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ABSTRACT 
 
In this paper, we present a new procedure for detecting clusters within unlabelled data sets of the form 

{ } p
nxxxX ℜ⊂= ,...,, 21 .  This procedure quickly explores the elements of X  with the main goal of discovering the 

clusters they form.  It provides, in addition to the number of clusters, an initial prototype of each detected cluster.  
For this, the only assumptions made are that (1) the two least similar elements of X  belong necessarily to two 
different clusters, and (2) each element possesses a level of similarity with its nearest prototype greater than a 
certain threshold.  This threshold can be either user defined or automatically determined by the algorithm using a 
validation process.  The effectiveness of this method is demonstrated on both synthetic and real test data sets. 
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1.0 INTRODUCTION 
 
Clustering is a common problem in many application domains including industry, business, telecommunications, 
medicine, and social sciences.  Depending on the context, this problem can be found in the literature under different 
appellations, such as numerical taxonomy in biology and ecology, typology in social sciences, partition in graph 
theory, and cluster analysis or unsupervised learning in pattern recognition [1].  Formally, a clustering problem can 
be posed in terms of finding the best partition of a data set { } p

nxxxX ℜ⊂= ,...,, 21 , called learning base, into c  
clusters or homogenous groups such that the objects of each cluster should be more similar to each others than are 
objects belonging to different clusters. 
 
It is a NP-hard optimisation problem for which optimal solutions can only be found in exponential time, which is 
still beyond the power of modern computers [2].  In spite of this, and due to its importance in image analysis, vector 
quantisation, data mining, among other fields, this problem has been the subject of intensive research for many 
years.  As a result, many sub-optimal clustering methods can be found in the literature [3-5]; most of them requiring 
the number of clusters as an input, although in real world applications this information is seldom available. 
 
The purpose of this article is to introduce a new technique for automatic detection of the number of clusters.  This 
technique is mainly based on a quick exploration of the n  elements of X  in order to discover the number of 
clusters they form.  For this, a similarity measure and an associated threshold are needed.  This operation provides, 
in addition to the number of clusters c , an initial representative or prototype of each detected cluster.  The c 
resulting prototypes are then optimised using the well-known Fuzzy C-means (FCM) algorithm [5].  The threshold 
parameter can be interpreted as the minimum of similarity that each object should have with its nearest prototype.  It 
can be either fixed by the user or automatically varied between two limits whose values are derived from the data at 
hand.  In the latter case, more than one candidate solution may be obtained.  To select the best one among these 
solutions, a validity process is finally performed based on a quality measure.  A more formal description of this 
method is given in Section 3 whilst Section 2 is dedicated to a succinct presentation of unsupervised fuzzy learning 
and the FCM algorithm.  Experimental results are discussed in Section 4.  Finally, Section 5 contains our conclusion 
and provides some ideas for further research. 
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2.0 UNSUPERVISED FUZZY LEARNING 
 
Unsupervised fuzzy learning is a generalisation of hard clustering that presents the advantage of dealing with 
overlapping clusters or classes [5].  It is mainly characterised by the fact that instead of assigning each datum to a 
unique class, it assigns to the datum a membership degree to each class [6], which is very useful in real-world 
applications where boundaries among clusters are usually not well-defined [7].  More formally, a partition of X  
into c  fuzzy clusters can be defined with a )( nc×  constrained membership matrix [ ]ikuU = , ci ≤≤1 , nk ≤≤1 , 
where [ ]1,0∈iku  denotes the degree to which the k th object belongs to the i th class, and 
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The first constraint ensures that the membership of each object is distributed over all the c  clusters whilst the 
second constraint guaranties that no cluster is empty or totally equal to X . 
 
Given the matrix U  we can derive a prototype for each class i  using the fuzzy mean vector 
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where 1>m  is a weighting exponent whose role is explained in the next section.  Inversely, given the matrix of 
prototypes, { } p

cvvvV ℜ⊂= ,...,, 21 , we can easily determinate the membership degree of each object to each class 
according, for example, to a relation of the form 
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where ik vx −  denotes the distance between the k th object vector and the i th prototype, 0>q  is a weighting 
exponent, and the sum in the denominator guaranties the constraints of (1a) and (1b). 
 
Thus, by iteratively recalculating U  terms using V  ones and vice versa, one can hope to converge to an optimal 
pair ( **,VU ) that optimises some objective criterion; and the FCM algorithm described below is one of the most 
popular methods used to achieve this optimisation. 
 
2.1 Fuzzy C-means Algorithm (FCM) 
 
FCM is an iterative procedure conceived to minimise the objective function 
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which can be interpreted as a fuzzy measure of the total error incurred in representing the n  samples nxxx ,...,, 21  by 
the c  prototypes cvvv ,...,, 21 .  It is a non-convex function that possesses many local minima, corresponding each to 
an approximate solution, i.e. to a sub-optimal partition of X  [8].  In 1981, Bezdek proved that by alternately 
recalculating U  and V , using Eqs (2) and (3), the convergence to a local minimum of mJ  is guaranteed by the 
constraint 
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where the parameter 1>m  serves to control the fuzziness degree of the final partition [5].  In effect, when 1→m , 
this partition tends to be a crisp one, i.e. 1→iku  or 0→iku  ki,∀ .  Inversely, when ∞→m , kicuik ,  1 ∀→ ; and 
the final partition tends to be the fuzziest one.  In this work, we have chosen 2=m , which is by far the most 
commonly used value in practice [5, 9]. 
 
Thus, starting from an initial matrix of prototypes 0V , whose elements can be randomly or otherwise chosen, and 
using Eqs. (2), (3) and (5), FCM iteratively recalculate tU  and tV , where t  denotes the iteration index, until the c  
prototypes stabilise, i.e. until the difference 
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becomes smaller than a tolerable threshold ε , or until a maximum number of iterations maxt  is reached. 
 
 
3.0 THE CLUSTER DETECTION PROCEDURE 
 
Assuming that the learning base X  contains at least two different classes (otherwise there is no need to partition it) 
and given a measure of inter-points similarities, say sim , and an associated threshold, th , which can be interpreted 
as the minimum of similarity that each element should have with the prototype of its class, we start by seeking the 
pair ),( ji xx  of the least similar elements of X .  Then, considering that ix  and jx  should necessarily belong to two 
distinct classes, we create two first clusters ( 2=c ) initialising their prototypes 1v  and 2v  with ix  and jx , 
respectively.  The 2−n  remaining objects are then successively explored and for each of these objects, say kx , we 
calculate the similarity to the prototype of each previously detected class, i.e. the c  classes detected before 
analyzing kx  ( 2≥c ).  Then, depending on the maximum of these similarities, two different cases are envisaged.  
The first case corresponds to 
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In this case, we consider that kx  is not recognisable.  Consequently, a new class is created and its prototype 
initialised to kx .  In other words, as kx  is not sufficiently similar to any prototype of the previously detected 
clusters, it is supposed to come from a not yet discovered cluster and is, therefore, utilised to initialise the prototype 
of a new cluster.  Thus, before analysing the next element, if any, we put 1+= cc  and kc xv = .  In the second case, 
which corresponds to 
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we do not need to create a new cluster because kx  can acceptably be considered as coming from an already detected 
cluster, probably the one whose prototype is the most similar to kx .  However, instead of completely assigning kx  
to a unique cluster, we make a softer decision and partially assign it to all the previously detected classes, using the 
similarities ),( ik vxsim , ci ≤≤1 , as membership degrees.  As a result, the prototype of each class i  becomes 
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j iji vxsimkn  nkci ≤≤≤   ;1  denotes the fuzzy cardinality of the i th class after processing kx . 
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Rewriting the sum in Eq. (9) under the form ∑ −
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Eq. (10) means that existing classes compete for each new object kx  whose maximum of similarity exceeds th .  
However, instead of updating the prototype of a single class, the winner, we update all the c  prototypes according 
to their respective similarities with kx .  This learning scheme can be viewed as a fuzzy generalisation of the winner 
takes all (WTA) rule used by some vector quantisation (VQ) methods [10].  It offers a better way to exploit the 
global information about the geometrical structure of X  carried by each new vector object kx .  Indeed, this 
information is not limited to the similarity of kx  with a unique prototype, but distributed over its similarities with all 
the c  prototypes. 
 
3.1 Similarity Measure and Similarity Threshold 
 
In the previous section, we have explained the principle of cluster detection without discussing two important 
questions: (1) how can we measure the inter-points similarities?  And (2) how can we choose the threshold th ?  It is 
clear that in the absence of any prior information about the structure of X , it is quite difficult to provide general 
answers to these questions, i.e. answers that would be acceptable in different situations and for different data 
structures.  In practice, however, choosing a particular measure can sometimes be guided by the shape of expected 
classes.  It is well known, for example, that measures based on Euclidean distance favour the creation of hyper-
spherical and equally sized classes.  The same measures may lead to mediocre results in the case of non-spherical or 
unequally sized classes.  In this work, the following empirical relation has been used as a default measure 
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where A  is the pp ×  matrix defined by 
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The choice of this measure, which can be replaced by any other one that the user may prefer, is justified by the 
following properties [11]: (i) [ ] p

kiki xxxxsim ℜ∈∀∈ ,  ;1,0),( , (ii)  1),( =ki xxsim  for ki xx = , and (iii) 

 0),( →ki xxsim when ;jkjij rxx →−  pj ≤≤∀1 .  More importantly, Eq. (11) can also be used as a membership 

degree measure, i.e. ikik uvxsim =),( , which is an essential property for the learning rule.  As to the threshold th , it 
can theoretically vary between the limits 
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The first limit corresponds to 2=c  because the condition of creating a new class (Eq. (7)) will never be verified for 
this special value of th .  The second limit corresponds to nc =  because in this case, Eq. (7) will always be verified, 
which leads to a partition where each object forms its own singleton.  Thus, by varying th  between these limits 
using a certain step th∆ , different sets of c  prototypes can be detected.  Note, however, that this technique is 
intrinsically different from repeating a procedure which requires c  as an input for different c  values.  Furthermore, 
in our case nothing guaranties that a partition can be obtained for any value of c . 
 
3.2 The Validation Problem 
 
The above description shows that, unless a particular value of th  can be confidently chosen, using different th  
values can lead to more than one candidate solution.  To select (or validate) the best one among these solutions, we 
used the Xie and Beni validity index [12] defined by 
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which is one of the most reliable criteria available in the literature [13, 14].  According to Eq. (14), which can be 
interpreted as a measure of the ratio “compactness/separation” of the fuzzy partition defined by the pair ( )VU , , the 
best solution is the one that minimises XB . 
 
3.3 Pseudocode 
 
The pseudo-code of the entire procedure, as we have implemented it in C++ programming language, is given below 
where the default value of each parameter is indicated between braces. 
 
Given an unlabelled data set { } p

nxxxX ℜ⊂= ,...,, 21  
1. choose a similarity measure, sim [Eq. (11)] 
2. find the least similar objects, ix  and jx  
3. swap( ixx ,1 ); swap( jxx ,2 ) // to avoid unnecessary tests 
4. choose: minth  [Eq. (13a)], maxth  [Eq. (13b)], th∆  [10%], maxt  [500], ε  [0.00001], m [2] 
5. for each th  do { put ;2=c  ;11 xv =  ;22 xv =  

• for 3=i  to n  do 
if ( thvxsim jicj

<
≤≤

),((max
1

) do { 1+= cc ; ic xv = ; } 

else update jv  using Eq. (13) for cj ,...,2,1=  
• initialise: ),...,,( 210 cvvvV = , 0=t  (number of iterations) 
• repeat { ;++t  

calculate tU  using 1−tV  and Eqs. (3) and (5); calculate tV  using tU  and Eq. (2) 
} until ( ε<− −1tt VV  or maxtt = ) 

• Use UU =*  and VV =*  to calculate validity criterion );,( XVUXB  
} 

6. return the appropriate number of clusters, *c , and their prototypes ),...,,( *
*

*
2

*
1

*
cVVVV = . 

 
 
4.0 EXPERIMENTAL RESULTS 
 
To illustrate the usefulness of the proposed algorithm, we present here some example results, obtained from a 
collection of five test data sets we called X1, X2, X3, Iris, and Iris23.  As depicted in Figs. 1-3, X1, X2, and X3 are 
visibly organised into two compact and well separated clusters for X1, two less compact and slightly overlapping 
classes for X2, and three well separated, but not very compact classes for X3.  Despite their simplicity, such two-
dimensional data sets can be pedagogically important due to the possibilty of visualisation they offer. 
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Fig. 1: Test data set X1 Fig. 2: Test data set X2 Fig. 3: Test data set X3 
 
As a four-dimensional example, we considered Iris data, which consists of 150 real observations originated from 
three different varieties of flowers (Setosa, Versicolor, and Virginica), each with 50 points [15].  This is a very 
popular example, widely used for testing clustering algorithms; and one of its main characteristics is that the first 
class is well separated from the other two, which exhibit a substantial overlap.  Consequently, one can argue for both 

2=c  or 3=c  for this particular example.  Iris23 is a subset of Iris, containing only the two overlapping clusters.  
This example is interesting in the sense that it permits to test the ability of clustering algorithms to separate well 
overlapping classes. 
 
Tables 1 and 2 summarise the results obtained for the five examples.  These results were obtained using the default 
value of each parameter except for th∆ , whose value was fixed to 1% in order to increase the number of solutions.  
For each data set, the th  column of these tables shows the smallest values of th  that led to a number of clusters 
comprising between 2 and 10.  We can remark that some values of c  are skipped for some data sets.  This is the 
case, for example, for X2 and c∈{3,6,9}.  To verify whether an optimal result can be found for these c values in this 
particular example, we performed a fine tuning of th , using %1.0=∆th , between the limits of 62% and 63% for 

3=c , 68% and 69% for 6=c , and between 74% and 75% for 9=c .  The results of this operation are placed after 
those related to 10=c .  The validity indices of these three candidate solutions (column XB) show clearly that they 
should be discarded.  The same thing can be said for X3 and 7=c  or 9=c . Moreover, no partition with 7 classes 
has been detected for X3, even by varying th  with a step of 0.00001% between the limits of 83% and 84%.  This 
result signifies that, within X3, there is no structure where the elements of each class present a minimum of 
similarity with the prototype of that class comprising between 83% and 84%.  Of course, other algorithms, including 
FCM, may partition any data set into any specified number of clusters regardless of whether such a partition makes 
sense for the given data set or not. 
 
As to t  columns of Tables 1 and 2, they show the number of iterations required for FCM to optimise each matrix of 
learned prototypes.  We can see that the limit 500max =t  has never been reached.  The validity indices are shown on 
XB  columns, where optimal values are displayed in bold.  We can see that for all examples except Iris, the best 

solution corresponds always to the actual number of clusters. 
 

Table 1: Summary of the results obtained for the three artificial data sets X1, X2, and X3 
 

X1 X2 X3 
th(%) c t XB th(%) c t XB th(%) c t XB 
15.45 2 12 0.069 10 2 17 0.118 10.00 2 27 0.131 
42.45 3 112 0.280 63 4 92 0.202 39.00 3 13 0.049 
51.45 4 80 0.298 65 5 134 0.154 55.00 4 29 0.631 
66.45 5 89 0.214 69 7 58 0.196 78.00 5 28 0.459 
73.45 6 177 0.164 70 8 115 0.276 81.00 6 33 0.298 
74.45 7 175 0.148 75 10 210 0.199 84.00 8 65 0.192 
77.45 8 147 0.132 62.2 3 152 0.226 86.00 10 61 0.220 
79.45 9 47 0.132 68.3 6 66 0.176 ? 7   
80.45 10 93 0.117 74.9 9 150 0.231 85.36 9 54 0.169 
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Table 2: Summary of the results obtained for the two real data sets Iris and Iris23 
 

Iris Iris23 
th(%) c t XB th(%) c t XB 
17.45 2 14 0.054 11.65 2 24 0.158 
47.45 3 33 0.137 49.65 3 41 0.195 
62.45 4 26 0.632 65.15 4 42 0.210 
72.45 5 44 0.412 65.65 5 84 0.457 
73.45 6 32 0.311 70.65 6 139 0.276 
74.45 7 68 0.374 71.65 7 67 0.361 
75.45 8 59 0.254 72.65 8 63 0.335 
76.45 9 52 0.358 73.65 9 208 0.769 
79.45 10 48 0.323 77.65 10 102 0.455 

 
 

Table 3: Actual centers, learned prototypes, and misclassification errors produced by 1-NP classifier 
 

Data set Actual centres Learned prototypes 
Percentage of 
misclassification 
errors after 1-NP 

X1 







729.1647.1
636.3574.1  








726.1654.1
692.3602.1  0% 

X2 







000.19250.18
950.25350.07  








699.18519.18
073.27522.07  10% 

X3 







235.4973.3574.0
076.4061.1847.3  








254.4980.3569.0
090.4078.1846.3  0% 

Iris23 



















026.2326.1
552.5260.4
974.2770.2
588.6936.5

 


















958.1415.1
418.5409.4
996.2779.2
597.6920.5

 15% 

 
Finally, to show the ability of the proposed method to characterise the detected classes in terms of prototypes, Table 
3 displays, for the four examples whose number of classes has been correctly determined, both the actual centres 
(calculated from original labelled data), and those produced by the algorithm.  We can see that the learned 
prototypes are very close to the actual centres and, therefore, can be utilised as representatives of the corresponding 
classes.  To test the usefulness of these representatives, we used them as a basis for the nearest prototype (1-NP) 
classifier [16] in order to classify all objects of each data set.  The results of this application are reported on the last 
column of Table 3 in terms of percentage of misclassification errors. 
 
 
5.0 CONCLUSION 
 
The method proposed in this paper is an attempt to dim one of the most difficult problems facing clustering 
algorithms which is the problem of automatic determination of the number of clusters.  This method is mainly based 
on an unsupervised fuzzy learning procedure that rapidly explores the data in order to discover the clusters they 
form.  In addition to the number of clusters, this procedure provides a matrix of prototypes that can be optimised 
using the FCM algorithm. 
 
The number of detectable clusters can be influenced by an algorithmic parameter, th , which represents the 
minimum of similarity each element should have with its nearest prototype.  In practice, if no prior information can 
justify the use of a particular value of th , the learning process is repeated for different values comprising between 
two limits automatically determined from the data at hand.  This means that more than one candidate solution can be 
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produced for each learning database.  To select the most appropriate one among these solutions, a validity process is 
utilised. 
 
The usefulness of this method has been illustrated on both artificial and real test data; and the obtained results 
encourage future investigations in order to improve the method by incorporating, for example, new similarity 
measures, new learning protocols, and/or new optimisation techniques.  It would be also interesting to find a way to 
adapt the similarity threshold to each class, instead of using the same threshold for all classes. 
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