each type of operation occurs in that block, loop
initialization expressions and termination conditions, and the number of calls to message passing routines. For the
example code of a sample C++ program, the call graph is shown in Fig. 2.

In addition to the construction of a call graph of the program, the source-to-source compiler produces an
instrumented version of the MPI program for use during the dynamic analysis phase. The instrumentation code
consists of statements to count the number of times each basic block of the program is executed, instrumented
versions of the MPI communication routines that record the size of each message transmitted, and additional library
routines used during dynamic analysis.

Source-to-Source
Compiler

Executable
Instrumented MPI

programs

Symbolic
Computation system

Hardware
Description

Equation for
Execution Time

MPI
Program

Instrumented MPI
Program

Software
Description

Khan, Ansari and Qureshi

68

 #include <stdlib.h>
 class A A::a
 {
 public:

void a(); main exit
void b();

 };
 A::c

 int main()
 {

A t;
 t.a();
 t.b();
 exit(0);
 }

Fig. 2: Sample C++ code and the call graph for that code

4.2 Dynamic Analysis

During the dynamic analysis phase, the instrumented MPI program produced by the source-to-source compiler is
executed, and the instrumentation code counts the number of times each basic block is executed and the size of each
message transmitted. Block iteration counts are used to determine true loop iteration counts and branch ratios of
conditional constructs.

The information gathered during dynamic analysis is combined with the per-block operation counts gathered during
static analysis to produce equations for total computation and communication requirements of the program. The
equations, which conform to the syntax of the Maple Symbolic Computation System, constitute the “Software
Description” indicated in Fig. 1.

The “Hardware Description” referred to in Fig. 1 consists of the cost factors Ci in Equation (1), and the α, β and λ
terms describing the network characteristics in Equation (3). As mentioned above, we use benchmark programs to
obtain values and confidence intervals for these parameters.

4.3 Prediction

The equations for computation and communication requirements are combined with the values constituting the
hardware description to produce an equation for total execution time. This equation can be used to predict program
execution time for different problem sizes and numbers of processors and examine other aspects of program
performance. In addition, the factors in the equation can be changed to explore the performance impact of different
types of processors and network media.

5.0 EXPERIMENTAL RESULTS

This section illustrates the use of the APAPS system for predicting the execution time of programs implementing
parallel matrix multiplication. Here we will be discussing two parallel applications, one is Matrix Multiplication
and the other is the Linear Equation Solver. First we discuss matrix multiplication in which our implementation of
parallel matrix multiplication computes C = A × B, where A and B are N × N matrices. To parallelise the
computation, we distribute N/P contiguous rows of A and N/P contiguous columns of B to each processor. Each
processor computes the appropriate sub block of C and then passes its columns of B to the neighboring processor.
After P iterations, the computation is complete, with the resulting C matrix distributed across the processors. Figs.
3(a) and 3(b) show the predicted execution time (in seconds) and percent error of the time predicted by APAPS for
the matrix multiplication program respectively. The predictions generated by the APAPS system are quite good
with less than 15% prediction error. Fig. 3(a) shows some non-linear transition in the middle; this is because of
some heterogeneity in the nature of the cluster of workstations used and the communication overhead between a
numbers of processors.

Performance Predition for Parallel Scientific Applications

69

Fig. 3(a): Execution time for the matrix multiplication predicted by APAPS

Graph Showing the Percentange Error

0

20

40

60

80

100

120

5 15 25 35 45 55 65 75 85 95 105

% Runs

Er
ro

r%

Fig. 3(b): % Error of the actual time for the matrix multiplication program

The second parallel application tested with the APAPS system was a Linear Equation Solver, which is shown below:

111,122,111,100,1 −−−−−−− =++++ nnnnnnn bxaxaxaxa

0
1
2

00,0

11,100,1

22,211,200,2

bxa
bxaxa
bxaxaxa

=

=+

=++

Khan, Ansari and Qureshi

70

where the a’s and b’s are constants and the x’s are unknowns to be found. The method used to solve for the
unknowns x0, x2,----,xn-1 is simple repeated “back” substitution. First, the unknown x0 is found from the last
equation; i.e.,

0x =
0,0

0

a
b

The value obtained for 0x is substituted into the next equation to obtain ;1x i.e;

1,1

00.01
1 a

xab
x

−
=

The values obtained for x1 and x0 are substituted into the next equation to obtain x2; and is implemented with the
following steps:

The above Linear Equation Solver using pipelining with MPI is used to get the resultant values of X0 to Xn. In our
approach the following steps are being used:

1. Initialise random values to arrays a, b from 0 to n.
2. Calculate X0 and send the value of X0 from process P0 to P1.
3. Receive X0 from P0 and Send this X0 to P2 and then Compute X1 and Send this to P2.
4. Receive X0 and X1 from P1 and Send this to P3, then compute X2 and Send it to P3.
5. Receive X0, X1 and X2 from P2 and calculate X3 to get the resultant X0 X1 X2 X3.
6. Repeat the steps 1 to 5 for the problem size (set of equations) taken in the graph.

Figs. 3(c) and 3(d) show the predicted execution time (in seconds) and percent error of actual times for the Linear
Equation Solver program respectively. The predictions generated by the APAPS system are quite satisfactory, and
the prediction error is between 10 to 15%.

5.1 Performance Debugging

The APAPS system can be used to characterise programs for performance debugging purposes. For example, Fig. 4
shows the percentage of time spent in computation and communication for the matrix multiplication program as N
and P vary. This type of graph is useful for determining when communication becomes the limiting factor in
program performance.

Fig. 3(c): Execution time for Linear Equation Solver predicted by APAPS

Performance Predition for Parallel Scientific Applications

71

Percentage Error

0

20

40

60

80

100

120

5 15 25 35 45 55 65 75 85 95 105

% Runs

%
 E

rr
or

Fig. 3(d): % error of the actual time for Linear Equation Solver

6.0 CONCLUSIONS AND FUTURE WORK

In conclusion some of the experimental results obtained with the APAPS performance prediction system for MPI
programs were shown. The results were shown through two parallel applications, Matrix Multiplication and Linear
Equation Solver using MPI with the system showing good performance with lower error rate. In the future, further
studies can be made to improve the accuracy of the system and refine the performance models as necessary. The
APAPS system can be used, as a tool for identifying applications that can benefit from high speed LAN technology
such as ATM. Our performance prediction tool is well suited to this problem because it allows the hardware
characteristics in the performance model to be changed easily. Finally, the developed system can be used as a basis
for performance debugging for MPI programs. The APAPS system allows performance models to be constructed
for each basic block of a MPI program. This information can be used to explore the predicted program performance
of different parts of an application for varying system configurations.

REFERENCES

[1] M. J. Clement and M. J. Quinn, “Multivariate Statistical Techniques for Parallel Performance Prediction”,

Proceedings of the 30th Hawaii International Conference on System Sciences, HICSS-30, January 2000.

[2] T. Fahringer and H. P. Zima, “A Static Parameter Based Performance Prediction Tool for Parallel Programs”,

Proceedings of International Conference on Supercomputing, pages 207–219. ACM SIGARCH, ACM Press,
1999.

[3] H. Wabnig and G.Haring, “Performance Prediction of Parallel Systems with Scalable Specifications-

Methodology and Case Study”. Performance Evaluation Review, 22 (2–4), 46–62 (1995).

[4] M. Gupta and P. Banerjee, “Compile-Time Estimation of Communication Costs of Programs”, Second

Workshop on Automatic Data Layout and Performance Prediction, Rice University, Houston, April 1995.

[5] B. P. Miller, J. K. Hollingsworth, and M. D. Callaghan, “The Paradyn Parallel Performance Tools and PVM”,

Environments and Tools for Parallel Scientific Computing. SIAM Press, 1994.

[6] Message Passing Interface Forum (MPIF). MPI: A Message Passing Interface Standard.
 Available from http://www.mpi-forum.org.

[7] A. L. Beguelin, “Xab: A Tool for Monitoring PVM Programs”, Tech. Rep. CMUCS, pages 93-164 (June

1993), Carnegie Mellon Case Study. University School of Computer Science.

[8] Sun Microsystems. Sun HPC ClusterTools Software. http://www.sun.com/software/hpc/.

[9] S. K. Damodaran-Kamal and J. M. Francioni, “Mdb: A Semantic Race Detection Tool for PVM”,

Proceedings of the 1999 Scalable High Performance Computing Conference, May 1999.

Khan, Ansari and Qureshi

72

[10] D. A. Grove and P. D. Coddington, “Precise MPI Performance Measurement Using MPIBench”, Proceedings

of HPC Asia, September 2001.

[11] Kalim Qureshi and Masahiko Hatanaka, “A Practical Approach of Task Scheduling and Load Balancing on

Heterogeneous Distributed Raytracing System”, Information Processing Letter (IPL), Elsevier Press, Vol. 79,
issue 7, 30 June 2001, pp. 65-71.

Fig. 4: APAPS predicted percent time spent in communication and computation for the matrix multiplication

program

Performance Predition for Parallel Scientific Applications

73

BIOGRAPHY

Rafiqul Zaman Khan is a Lecturer in Information & Computer Science Department at King Fahd University of
Petroleum & Minerals (K.F.U.P.M), Dhahran, Saudi Arabia. His research interests include Distributed Image
Computing, Thread Programming, Concurrent Algorithms Designing, Task Scheduling, and Performance
Measurement He has more then 10 Years University Teaching and Research Experience.

Abdul Quaiyum Ansari is a Professor in the Dept. of Electrical Engineering, Jamia Millia Islamia, New Delhi,
presently serving on deputation to Jamia Hamdard (Deemed University) as Professor and Head in the Department of
Computer Science. He is also the Dean of Faculty of Management & Information Technology, Jamia Hamdard. He
received B.Sc.Engg.(Hons.) degree in Electrical (Low Current) Engg. from AMU, M.Tech. (Integrated Electronics
and Circuits) from I I T Delhi and Ph.D. (Hierarchical Fuzzy Systems) from JMI, New Delhi. He has about 25
research papers in refereed journals and conferences. He is reviewer of papers for the International Journal of Fuzzy
Systems and the Journal of the Computer Society of India. He is a Chartered Engineer of IETE (India) and IEE
(UK), Fellow of the Institution of Engineers (India) as well as of IETE, Sr. Member of Computer Society of India
and IEEE (USA) and Member of IEE (UK). He is also a Member of the National Executive Council of ISTE. His
research interests include AI, Image Processing, Soft Computing, Intuitionistic Fuzzy Sets, Data Communication
and Computer Networks. He is currently working on AICTE sponsored R & D Project entitled “Fuzzy Decision
Support System for Metropolitan Traffic Control”.

Kalim Qureshi is an Assistant Professor in Information & Computer Science Department at King Fahd University
of Petroleum & Minerals (K.F.U.P.M), Dhahran, Saudi Arabia. His research interests include Network Parallel
Distributed Computing, Thread Programming, Concurrent Algorithms Designing, Task Scheduling, and
Performance Measurement. He published about 15 Journals/International-Conference papers. He is a senior
member of IEEE Computer Society.

