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ABSTRACT 
 
A persistence framework can be defined as a set of Java classes providing functionalities that map objects to a 
relational database management system (RDBMS) and/or a multidimensional database management system 
(MDBMS) so that these objects could be saved, retrieved, deleted and queried.  Today, many business applications 
are developed using some kind of object-oriented programming language and objects in these applications are 
manipulated through SQL statements that are embedded in the application software.  When these applications are 
small and have very little changes, embedding SQL statements in these applications is fine; but for applications 
which are dynamic and large, such applications are very hard to maintain and manage.  Hence, a robust and 
extendable persistence framework layer that contains classes for mapping objects to a relational DBMS and/or a 
multidimensional DBMS allows a developer to concentrate on the development of the actual application.  The 
design of the framework uses a set of good object-oriented design patterns that allow developers to extend 
functionalities and features easily.  This allows saving, updating and querying of objects in the persistence store.  In 
short, this paper focuses on the design, development and mapping of objects to the R/MDBMS persistence 
framework.  
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1.0 INTRODUCTION 
 
Many business applications developed today use relational database management systems (RDBMSs) or some 
variation of RDBMS such as multidimensional database management systems (MDBMSs or post-relational or 
extended relational data models) to maintain and manipulate business data in these applications.  RDBMSs and 
MDBMSs are widely accepted in many medium-to-large organisations because they allow data to be managed and 
manipulated effectively and efficiently.  Nevertheless, if a system is programmed using some object-oriented 
programming languages (OOPL) such as Java or C++ and is modelled using some object-oriented modelling 
techniques such as UML and considering that RDBMS and MDBMS data models do not support object-orientated 
(OO) characteristics such as permitting a class to inherit from other classes and attributes to be defined as complex 
and collection type, developers must consequently embed SQL statements in their applications in order to map 
classes to tables so that classes can be managed persistently in a persistence storage. 
 
 
2.0 CHARACTERISTICS AND WEAKNESSES OF RDBMS AND MDBMS 
 
A relational data model emphasises data stored in a persistence store to be normalized so that each tuple has exactly 
one value for each attribute, every non-key value must fully depend on the key value, and every non-key value must 
be non-transitively dependent on the primary key.  A RBDMS is simple to understand and data are stored in a two-
dimensional table that has only columns and rows.  Each row is a record (or tuple) and each column is a field (or 
attribute).  Every field contains simple values such as integer, real, character and date.  A RDBMS provides a 
manipulation language called structured query language (SQL) that has a strong mathematical foundation using 
relational algebra which allows advanced research in areas such as query optimisation.  The relationships between 
tables in a RDBMS are constructed through attributes in both tables.  As for a many-to-many relationship between 
two tables, a join table is used that contains the primary key from both tables in order to relate tuples from both 
tables.  Attribute values of both tables are duplicated in a third table in order to the exhibit many-to-many 
relationship of these two tables.  Hence, multiple table accesses are required and additional storage spaces are 
needed.  The relational model captures the majority of the system’s requirements and semantics of the real world but 
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there are a number of semantics that a relational model does not capture. A relational data model does not support 
tables inheriting attributes from other tables.  Moreover, an attribute in a table cannot be defined as a complex data 
type or a collection of data objects.  In addition, a relational data model does not provide manipulative facility in a 
table, and as a result, operations to a table must be defined separately.  As a result, maintaining a large business 
application is very time consuming and costly.  Thus, many multimedia applications, CAD/CAM applications, time-
series applications and applications that need rich, real-world semantics to be captured are difficult to manage and 
model using a relational data model. 
 
A multidimensional database management system (MDBMS) is an extension of a RDBMS.  A MDBMS stores, 
retrieves, updates and queries a record (or an item) using an extended version of SQL.  A multidimensional DBMS 
provides developers the option to embed a table in an attribute.  A MDBMS does not need to comply strictly to a 
relational model’s requirements, that is, a MDBMS does not need to be a 1NF data model.  Even though a 
multidimensional DBMS supports complex objects at the attribute level, each attribute can hold only one table or a 
collection of values.  This feature allows an application to manage a limited version of a complex data type in an 
attribute. A multidimensional DBMS maintains one-to-one and one-to-many relationships for any two tables within 
a table.  This is an improvement compared to a RDBMS.  Hence, it only needs a single read and write operation.  As 
for a many-to-many relationship, the MDBMS will need a join table to maintain this relationship.  Nevertheless, it 
needs a tuple instance in a table to maintain a many-to-many relationship through a variable length multi-value field.  
A multidimensional DBMS has a few advantages over a traditional relational DBMS, but a MDBMS does not 
support tables inheriting from other tables and complex attribute types with multiple layers. It does not allow 
manipulative features to be defined within a table. 
 
 
3.0 PROVIDING OODBMS FEATURES THROUGH OBJECT-RELATIONAL DBMS AND 

PERSISTENCE FRAMEWORK 
 
An object data model must support objects and identity, complex data types, class hierarchies with inheritance, 
composition, association or relationship and operations in a class.  These features allow the data model to capture 
the semantics of complex business applications, constructing CAD/CAM, time-series and multimedia systems.  
Nevertheless, a lot of business applications used by medium and large business organizations are not migrating to 
the object-oriented database management system (OODBMS) because it is not widely accepted by the industry, lack 
of standards, products are not mature and lack of support from large database software vendors.  In order to provide 
features of an OODBMS, data must be made persistent in a mature and widely accepted database management 
system such as RDBMS or MDBMS.  As a result, some database vendors provide an object-relational DBMS 
(ORDBMS) or object-extended MDBMS that provides features of an OODBMS, while others provide a robust and 
extensible persistence class framework that allows developers to manipulate data in a RDBMS or MDBMS through 
this framework.  As a result, developers can develop applications using C++ and Java using classes, association, 
composition, inheritance and methods to save objects persistently in the persistent store through one of these 
approaches. 
 
A number of ORDBMS products are reviewed in this research. ORDBMS is RDBMS with added object-oriented 
extensions.  Some of the major relational database players that enter into the ORDBMS world are Oracle 8.x from 
Oracle, Universal Server (Illustra) from Informix, UniSQL/X from UniSQL, Universal Database from IBM and 
PostgreSQL [20].  Query languages used in these systems are extensions from SQL2 with some proprietary features. 
Support for SQL3 is still in its infant stage.  The market share for ORDBMS will be larger than ODBMS [20] and 
the selection of which database vendors choose to pick very much depends on a number of criteria.  These include 
support for object-oriented programming languages, simplicity of development, extensibility, complex data 
relationships, scalability and product maturity.  The research also experiments with a few free object-relational 
database systems such as GigaBASE [21], PREDATOR [22], PostgreSQL [23] and LogicSQL [24].  These object-
relational database systems are developed by either individuals, small groups of database enthusiasts or universities.  
The level of features supported by these products varies and their implementations vary depending on the maturity 
of the ORDBMS.  However, most of these ORDBMSs have not supported all the core and optional features of the 
object-oriented data model proposed by ODMG [26]. 
 
Persistence frameworks such as Hibernate from JBoss [16], jRelationalFramework from SourceForge.net [17], 
ObjectDriver from INFOBJECTS [18] and VisualBSF from Objectmatter [19] are powerful and popular 
object/relational persistence frameworks that address the needs of the software developers. Hibernate supports 
association, inheritance, polymorphism, composition and collection with its extended query language.  Most of the 
major SQL database systems such as mySQL, Oracle, PostgreSQL and Sybase database systems are supported by 
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Hibernate, jRelationalFramework, VisualBSF and ObjectDriver. jRelationalFramework is one of these frameworks 
that provides customisable ‘hooks’ for pre- and post- database operations so that customised processes can be 
embedded into the framework.  ObjectDriver creates relational schema automatically but Hibernate uses XML 
documents to map objects to table schema and jRelationalFramework maps each persistent class by inheriting 
PersistentObject class and marking persistent attributes using the markModifiedPersistentState() method provided 
by PersistentObject. VisualBSF is one of these products that uses extensive graphical interfaces.  Table schema for 
business classes is automatically generated.  The mapped tables can be further managed by the developers in order 
to fine-tune the mapped mechanisms.  In short, these persistence framework vendors research and manufacture their 
products using their unique approaches.  Secondly, they only support relational database systems.  Third, mappings 
are not completely automated.  Some of them require manual mappings.  Lastly, features supported by them are not 
complete and consistent.  Hence, this research project intends to consolidate and propose a persistence framework 
architecture with a set of features, with the intention of producing a generic persistence framework using design 
patterns that suits both relational and non-relational database management systems. 
 
3.1 Research Objective 
 
This research project aims at designing and implementing a robust and extendable layer of objects-to-R/MDBMS 
persistence framework that consists of a set of Java classes which allows developers to map objects to a relational or 
multidimensional DBMS (R/MDBMS).  These Java classes use open database connectivity (ODBC) API, Java 
database connectivity (JDBC) and other thin JDBC libraries to connect to both the RDBMS and MDBMS.  In the 
designing of the classes, many reusable design patterns are used.  These patterns are Adapter, Singleton, Façade, 
Proxy and Iterator. These reusable and well-defined patterns help producing a robust and reusable persistence 
framework. 
 
The primary research objective of the project intends to consolidate various persistence framework architectures and 
mapping algorithms by providing the following set of features: 
 

i. To utilise at least two database systems that are entirely different such as relational database and 
multidimensional database in the framework in order to demonstrate that the framework is versatile to 
handle both relational and non-relational database systems. 

ii. To architect a generic and extendable persistence framework using design patterns so that customised codes 
can be embedded at the ‘hooks’ provided by the framework for calculation and validating purposes. 

iii. To examine various mapping techniques and propose a mapping technique that auto-generates mapped 
table schemas for persistent classes through the use of active meta data maintained by framework during 
run-time.  

iv. Provide a Data Service On-demand feature by designing and implementing an XML-based two-tier caching 
algorithm for large objects navigational purposes. 

v. To extend an object query language and integrate it to the application programming interfaces provided by 
the persistence framework. 

vi. Design and implement an enhanced object-based two-phase locking protocol with an innovative Time-Out 
option mechanism to resolve dead-lock problems. 

 
3.2 An Overview on Objects to R/MDBMS/XML Persistence Framework 
 
The persistence framework proposed in this paper as shown in Fig. 1 emphasises on ease of class extension, ease of 
class modification, usage of class setters and getters, ease of database connection setting to various databases and 
dynamic translation of object manipulation statements to internal structured query statements.  In addition, class 
ClassModuleFile allows loading and unloading of classes’ schemas.  Layered design structure is used to construct 
the entire persistence framework.  
 
The topmost layer is called persistence framework layer (PFW) that is responsible for the class schema to table 
schema maintenance task.  It works together with class SQLManageTable to create, alter and delete RDBMS and 
MDBMS tables as class schema changes.  Future development would be to enhance the functionalities of this layer 
to incorporate database migration and updating options.  This will allow existing data to be migrated to a new 
database when the class schema changes.  The PFW layer consists of four primary classes.  They are 
PFWmapMaster, PFWmapRDBMSlayer, PFWmapMDBMSlayer and PFWmapXMLlayer classes.  
 
In the database layer (DL), there are four sub layers in which each layer plays different roles.  The first sub layer is 
called internal database naming (IDN) in which classes in this layer allow developers to name the type of database 
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used and define the name of a RDBMS or MDBMS product that is intended to be connected to.  Two interfaces are 
defined in the first sub layer that allow developers to use consistent method names to activate appropriate methods 
when connecting, disconnecting and setting the type of API driver to be used.  The second sub layer is called 
database transactional setting (DTS).  This layer allows developers to set database parameters such as set auto 
commits on and set transactional processing feature off.  The third layer is called database parameter setting 
(DPS).  This layer allows developers to set the type of middleware or driver such as JDBC or ODBC driver to be 
used to connect to the underneath database engine.  The fourth sub layer is called database broker (DB).  This layer 
performs various actual connection activities such as connecting to a relational database engine and disconnecting 
from a database engine.  In this layer, all database broker classes are implemented from a ConnectionBroker 
interface. 
 
The third layer is called object SQL layer (OSQL).  This layer has four classes that are responsible for validating 
the object SQL statements and mapping object SQL statements to SQL92 statements. 
 
The fourth layer is called SQL statement processing (SP) layer. It contains five primary classes that manage tables 
in a database management system, process SQL statements produced by the object SQL layer and perform the actual 
database operations such as delete and insert. 
 

 

Insert Delete UpdateSelect

SQLProcessor

DBMS DBMSPersistenceBroker

ConnectionBroker

rdbms mdbms xml

RDBMSpersistenceBroker XMLpersistenceBrokerMDBMSpersistenceBroker

ClassModule
ClassSchema
ClassSchemaDetail

TableDbms
TableSchema
TableSchemaDetail

PFWmapMaster
PFWmapRDBMSlayer PFWmapping utilities

Utilities

PFWmapMDBMSlayer

PFWmapXMLlayer

OMLDeleteClass OMLSelectClass
OMLInsertClass OMLUpdateClass

rdbmsBroker mdbmsBroker xmlBroker

SQLManageTable

PFWmapDBMSlayer

Objects To R/MDBMS/XML Persistence Framework

ClassModuleFile

PFW

DL

OSQL

SP

 
 

Fig. 1: Objects to Relational, Multidimensional and XML Persistence Framework 
 
In the framework, Iterator design pattern [25] is used to make accessing instances of a collection easier and not 
exposing the underlying representation.  The following sample Java code illustrates that use of Iterator design 
pattern allows additional checking and sequential access of items in a collection.  This design pattern also has the 
strength of type validation of object. 
 
public class course 
{ 
  String name; 
  int credithours; 
} 
 
public class student 
{ 
  List courselist = new List();   
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  public void addcourse(course acourse) {}   
  public student.Itr iterator()  
  { return new Itr(); }   
  public class Itr 
  { 
    private Iterator I = courselist.iterator(); 
    public boolean hasNext()  
    { return i.hasNext(); } 
    public course next() 
    { return (course)i.next(); } 
  } 
} 
 
3.2.1 Persistence Framework Layer 
 
Fig. 2 shows a complete diagram of how each class in the persistence framework layer communicates to other 
classes.  In this layer, interface PFWmapDBMSlayer is designed using the Adapter design pattern.  The intent of the 
adapter design pattern [25] is to provide the interface a client expects, using the services of a class with a different 
interface.  Methods defined in interface PFWmapDBMSlayer are to be ‘materialised’ in classes that inherit from it.  
The Facade design pattern is also applied here for class PFWmapMaster where it provides a unified interface to a set 
of interfaces in a subsystem.  The PFWmapMaster class makes other classes such as class PFWmapRDBMSlayer 
and PFWmapMDBMSlayer easier to communicate with and use.  The use of the Facade design pattern [25] is to 
provide an interface that makes a subsystem easy to use.  Class PFWmapMaster and class classModuleFile are 
designed using the Singleton design pattern because they have only one instance and provide a global point of 
access to it.  The single global access point provided by the Singleton design pattern always maintains one instance 
throughout the life of the application available to all classes in the framework. 
 

class PFWmapMaster class extend_InheritedPropertiesclass classModuleFile

class PFWmapRDBMSlayer
interface PFWmapDBMSlayer

class ClassModule

class ClassSchema

class ClassSchemaDetail

class TableDbms

class TableSchema

class TableSchemaDetail

Persistence Framework Layer

class PFWmapXMLlayer

class PFWmapMDBMSlayer

 
Fig. 2: Persistence Framework layer 

 
Class PFWmapMaster refers to classModuleFile to obtain a reference to the active class schema definition.  The 
PFWmapMaster class contains three primary methods; PFWmapRDBMSlayer, PFWmapMDBMSlayer and 
PFWmapXMLlayer, that carry out mapping processes for different types of databases.  In the mapping process, 
ClassModule, ClassSchema and ClassSchemaDetail are referred and instances of TableDbms, TableSchema and 
TableSchemaDetail are created.  A set of SQL statements is created as an output of this process.  These SQL 
statements are used to create, update or delete tables in the targeted database engines. 
 
3.2.2 Database Layer 
  
The database layer as shown in Fig. 3 provides a few services.  Each sub layer carries out specific functionalities. 
Many classes in this layer are designed using good design patterns from [4].  The Adapter design pattern is applied 
in this layer for interfaces DBMSPersistenceBroker and ConnectionBroker.  The Adapter design pattern allows 
interfaces to be converted to the client’s interface.  The Proxy design pattern is used to design the class proxyObj.  
This design pattern provides a surrogate for another object to control access to it.  It serves as a placeholder for 
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records that are regularly manipulated.  This design allows frequently read/write records to be fetched from the 
persistence store and stored into the memory for fast access and reduces network load.  Class DBMS is designed 
using the Singleton pattern because it has only one instance throughout the life span of the entire application. 
 

DBMS

DBMSPersistenceBroker

ConnectionBroker

rdbms mdbms xml

RDBMSpersistenceBroker XMLpersistenceBrokerMDBMSpersistenceBroker

rdbmsBroker mdbmsBroker xmlBroker

Database Layer

 
 

Fig. 3: Database layer 
 
The internal database naming (IDN) sub layer contains classes that allow developers to name the type of database 
used and define the name of the RDBMS or MDBMS product intended to be connected to.  The database 
transactional setting (DTS) layer allows developers to define whether to turn on or turn off auto commits, set 
transactional processing to auto rollback and whether records are in read-only mode.  The database parameter setting 
(DPS) layer allows developers to define the type of middleware to be used.  Some database engines permit 
alternative drivers that deliver better performance in the place of the original driver.  This layer allows developers to 
have a few middleware choices.  The last layer (DB) performs various actual connection activities such as 
connecting to a relational database engine and disconnecting from a database engine. 
 
3.2.3 Object SQL Layer 
 
The Object SQL Layer as shown in Fig. 4 has four classes that are responsible for validating the object SQL 
statements and mapping object SQL statements to SQL92 statements.  These four classes are OMLDeleteClass, 
OMLInsertClass, OMLSelectClass and OMLUpdateClass.  These classes retrieve active class definitions from the 
memory by referencing to ClassModule class.  A ClassModule holds a collection of ClassSchema instances and a 
ClassSchema object holds a collection of ClassSchemaDetail instances.  The structure used in this design is called 
composite design. Such a design pattern forms a tree structure to represent part-whole hierarchies [4].  It allows 
clients to treat individual objects and compositions of objects uniformly.  For each instance of ClassSchema, it holds 
a collection of TableSchema and each ClassSchemaDetail object holds a collection of TableSchemaDetail instances.  
This allows each class definition stored in ClassSchema to refer to the appropriate table schema.  For each attribute 
in the class definition, it refers to the appropriate table and table field information.  The output of this layer produces 
a set of SQL statements that will be used by the SQL Statement Processing layer. 
 
3.2.4 SQL Statement Processing Layer 
 
In the SQL statement processing layer as shown in Fig. 5, the Singleton design pattern is used to design class 
SQLProcessor that has only one instance throughout the entire life span of the application. 
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Fig. 4: SQL Statement Processing layer 
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Fig. 5: SQL Statement Processing Layer 
 
The SQL statement processing (SP) layer contains five primary classes that manage tables in a database 
management system.  It processes SQL statements that are produced by the object SQL layer and performs the 
actual database operations such as delete and insert.  These five classes; SQLManageTable, SQLInsert, SQLDelete 
and SQLUpdate, inherit from SQLProcessor.  SQLProcessor defines SQL statements that will be processed by these 
classes. 
 
 
4.0 CONCLUSION 
 
Many aspects of such an implementation still require further enhancement and refinement.  The list of tasks that 
need to be addressed in this research includes incorporation of features such as association and composition; 
performance issues such as instances traversal in a composition; implementation of mapping using multidimensional 
DBMS; and incorporation of XML capabilities so that data of a particular database could be exchanged with other 
applications. 
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