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ABSTRACT 
 
In this paper we studied performance predictions for parallel scientific applications on a homogeneous cluster of 
workstations.  Performance prediction is important for analyses of the scalability of parallel applications and the 
estimation of the processing time for the application in a loaded/unloaded environment.  We developed Automatic 
Parallel Application Prediction System (APAPS) for cluster computing environments.  Here we are reporting the 
accuracy of the APAPS using two scientific applications.  The measured result shows that APAPS has high 
prediction accuracy. 
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Performance Predictions, Parallel Program Performance Predictions 
 
 
1.0 INTRODUCTION 
 
Message passing parallel programs that run on a cluster of workstations are often used to solve problems that would 
take too long to run on conventional sequential machines.  Understanding and predicting the performance of such 
programs is a complex task.  It is important to understand the performance characteristics of computation, 
communication and message passing software used for parallelization [1]. 
 
One of the keys to making useful, accurate performance predictions in such situations is to have a clear picture of 
the communication characteristics of the application.  There are many hurdles to obtaining useful, accurate 
performance measurements of communications operations for parallel computers and applications. 
 
Performance prediction is an important tool for the performance analysis and debugging of scalable parallel 
applications [2].  A performance prediction system models the program performance as a function of the hardware 
and software parameters of the system.  The execution time of a program can be predicted by changing the software 
and hardware parameters in the model on a variety of platforms and configurations.  Performance prediction tools 
have been implemented for several high-level parallel languages [3, 4]. 
 
Due to the popularity of workstation clusters as a parallel computing platform, there is a growing need for 
performance tools that support these platforms.  One of the most common ways to write parallel programs for a 
workstation cluster environment is to use a sequential language augmented with a message-passing library such as 
Message Passing Interface (MPI).  Although there are some performance debugging tools that work with MPI 
programs, to our best knowledge there are no tools capable of accurate performance prediction. 
 
This paper presents the APAPS model as a performance prediction tool designed to solve many MPI programs. 
Performance prediction tools and performance debuggers are designed to solve different types of problems.  For 
example, a debugging tool such as Paradyn [5] would be well suited to discovering deadlocks in a parallel 
algorithm, while a performance prediction tool such as APAPS would be better at assessing an application’s 
sensitivity to network latency. 
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2.0 RELATED WORK 
 
There are several performance debugging tools that support MPI.  The Paradyn [5] performance tools, which were 
designed for runtime performance monitoring and bottleneck detection, have been ported to the MPI platform.  
Other debuggers are available, including [6, 7] and [8]. 
 
Performance prediction tools and performance debuggers are designed to solve different types of problems.  For 
example, a debugging tool such as Paradyn would be well suited to discovering deadlocks in a parallel algorithm, 
while a performance prediction tool such as one similar to APAPS would be better at assessing an application’s 
sensitivity to network latency. 
 
 
3.0 PERFORMANCE MODELS 
 
Performance Models are used to represent the performance aspects based on the hardware and software of the 
system.  This section describes the performance models used to represent different performance aspects of different 
parallel programs.  In our designed system several performance models were used which are discussed in the 
following subsections. 
 
3.1 Computation Model 
 
In our computational model computational costs are assigned to each operation.  To model computation costs, we 
assign a cost factor Ci, measured in execution time, to each of the Nops different operations that may be performed 
during program execution.  We use simple benchmark programs to obtain values and confidence intervals for each 
Ci on hardware platforms of interest.  It is observed that, on the workstations used, some operations have 
significantly different costs than others.  For example, a division operation takes over twice as long as a 
multiplication and some integer operations take significantly longer than their floating-point counterparts. 
 
Given the cost factors Ci, the predicted computation time Tcomp spent during program execution can be obtained by 
the equation given below: 
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Where Nop(i) is the number of times operation i is performed during program execution. 
 
3.2 Communication Model 
 
The communication model developed is used to represent the performance of MPI communications over Ethernet. 
Similar models could be developed for other networking technologies such as Asynchronous Transfer Mode (ATM).  
Many researchers who have modeled the performance of inter-processor communication report that a simple model 
that accounts for message latency and network bandwidth gives adequate results [10].  According to this model, the 
predicted communication time Tcomm spent during program execution can be expressed in the equation given below: 
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where Nc is the total number of communications per processor, α is the message latency, β is the network 
bandwidth, and Bi is the size of message i. With shared-medium networks such as Ethernet, contention for 
bandwidth can significantly affect network throughput. Therefore, to model the performance of MPI 
communications over Ethernet, a contention factor is added to Equation (2), 
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where a contention factor of λ = P, in which P is the number of processors, gives a good approximation of Ethernet 
contention, assuming that all P processors are communicating simultaneously. 
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3.3 Parallel Application Model 
 
Adding together equations 1 and 3 provides a general equation for predicted execution time. 
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In this equation Nop(i), Nc  and Bi  vary with the application, the problem size N, and the number of processors  P.  An 
MPI application model consists of equations for these parameters expressed as functions of  N and  P.  
 
Setting λ to 1.0 effectively provides the communication Equation (2) for local area connections.  By adjusting the 
value of λ Equation (4) may be used for a variety of network connections. 
 
 
4.0 SYSTEM STRUCTURE 
 
The APAPS system is designed based on several assumptions.  First, the system is restricted to the set of programs 
that conform to the SPMD (single program, multiple data) model.  As many of the scientific problems are amenable 
to the SPMD model, this is not a serious limitation [11].  Another assumption concerns the homogeneity of the 
workstations used in the cluster of parallel machines.  In our mode, al homogeneous environment is considered to 
reduce the complexity of performance prediction.  A block diagram of the APAPS system is shown in Fig 1.  The 
performance prediction process consists of three main phases: static analysis, dynamic analysis, and prediction.  
These are explained in detail in the following subsections. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Fig. 1: Structure of the APAPS Performance Prediction System 

 
4.1 Static Analysis 
 
In the static analysis phase, the source-to-source compiler constructs a call graph of the MPI program.  For each 
basic block, the compiler records the number of times that each type of operation occurs in that block, loop 
initialization expressions and termination conditions, and the number of calls to message passing routines.  For the 
example code of a sample C++ program, the call graph is shown in Fig. 2. 
 
In addition to the construction of a call graph of the program, the source-to-source compiler produces an 
instrumented version of the MPI program for use during the dynamic analysis phase.  The instrumentation code 
consists of statements to count the number of times each basic block of the program is executed, instrumented 
versions of the MPI communication routines that record the size of each message transmitted, and additional library 
routines used during dynamic analysis. 
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 #include <stdlib.h>        
 class A A::a 
 { 
  public: 

void a( );    main    exit 
void b( ); 

 }; 
                                                                   A::c 
 
 int main( )        
 {  

A t; 
 t.a( ); 
 t.b( ); 
 exit(0);  
 } 

 
Fig. 2: Sample C++ code and the call graph for that code 

 
4.2 Dynamic Analysis 
 
During the dynamic analysis phase, the instrumented MPI program produced by the source-to-source compiler is 
executed, and the instrumentation code counts the number of times each basic block is executed and the size of each 
message transmitted.  Block iteration counts are used to determine true loop iteration counts and branch ratios of 
conditional constructs. 
 
The information gathered during dynamic analysis is combined with the per-block operation counts gathered during 
static analysis to produce equations for total computation and communication requirements of the program.  The 
equations, which conform to the syntax of the Maple Symbolic Computation System, constitute the “Software 
Description” indicated in Fig. 1. 
 
The “Hardware Description” referred to in Fig. 1 consists of the cost factors Ci in Equation (1), and the α, β and λ 
terms describing the network characteristics in Equation (3).  As mentioned above, we use benchmark programs to 
obtain values and confidence intervals for these parameters. 
 
4.3 Prediction 
 
The equations for computation and communication requirements are combined with the values constituting the 
hardware description to produce an equation for total execution time.  This equation can be used to predict program 
execution time for different problem sizes and numbers of processors and examine other aspects of program 
performance.  In addition, the factors in the equation can be changed to explore the performance impact of different 
types of processors and network media. 
 
 
5.0 EXPERIMENTAL RESULTS 
 
This section illustrates the use of the APAPS system for predicting the execution time of programs implementing 
parallel matrix multiplication.  Here we will be discussing two parallel applications, one is Matrix Multiplication 
and the other is the Linear Equation Solver.  First we discuss matrix multiplication in which our implementation of 
parallel matrix multiplication computes C = A ×  B, where A and B are N ×  N matrices.  To parallelise the 
computation, we distribute N/P contiguous rows of A and N/P contiguous columns of B to each processor. Each 
processor computes the appropriate sub block of C and then passes its columns of B to the neighboring processor.  
After P iterations, the computation is complete, with the resulting C matrix distributed across the processors.  Figs. 
3(a) and 3(b) show the predicted execution time (in seconds) and percent error of the time predicted by APAPS for 
the matrix multiplication program respectively.  The predictions generated by the APAPS system are quite good 
with less than 15% prediction error.  Fig. 3(a) shows some non-linear transition in the middle; this is because of 
some heterogeneity in the nature of the cluster of workstations used and the communication overhead between a 
numbers of processors. 
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Fig. 3(a): Execution time for the matrix multiplication predicted by APAPS 
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Fig. 3(b): % Error of the actual time for the matrix multiplication program 
 

The second parallel application tested with the APAPS system was a Linear Equation Solver, which is shown below: 
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where the a’s and b’s are constants and the x’s are unknowns to be found.  The method used to solve for the 
unknowns x0, x2,----,xn-1 is simple repeated “back” substitution.  First, the unknown x0 is found from the last 
equation; i.e., 

0x  =
0,0

0

a
b  

The value obtained for 0x is substituted into the next equation to obtain ;1x  i.e; 

1,1

00.01
1 a

xab
x

−
=  

The values obtained for x1 and x0 are substituted into the next equation to obtain x2; and is implemented with the 
following steps: 
 
The above Linear Equation Solver using pipelining with MPI is used to get the resultant values of X0 to Xn.  In our 
approach the following steps are being used: 

1. Initialise random values to arrays a, b from 0 to n. 
2. Calculate X0 and send the value of X0 from process P0 to P1. 
3. Receive X0 from P0 and Send this X0 to P2 and then Compute X1 and Send this to P2. 
4. Receive X0 and X1 from P1 and Send this to P3, then compute X2 and Send it to P3. 
5. Receive X0, X1 and X2 from P2 and calculate X3 to get the resultant X0 X1 X2 X3. 
6. Repeat the steps 1 to 5 for the problem size (set of equations) taken in the graph.  

 
Figs. 3(c) and 3(d) show the predicted execution time (in seconds) and percent error of actual times for the Linear 
Equation Solver program respectively.  The predictions generated by the APAPS system are quite satisfactory, and 
the prediction error is between 10 to 15%. 
 
5.1 Performance Debugging 
 
The APAPS system can be used to characterise programs for performance debugging purposes.  For example, Fig. 4 
shows the percentage of time spent in computation and communication for the matrix multiplication program as N 
and P vary.  This type of graph is useful for determining when communication becomes the limiting factor in 
program performance. 
 

 
 

Fig. 3(c): Execution time for Linear Equation Solver predicted by APAPS 
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Fig. 3(d): % error of the actual time for Linear Equation Solver 

 
 
6.0 CONCLUSIONS AND FUTURE WORK 
 
In conclusion some of the experimental results obtained with the APAPS performance prediction system for MPI 
programs were shown.  The results were shown through two parallel applications, Matrix Multiplication and Linear 
Equation Solver using MPI with the system showing good performance with lower error rate.  In the future, further 
studies can be made to improve the accuracy of the system and refine the performance models as necessary.  The 
APAPS system can be used, as a tool for identifying applications that can benefit from high speed LAN technology 
such as ATM.  Our performance prediction tool is well suited to this problem because it allows the hardware 
characteristics in the performance model to be changed easily.  Finally, the developed system can be used as a basis 
for performance debugging for MPI programs.  The APAPS system allows performance models to be constructed 
for each basic block of a MPI program.  This information can be used to explore the predicted program performance 
of different parts of an application for varying system configurations. 
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