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ABSTRACT 
 
The advent of Quality-of-Service (QoS) routing has brought a wide range of applications to network users. While 
precise network state information is critical to QoS provision, maintaining such accuracy is almost impossible. 
Towards this end, we propose a hop-by-hop QoS mechanism to operate in networks with inaccurate information. 
The proposed mechanism, namely DF-PI, adopts the distribution-free (nonparametric) approach to construct two-
sided prediction intervals. The prediction interval helps infer the future available bandwidth, and is used to generate 
the proposed QoS metric − statistical available bandwidth δ. “Widest”-shortest paths are calculated, by which δ 
replaces the instantaneous available bandwidth in the traditional widest-shortest routing algorithm (WSR). Relative 
to WSR, simulation results show that DF-PI achieves satisfactory performance in terms of packet loss, commit ratio, 
link utilization and average end-to-end delay, together with less update message overhead. 
 
Keywords: QoS Routing, Prediction Intervals, Distribution-Free. 
 
 
1.0 INTRODUCTION 
 
In conjunction with satisfying the elevating QoS demands, the goal of QoS routing is twofold: (1) find network 
routes which can support the QoS traffic, and (2) increase the overall resource utilization by selecting alternative 
paths which circumvent “hot spots”. To date, the traditional Internet architecture providing only best-effort services 
fails to achieve this goal. While the cost of QoS routing is reasonable compared to the excessive benefits gained [1], 
QoS routing is difficult by nature due to the following reasons [2]: 
 

1. Diverse QoS requirements and constraints: Often, multiple constraints or metrics are imposed in order that 
the stringent requirements for supporting QoS traffic could be guaranteed. Unavoidably, even some 
compositions with only two additive metrics (e.g. delay and cost) are proved to be NP-complete [3]. To 
cope with the NP-completeness, researchers have to resort to heuristic and approximation algorithms. 

 
2. Coexistence with best-effort traffic: Both best-effort and QoS routing have different roles to play in most 

real-world networks. Best-effort routing optimizes the throughput and responsiveness of the network whilst 
QoS routing maximizes the admission of QoS connections. In spite of the counter-productive effects, best-
effort and QoS traffic is to coexist so as to provide diverse network applications. How to finely tune the 
limited share to both types of traffic such that the best-effort traffic is not suffered remains to be a 
formidable task. 

 
3. Outdated network state information: The information imprecision is attributed to network dynamics, 

propagation delay, computational cost, processing overhead, and aggregated state information contribute 
[4] [5]. Hence, an inaccurate piece of information served as the input of QoS path calculation will yield 
inaccurate decisions, leading to severe problems of underutilizing and over-utilizing the network resources. 

 
[1] observes that the major QoS cost stems from the processing of link-state updates. To reduce the frequency of 
path computation and the amount of link-state update, [6] proposes considerable latitude in tuning the policy 
parameters. Link-state updates are advertised either periodically or when the changes in link utilization exceed a 
trigger-based threshold. Unlike the former policy which easily ignores major fluctuations, the latter one enables 
progressive notification of network congestion. Despite large periodic intervals and coarse triggers could 
significantly minimize the update overhead, the accuracy of network state information is sacrificed. Attaining the 
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trade-off between overheads and precision is undoubtedly challenging particularly when a large-scale network is 
involved. 
 
Because of the complexity of QoS routing and the inevitability of information imprecision, designing QoS 
mechanisms which operate in such an environment is of paramount importance. Substantial amount of work has 
been carried out. [4], [5], [7] introduce and deploy the notion of link safety of how likely the link could satisfy the 
QoS requirement. The path safety is then defined as the probability production of all links of the path. The 
probability density function of the QoS parameter is assumed to be known in advance so as the link safety can be 
determined accordingly. Provided that this likelihood is not sufficiently high, [8], [9] adopt the idea of relative 
frequency distribution in the respective probability based routing schemes. Empirical probability distribution is 
calculated and is used for constructing the link safety. [10] maximizes the likelihood of searching a feasible path by 
sending multiple probes to perform multi-path parallel routing. Through balancing between flooding and single-path 
routing, a near-optimal performance is achieved. The enhanced performance, though, comes at the cost of higher 
overhead of processing the probes and determining eligible outgoing links. 
  
In contrast to deterministic routing that always chooses the (seemingly) best path, randomized routing selects a path 
randomly from a set of candidate paths according to certain probability. [5] associates the probability with the safety 
difference between two consecutive candidate paths ordered with decreasing safety, whereas [11] associates the 
probability weighted with the difference between both the delay-and-safety requirement, and the delay-and-safety of 
the path. However, [11] did not detail how users should set the global safety requirement. [12] attempts to solve the 
so-called “magnet-phenomenon” problem by adaptively mapping the link utilization on the link cost. The mapping 
is performed such that a small change of link state in a highly utilized link would not produce a large change in the 
corresponding link cost, thus reducing unnecessary update traffic. Interestingly, each node is allowed to selectively 
use different (convex or concave) function at different time unit. One of the limitations of employing the two 
functions is that the rather slow adaptation of the link cost function may let major state changes go unnoticed. Also, 
when the frequency of link cost update could not cope with the environment of precise information, higher blocking 
rate occurs. 
 
All the aforementioned mechanisms require the information of user requirements, e.g. bandwidth requirement, in 
order to perform on-demand routing. Inspired by [13] which concentrates on QoS extensions to Border Gateway 
Protocol (BGP), we explore hop-by-hop routing in an intra-domain basis. While [13] essentially employs confidence 
intervals to descript the path property, we use prediction intervals instead to predict the future link state in a longer 
term. Briefly, our proposed DF-PI mechanism incorporates some statistical properties into the link-state QoS routing 
approach. Without assuming any probability distribution on the residual bandwidth, two-sided distribution-free 
prediction intervals are computed. Based on the prediction interval, the statistical available bandwidth δ is defined to 
convey the current residual bandwidth and help infer the bandwidth available in some future time point. The hop-by-
hop forwarding approach is the primary focus of this paper. Alternatively, the proposed mechanism can be applied 
to explicit QoS routing. 
 
The rest of the paper is structured as follows. After presenting the proposed DF-PI in Section 2, Section 3 discusses 
the performance evaluation. The conclusion and future work is provided in Section 4. 
 
 
2.0 PROPOSED DF-PI MECHANISM 
 
A prediction interval (denoted hereafter as PI) is an interval that will, with a specified degree of confidence or 
prediction level (1–α) contain the next randomly selected observation(s) from a population [14]. A 100(1–α)% PI 
may be construed as in the long run, one would be correct 100(1–α)% of time in claiming that the future value(s) 
will be contained within the PI.  
 
Given a sample b(T) of size n in which the elements or observations b(t1), b(t2), b(t3), …, b(tn) represent the available 
bandwidth of a particular link at time t1, t2, t3, …, tn respectively. The values of the available bandwidth are taken by 
monitoring directly connected outgoing links. An element is sampled on every sampling interval Ts. b(T) are notably 
time-series (nonrandom) data. Nevertheless, a more comprehensive model which takes into account the 
corresponding trend and seasonality is not considered in this work. Instead, for simplicity, the construction of PIs is 
based on the assumption that the values of available bandwidth are random, and independent and identically 
distributed (iid). As a result, the calculated PIs generally provide only a lower bound on the total uncertainty. This 
lower bound uncertainty consists of the following two sources [14]: 
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1. Since the sample size is limited and the random sample is assumed to be a fair representation of the 
population, the uncertainty exists in estimating the population parameters (e.g. population mean and 
standard deviation). 

 
2. Random variation exists in the future sample 

 
For random samples, the statistical method for constructing PIs depends on the type of population distribution. 
Despite this importance, to correctly identify the true distribution of the available bandwidth for any link before 
constructing a PI is very complex. Many factors can affect the distribution characteristics. Topology, traffic 
distribution, arrival rates, link capacity, and routing all contribute to determining the bandwidth distribution [5] [15]. 
Provided that recognizing the underlying distribution is notoriously difficult, this work applies the distribution-free 
approach without making any such assumption. 
 
[14] provides the general method to construct a distribution-free PI: 
 

1. Let order statistics of the sample be x(1)≤ x(2)≤ …≤ x(n) whereby x1, x2, …, xn are independent and each with 
any continuous distribution function F(x) 

2. Specify the desired prediction level for the interval 
3. Determine (from tabulations or calculations) the order statistics that provide the PI with at least the desired 

prediction level. If no such order statistics exist, use the extreme order statistics to obtain the interval 
endpoints and determine the associate prediction level 

4. Use the selected order statistics as the endpoints of the distribution-free PI 
 
To illustrate, let’s construct a two-sided distribution-free 90% PI to contain all voltage measurements of five future 
electronic circuits from a previous sample of 100 electronic circuits. Part of the order statistics is as follows: 
 

5.51, 5.67, 5.69, …, 45.32, 46.44, 49.05 
 
By consulting the tabulations from [16], with given n = 100, N = 5, K = 0.90, the largest r to contain all five future 
observations is found through the body of the table. In this case, r = 2. Next, to choose l and u symmetrically, r is 
divided into r1 = 1 and r2 = 1 such that l = r1 = 1 and u = n–r2+1 = 100. Thus, the desired 90% two-sided PI to 
contain all five future observations is the range formed by 
 

[x(1), x(100)] = [5.51, 49.05]. (1) 
 
Since this interval uses the two extreme observations (i.e. the smallest and largest order statistics) of the initial 
sample as the endpoints of the PI, the actual prediction level 1–α is computed as 
 

)1)((
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−
=−

NnNn
nnα . (2) 

 

That is, the actual prediction interval or confidence is 
)15100)(5100(

)1100(1009066.0
−++

−
=  rather than pre-defined K = 

0.90. 
 
Because [16] does not provide the entries for all possible combinations of parameters, this work adopts the extreme 
order statistics as the limits. Hence, to construct a distribution-free two-sided 100(1–α)% PI ],[ ubbl  to contain all N 
future observations from sample b(T), order statistics nbbb ≤≤≤ ...21  are built by sorting elements in b(T) via the 
heapsort operation. The operation takes O(n log n) time and Θ(1) space [17]. Precisely, ],[],[ 1 nu bbbb =l , where 1b  
and bn are simply the minimum and maximum values in b(T). 
  
To make the PIs of two distinct links comparable, the QoS metric statistical available bandwidth δ is proposed. 
Besides calculating [ lb , bu], the current available bandwidth, bn, is chosen as the stepping stone towards forecasting 
the unknown future available bandwidth. Due to the fact that experiencing burst traffic within a network is very 
common, bn takes the average of the last five elements of sample b(T) to avoid the impact of sudden 
increase/decrease of the traffic amount. Following this idea, the QoS metric δ is proposed as follows. 
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where w1 > w2  > w3. In this strategy, bn and lb  have more importance than bu so as δ expresses some view of the 
“least” future available bandwidth that could be provided. The values taken by w1, w2 and w3 could vary according to 
desirability. An aggressive approach is by putting the highest weight on bu such that δ signalizes larger future 
available bandwidth. While the latter approach is worth exploring, this work begins with the former consecutive 
method.  
 
Now, let G = (V, E) be the directed graph where V is the set of nodes and E is the set edges in G. Assume that each 
node has the information of complete graph connectivity and the quantities lδ  for every link E∈l . lδ  is the 
calculated statistical available bandwidth (see Equation 1) in relation to an estimated indication of the future 
available bandwidth on link l . lδ  acts as a concave metric, that is, the statistical available bandwidth of a path p , 

pδ , is calculated as ( )pmin ∈∀ll ,δ . 
 
No new routing method is invented in this proposal. Taking place of the instantaneous available bandwidth, the 
metric lδ  is utilized in the traditional widest-shortest routing (WSR). In other words, among the shortest paths to a 
destination, the one with the highest pδ  is selected. Based on the nature of lδ , the hop-by-hop QoS routing strategy 
is adopted, and “widest”-shortest paths to all other nodes are pre-computed independently at each source. 
 
Advertising QoS metrics is necessary to make QoS routing decisions. To advertise lδ , the triggered-based update 
policy together with hold-down timers is employed. Under the triggered-based policy, when the percentage change 
of lδ  value exceeds the predefined threshold, updates are flooded to the rest of the network. 
 
 
3.0 SIMULATION RESULTS 
 
Simulations are conducted to compare the proposed DF-PI mechanism with the traditional WSR. The simulation 
environment is detailed, followed by the performance metrics used for evaluation. Simulation results demonstrate 
that DF-PI is less sensitive than WSR, thus generating much lower protocol overhead. 
 
3.1 Simulation environment 
 

 
Fig. 1: Simulation topology 

Fig. 1 depicts the MCI Internet backbone used as the simulation topology. The topology consists of 18 routers, 32 
links and 216 traffic sources. The link capacity values are scaled down to reduce the simulation volume and are 
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categorized into three classes: class low has capacity 4 Mbps, class medium 5 Mbps and class high 7 Mbps. Every 
router is QoS-aware and connects to a customer site representing an aggregate of traffic. Each customer site contains 
a total of 2 constant-bit-rate (CBR) and 10 variable-bit-rate (VBR) applications. Traffic is sent to a destination site 
which is randomly selected. All sources use the ON/OFF model with Poisson inter-arrival time. 
 
Six simulation sessions for a routing scheme with increasing network load are set up. Each session is run for 200 
seconds. The first session begins with the normalized load 1.0. The load (in terms of transmission rate and amount 
of traffic) is then incremented by 20% of load 1.0 for every next session. For clarity, the six simulation sessions are 
grouped according to the normalized network load. Load 1.0 and 1.2 are categorized as light load, 1.4 and 1.6 as 
medium load, and 1.8 and 2.0 as high load. Table 1 shows the weight parameters for determining δ.  
 

Table 1: System parameters for determining δ 
 

w1 w2 w3 
10 5 1 

 
Six metrics are defined to evaluate the performance of the routing protocols: 
 

1. Packet loss ratio: The ratio between packets dropped and packets received 
 
2. Packet commit ratio: The ratio of total delivered packets which have reached the destinations over total 

sent packets. At the time of measurement, some packets may be still in the transmission. Thus, only an 
approximation is given here for interpreting per-source packet loss ratio. Also, this parameter provides the 
measurement of the network throughput. Higher packet commit ratio signifies more packets are 
successfully received, hence is desirable 

 
3. Average link utilization: Defines the link utilization on average for the whole network. A higher value of 

the parameter implies a higher level of network resource utilization and throughput 
 

4. Peak link utilization: Among the long-term link utilization of all routers, the highest value is taken as the 
peak link utilization for the network. Lower peak link utilization is usually preferable as the load is deemed 
to be more evenly distributed within the network 

 
5. End-to-end delay: The duration between the packet arrival time and sending time. 

 
6. Update message overhead: The total number of protocol update messages exchanged in the network per 

time unit. Fewer updates signify lower overhead because less processing cost is incurred 
 
3.2 Performance study 
 
Fig. 2 shows the packet loss ratio for DF-PI and WSR with different normalized network load. As can be seen in the 
figure, WSR slightly outperforms DF-PI when the normalized load is light and moderate. The performance 
difference may be considered trivial, albeit DF-PI is inferior to WSR. At these stages, burst traffic greatly 
contributes to the network uncertainty. Therefore, high data variability exists in the sampled available bandwidths, 
leading to large width of distribution-free PIs.  Subsequently, the generated QoS metric δ occasionally fails to 
correctly reflect both the current and future states. 
 
When the load becomes heavy, dark horse DF-PI manages to defeat WSR. The noticeable difference begins at the 
crossover point (load = 1.6), in which DF-PI reduces the loss ratio by almost 10% of than in WSR when the load is 
1.8. Intuitively, low variability has accounted for the improvement. Less data dispersion in heavy loads enables DF-
PI to capture the history trend, which assists in inferring future available bandwidths more accurately. As a 
consequence, DF-PI is capable of “foreseeing” future network state and thus guiding more traffic to avoid 
congestion links. 
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Fig. 2: Packet loss ratio 
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Fig. 3: Packet commit ratio 
 
Fig. 3 illustrates the impact of increasing normalized network load on the packet commit ratio. Overall, the 
performance of both the mechanisms degrades with rising load. The circumstances are justifiable since more packets 
are still in the transmission (and may be dropped later). In fact, the results of packet commit ratio are consistent with 
that of packet loss ratio (previously discussed). When the load is 1.0, WSR and DF-PI achieve nearly 0% of loss 
ratio and 100% of commit ratio. When the load is 1.8, however, DF-PI has higher commit ratio compared with WSR. 
The counterpart situation is observed in Fig. 2 by which DF-PI experiences lower packet loss than WSR. 
 
The performance of link utilization is demonstrated in Fig. 4 and Fig. 5 respectively. Fig. 4 shows a constantly 
growing in average link utilization against the network load. Additionally, WSR and DF-PI achieve very similar 
performance in every situation. Although the accomplishment of DF-PI may be infinitesimal, the picture of peak 
link utilization should be brought in for a fair comparison. 
 
The peak link utilization of WSR and DF-PI is depicted in Fig. 5. The overall rise is compatible with the increasing 
average link utilization (see Fig. 4). Fig. 5 shows clearly that DF-PI has much lower peak link utilization as 
compared to WSR. The most significant reduction can be seen when the load is 1.0. At this point, DF-PI manages to 
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minimize nearly 20% of the peak link utilization of WSR. Associating the peak with the average measurement, DF-
PI is more successful at balancing load and utilizing network resources. 
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Fig. 4: Average link utilization 
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Fig. 5: Peak link utilization 
 
Fig. 6 shows the average end-to-end delay of the routing mechanisms. For both the mechanisms, there is a growth in 
the average end-to-end delay with the increment of network load. DF-PI has slightly lower average end-to-end delay, 
and the difference is more apparent when the network load becomes moderate and high. Particularly, DF-PI reduces 
the average end-to-end ranging from 1.5% to 6.7% when the load is 1.4 and 1.6 respectively. 
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Fig. 6: Average end-to-end delay 
 
Fig. 7 addresses the issue of update message overhead. At first glance, DF-PI has substantially low update message 
overhead with the increasing network load. In comparison to WSR, DF-PI manages to decrease the amount of 
overhead by at least 41% (load = 1.8) and at most 63% (load = 1.0). With exactly the same configuration of the 
triggered-based update policy (i.e. predefined threshold and hold-down timers), DF-PI succeeds to excel WSR in 
every scenario. 
 
Notice that WSR experiences an irregular fluctuation of update overhead. This phenomenon could be attributed to 
the simulation topology which embraces mainly VBR applications modeling the web traffic. On occasion, the higher 
burst arrival rate and shorter mean interval between bursts generate more changes on the link utilization. Hence, the 
update policy of WSR which depends entirely on these immediate changes may have advertised more updates. 
Likewise, when the traffic burst is less, few update messages are broadcast, leading to lower update overhead. 
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Fig. 7: Update message overhead 
 
DF-PI, on the other, is not affected by the inherent nature of the VBR applications. Initially, the update overhead of 
DF-PI increases gradually as the load level moves from light to moderate. This increment is due to the consequence 
of advertising δ, the proposed QoS metric. As previously discussed, the light/moderate load causes high variability 
in the sampled history. The calculated δ may thus produce gradual rise in the magnitude of change, resulting in 
slight increments of the update amount. When the load becomes high, the update overhead of DF-PI remains to be 
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quite stable. Again, the low data variability in the sample probably generates small change magnitude in δ. 
Therefore, this metric which interprets the history of link usage depreciates the burst impact, causing a steady trend 
even if the network becomes increasingly congested. 
 
 
4.0 CONCLUSION AND FUTURE WORK 
 
The simulation results conclude that DF-PI is able to reduce the protocol overhead without curtailing the routing 
performance in terms of packet loss, commit ratio, link utilization and average end-to-end delay. In fact, DF-PI is 
shown to be marginally superior to WSR under certain circumstances. The ability to offset the impact of burst traffic 
makes DF-PI attractive to controlling the update frequency. To summarize, we affirm that DF-PI works well in the 
presence of information imprecision at reasonable computational cost. 
 
The proposed mechanism chooses the two extreme elements to construct a distribution-free PI. Although such 
method is not complicated to use, the expected prediction level may fail to be achieved. In a situation where the 
sample is sufficiently large, the limits could be constructed by using other than extreme elements. As an alternative, 
for tabulations not provided in [16], the limits can be built by choosing elements (nearly) symmetrically from the 
extremes of the sample such that the probability of cumulative inverse hypergeometric is close to the desired 
prediction level. This method increases the flexibility in which the prediction level and the number of future 
elements are capable of determining the limits of prediction intervals. Further attempts may involve evaluating the 
method so as the corresponding iterative computation based on trial and error is worth implemented in large-scale 
networks.  
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