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ABSTRACT  
 
This paper investigates the use of a multi-objective approach for evolving artificial neural networks that act as 
controllers for the legged locomotion of a quadrupedal robot simulated in a 3-dimensional, physics-based 
environment. The Pareto-frontier Differential Evolution (PDE) algorithm is used to generate a Pareto optimal set of 
artificial neural networks that optimize the conflicting objectives of maximizing locomotion behavior and 
minimizing neural network complexity. In this study, insights are provided on how the controller generates the 
emergent walking behavior in the creature by analyzing the evolved artificial neural networks in operation. A 
comparison between Pareto optimal controllers showed that ANNs with varying numbers of hidden units resulted in 
noticeably different locomotion behaviors. It was also found that a much higher level of sensory-motor coordination 
was present in the best evolved controller. 
 
Keywords:  Evolutionary robotics, evolutionary multi-objective optimization, embodied cognition, evolutionary 

artificial neural networks, artificial life. 
 
 
1.0  INTRODUCTION 
 
Research in the area of embodied cognition generally falls into two categories: (1) the evolution of controllers for 
creatures with fixed [4,9] or parameterized morphologies [11,15], and (2) the evolution of both the creatures’ 
morphologies and controllers simultaneously [8,13,18]. Some work has also been carried out in evolving 
morphology alone [6] and evolving morphology with a fixed controller [12]. Related work using mobile robots have 
also shown promising results in robustness and the ability to cope with changing environments by evolving plastic 
individuals that are able to adapt both through evolution and lifetime learning [7]. 
 
However, considerably little has been said about the role of controllers in the artificial evolution of such creatures. It 
has been noted that the potential of designing more complex artificial systems through exploitation of sensory-motor 
coordination remains largely unexplored [14]. As such, there is currently a lack of understanding of how the 
evolution of controllers affects the evolution of morphologies and behaviors in physically simulated creatures. It 
remains unclear what properties of an artificial creature’s controller allow it to exhibit the desired behavior. A better 
understanding of controller complexity and the dynamics of evolving controllers should pave the way towards the 
emergence of more complex artificial creatures with more complex morphologies and behaviors. 
 
In this paper, the use of a multi-objective approach in evolving controllers for a fixed morphology artificial creature 
is investigated. By generating a Pareto-frontier consisting of multiple ANNs with differing locomotion capabilities 
and varying architecture complexities, a comparison of controller size against behavior fitness can be made. This 
study will hopefully provide some insights into the architectural complexity of controllers required for generating 
walking behaviors in 3D, physically simulated creatures. A further advantage of using a multi-objective approach 
for artificial evolution is that genetic diversity is maintained naturally during the course of the evolutionary process. 
It has been observed that loss of genetic diversity causes problems in the artificial evolution of virtual creatures [10]. 
In this paper, the Pareto-frontier is used to evolve a Pareto optimal set of artificial neural networks (ANNs) [1,2] that 
act as controllers for the quadruped creature. 
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2.0 METHODS 
 
2.1 Evolving Artificial Neural Networks 
 
Traditional learning algorithms for ANNs such as backpropagation (BP) usually suffer from the inability to escape 
from local minima due to their use of gradient information. Evolutionary approaches have been proposed as an 
alternative method for training ANNs. A thorough review of EANNs can be found in [18]. Abbass et. al. [3] first 
introduced the Pareto-frontier Differential Evolution (PDE) algorithm, an adaptation of the Differential Evolution 
algorithm introduced by Storn and Price [16] for continuous optimization problems, for multi-objective problems. 
The MPANN algorithm [1] combines PDE with local search for evolving ANNs and was found to possess better 
generalization whilst incurring a much lower computational cost [2]. In this paper, PDE is used to simultaneously 
evolve the weights and architecture of the ANN. 
 
2.2 Representation 
 
Similar to [1,2], the chromosome is a class that contains one matrix (denoted as Ω) of real numbers representing the 
weights of the artificial neural network and one vector (denoted as ρ) of binary numbers (one value for each hidden 
unit) to indicate if a hidden unit exists in the network or not; that is, it works as a switch to turn a hidden unit on or 
off. The sum of all values in this vector represents the actual number of hidden units in a network. This 
representation allows simultaneous training of the weights in the network and selecting a subset of hidden units. The 
morphogenesis of the chromosome into the ANN is depicted in Fig.1. 
 

 
 

Fig. 1: The representation used for the chromosome. 
 
2.3 The PDE algorithm 
 
This study comprises of a multi-objective problem with two objectives, that is to: (1) maximize the horizontal 
distance traveled by the creature from its initial starting position, and (2) minimize the number of hidden units. The 
Pareto-frontier of the tradeoff between the two objectives will have a set of networks with different number of 
hidden units and different locomotion behaviors. An entire set of controllers is generated in each evolutionary run 
without requiring any further modification of parameters by the user. The PDE algorithm for evolving ANNs 
consists of the following steps as depicted in Table 1. 
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Table 1 - The PDE algorithm for evolving ANNs 
 

1. Create a random initial population of potential chromosomes or solutions. The elements of the weight matrix Ω, 
are assigned random values according to a Gaussian distribution N(0,1). The elements of the binary vector ρ, 
are assigned the value 1 with probability 0.5 based on a randomly generated number according to a uniform 
distribution between [0,1]; otherwise 0. 
 

2. Repeat 
a. Evaluate the individuals or solutions in the population and label those who are non-dominated 

according to the two objectives: (1) maximize the horizontal distance traveled by the creature from its 
initial starting position, and (2) minimize the number of hidden units. 

b. If the number of non-dominated individuals (a solution is considered to be non-dominated if it is 
optimal in at least one objective) is less than three, repeat the following until the number of non-
dominated individuals is greater than or equal to three (since the Differential Evolution algorithm 
requires at least three parents to generate an offspring via crossover): 

i. Find a non-dominated solution among those who are not labelled. 
ii. Label the solution as non-dominated. 

c. Delete all dominated solutions from the population. 
d. Repeat 

i. Select at random an individual as the main parent α1, and two individuals, α2, α3 as 
supporting parents. 

ii. Crossover with some uniform (0,1) probability, do 
 

))(1,0( 321 ααα ωωωω ihihih
child
ih N −+←      (1) 

otherwiseNif hhh
child
h 0;5.0)))(1,0((1 321 ≥−+← ααα ρρρρ (2) 

 
otherwise 
 

1αωω ih
child
ih ←         (3) 

1αρρ h
child
h ←         (4) 

 
and with some uniform (0,1) probability, do 
 

))(1,0( 321 ααα ωωωω hohoho
child
ho N −+←      (5) 

 
otherwise 
 

1αωω ho
child
ho ←         (6) 

 
where each weight in the main parent, α1 is perturbed by adding to it a ratio, F ∈ N(0,1), 
of the difference between the two values of this variable in the two supporting parents, 
α2, α3. At least one variable must be changed. One child is created for every crossover 
operation. The subscripts i, h, and o refer to the input, hidden and output layers of the 
ANN respectively. 

iii. Mutate with some uniform (0,1) probability, do 
 

)_,0( ratemutationNchild
ih

child
ih +←ωω     (7) 

)_,0( ratemutationNchild
ho

child
ho +←ωω     (8) 

otherwiseif child
h

child
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e. Until the population size is M. 

 
3. Until maximum number of generations is reached. 
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2.4 The Simulation Model 
 
The simulation is carried out in a physically realistic environment which allows for rich dynamical interactions to 
occur between the creature and its environment. This in turn enables complex walking behaviors to emerge as the 
creature evolves the use of its sensors to control the actuators in its limbs through dynamical interactions with the 
environment [17]. In a dynamic environment, physical properties such as forces, torques, inertia, friction, restitution 
and damping need to be incorporated into the artificial evolutionary system. The Vortex physics engine [5] was 
employed to generate the physically realistic artificial creature, shown in Fig. 2, and its environment. The artificial 
creature is a basic quadruped with 4 short legs. Each leg consists of an upper limb connected to a lower limb via a 
hinge (one degree-of-freedom) joint and is in turn connected to the torso via another hinge joint. It has 8 joint angle 
sensors (x1-x8) corresponding to each of the hinge joints, 4 touch sensors (x9-x12) corresponding to each of the 4 
lower limbs of each leg, and 8 actuators (y1-y8) representing the motors that control each of the 8 articulated joints of 
the creature. The mass of the torso is 1kg and each of the limbs is 0.5kg. The torso has dimensions of 4 x 1 x 4m and 
each of the limbs has dimensions of 1 x 1 x 1m. The hinge joints are allowed to rotate between -1.57 to 0 radians for 
limbs that move counter-clockwise and 0 to 1.57 radians for limbs that move clockwise from their original starting 
positions. Each of the hinge joints is actuated by a motor that generates a torque producing rotation of the connected 
body parts about that hinge joint. Fig. 3 illustrates the setup of the creature’s central nervous system. 

 

 
Fig. 2:- Screen capture of quadruped in the simulation environment. 

 
 

 
 

Fig. 3: The quadruped’s central nervous system. The three letter abbreviations identify each of the 8 different limbs. 
The first letter denotes (U)pper or (L)ower, the second denotes to (F)ront or (B)ack, and the third denotes (R)ight or 

(L)eft. 
 
 
3.0 EXPERIMENTAL SETUP 
 
A total of 480 evolutionary runs were conducted with varying population sizes, crossover rates, and mutation rates 
while fixing the fitness evaluation window to 500 timesteps. The crossover rate used were 0, 0.1, 0.2, 0.5 and 1 and 
the mutation rates used were also 0, 0.1, 0.2, 0.5 and 1 (the evolutionary setup with a crossover rate of 0 and a 
mutation rate of 0 was omitted since this setup does not generate any variability at all in the population). The 
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maximum number of hidden units permitted in evolving the artificial neural network was fixed at 15 nodes. Each 
experimental setup was repeated using 10 different seeds to allow the artificial evolution to commence from 
different starting points in the search space. Two populations with 20 and 30 individuals were evolved for 30 and 20 
generations respectively. The total number of objective evaluations was kept constant at 600 to enable a fair 
comparison between the effect of the two population sizes. 
 
 
4. RESULTS AND DISCUSSION 
 
4.1 Evolutionary Parameters 
 
Overall, there did not appear to be any obvious differences in the range and quality of the evolved controllers 
between population sizes of 20 and 30. Both produced a considerably similar quality of locomotion behaviors 
although a larger population size did seem to produce controllers that were slightly better in terms of average 
locomotion fitness. There were 12 different combinations of crossover and mutation rates with a population size of 
30 in which the best average locomotion fitness exceeded 2.5m as compared to only 8 with a population size of 20. 
Both also generated a relatively similar spread of locomotion behaviors although again a larger population size did 
seem to produce more varied genotypes in terms of the number of hidden units that were used in the ANN. There 
were 12 different combinations of crossover and mutation rates with a population size of 30 that produced 11 or 
more different ANN architectures compared to only 10 with a population size of 20. As such, there is a very slight 
advantage in using a larger population size in terms of quality and spread of the locomotion behaviors. 
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Fig. 4: Pareto-frontier over 20 generations. 
 
The best evolved controller in terms of the maximum horizontal distance moved from its initial position had a 
comparatively simple architecture with only 4 hidden units. This result was achieved with an evolutionary run that 
had similarly low crossover and mutation rates of 0.2 with a population size of 30 over 20 generations. To enable an 
analysis of the evolutionary dynamics that generated the best controller, the Pareto-frontier of this particular setup is 
reported at each generation and is depicted graphically in Fig. 4. Overall, it is generally very hard for larger 
controllers with more hidden units to survive due to the strong evolutionary pressure of minimizing ANN 
complexity. As a result, larger controllers find it hard to compete with smaller controllers in trying to maximize the 
horizontal distance traveled by the quadruped. 
 
4.2 Evolved Coordination and Synchronization Behaviors 
 
In this next subsection, we analyze the 5 Pareto optimal controllers in operation. To conduct these analyses, the best 
evolved ANNs described in the previous section were used individually to control the quadruped and the simulation 
period was extended to 5000 timesteps. This enables analysis of not only the evolved behavior but also its behavior 
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beyond the fitness evaluation window. Table 2 lists the correlation coefficients between the joint angles of the 
respective limbs of the creature in motion over 5000 timesteps. 
 

Table 2 - Correlation coefficients between the joint angles of the creature’s 8 limbs in motion over 5000 timesteps 
with 4 hidden units. The three letter abbreviations are as presented and explained in Fig. 3. 

 

 
 
The correlation analysis of the best evolved controller with 4 hidden units has 7 strongly positive correlation 
coefficients (>0.7). This indicates that the creature has evolved an ANN that has learned how to coordinate the 
movement of 7 sets of its limbs in order to achieve the most successful locomotion behavior among the Pareto 
optimal controllers. In summary, the creature achieves locomotion by coordinating the movements between: - 
 

1. upper limbs of its back legs (0.95)  
 
2. upper and lower limbs of its front left leg (0.89)  
 
3. upper and lower limbs of its front right leg (0.71)  
 
4. upper limbs of its front legs (0.73)  
 
5. lower limbs of its front legs (0.88)  
 
6. opposing limbs of its front legs (0.98, 0.88)  

 
Some of these coordinated movements are quite obvious when inspecting the movement of the quadruped visually 
during simulation, for example the coordination present between the front legs and between the back legs. However, 
some coordinated movements are less obvious visually, for example the movements of opposing limbs in the front 
legs. Such complex coordinations are expected in locomotion of legged creatures, which largely explains why hand-
designing controllers for such creatures tends to be extremely difficult and normally results in less than desirable 
behaviors. The illustrations that follow in Fig. 5 graphically illustrate the correlation between the 8 limbs during 
motion over 5000 timesteps along with the number of times each leg makes contact with the ground. 
 
Analysis of the less successful Pareto optimal networks reveals that there is far less coordination achieved by these 
controllers. At most 3 strongly correlated sets of limb movements were obtained using these controllers compared to 
7 strongly correlated sets of limb movements using the best evolved controller. It can be seen from the graphical 
illustration that the best evolved controller with 4 hidden units achieved high coordination between all of the 
creature’s front limbs as well as in one set of its back limbs. However, with all of the other less successful 
controllers, coordination was only achieved in some of its front limbs and no coordination was present at all in the 
back limbs. In these latter cases, the creature is only able to generate useful movements from its front legs with no 
contribution at all from its back legs which resulted in poor locomotion behavior. Furthermore, 5 strongly negative 
correlations (<-0.8) were detected in the controller with 1 hidden unit. These limbs are not only uncoordinated but 
are generating forces that act in direct opposition to each other, thereby further hindering the creature’s ability to 
move. 
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Fig. 5: Illustration of correlation between limbs for Pareto optimal controllers. The three letter abbreviations are as 
presented and explained in Fig. 3. 

 
Next, the synchronization between the touch sensors is analyzed. The value used in this analysis represents the total 
number of times each pair of legs either contact the ground or is in the air, as explained in the equation below: 

      (10) 
 
 
Table 3 - Touch synchronization between the creature’s legs in motion over 5000 timesteps with 4 hidden units. The 

three letter abbreviations are as presented and explained in Figure 3. 
 

 LBL LFL LBR LFR 
LBL 1 0.35 0.53 0.34 
LFL  1 0.63 0.65 
LBR   1 0.50 
LFR    1 

 
The previous equation was used for all networks on the Pareto frontier. The best spread of synchronization between 
pairs of legs is achieved in the controller with 4 hidden units, which demonstrated the best locomotion behavior, as 
shown in Table 3. This can be attributed to the fact that a balance between the number of times each leg 
synchronizes with a particular leg, for example to balance the body, as well as with other legs, for example to push 
the creature forwards, needs to be achieved in order to generate useful locomotion. Looking at the controllers with 
less numbers of hidden units, a larger spread of synchronization can be noticed, which means that the creature has 
pairs of limbs that spend the majority of the time either balancing the body or attempting to push the creature 
forwards without striking a balance between these two critical aspects of successful locomotion. A plot depicting the 
path taken by the overall best controller is shown in Fig. 6. 
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Fig. 6: Path of movement using controller with 4 hidden units. 
 
 
5.0 CONCLUSION 
 
We have demonstrated a multi-objective approach to evolving artificial neural networks for controlling the 
locomotion of a 3D, physically simulated artificial creature. The evolutionary dynamics for controller synthesis were 
analyzed to provide a high-level view of the progression of the artificial evolution. The Pareto-frontier that resulted 
from each single evolutionary run provided a set of ANNs which maximized the locomotion capabilities of the 
creature and at the same time minimized the size of the controller. Correlation and path analyses of the Pareto 
optimal controllers in operation provided an insight into how the complex coordination and synchronization between 
the quadruped’s different limbs generated the emergent locomotion behavior. For future work, we intend to 
investigate the effects of controller complexity when both the morphology and controller are co-evolved 
simultaneously. 
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