

DMBVA - A COMPRESSION-BASED DISTRIBUTED DATA WAREHOUSE
MANAGEMENT IN PARALLEL ENVIRONMENT

Fazlul Hasan Siddiqui1, Abu Sayed Md. Latiful Hoque 2

1Department of Computer Science and Engineering,
Dhaka University of Engineering and Technology, Gazipur 1700, Bangladesh.

Email: fhsani@yahoo.com
2 Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh.
Email: asmlatifulhoque@cse.buet.ac.bd

ABSTRACT

Parallel and distributed data warehouse architectures have been evolved to support online queries on massive data
in a short time. Unfortunately, the emergence of e-application has been creating extremely high volume of data that
reaches to terabyte threshold. The conventional data warehouse management system is costlier in terms of storage
space and processing speed and sometimes it is unable to handle such huge amount of data. As a result, there is a
crucial need for the new algorithms and techniques to store and manipulate these data. In this paper, we have
presented a compression-based distributed data warehouse architecture – ‘DMBVA’ for storage of warehouse data,
and support online queries efficiently. We have achieved a factor of 25-30 compression compared to SQL server
data warehouse. The main computational component of data warehouse is the generation and querying on the data
cube. Our algorithm – ‘PCVDC’ generates data cube directly from the compressed form of data in parallel. The
reduction in the size of data cube is a factor of 30-45 compared to existing methods. The response time has also
been significantly improved. These improvements are achieved by eliminating the suffix and prefix redundancy,
virtual nature of the data cube, direct addressability of compressed form of data and parallel computation.
Experimental evaluation shows the improved performance over the existing systems.

Keywords: Data Warehouse, Compression, Parallel, Virtual Data Cube

1.0 INTRODUCTION

Data Warehouse is a subject oriented, integrated, non-volatile and time-variant collection of massive data in
support of management’s decisions. Today’s warehouses are approaching several terabytes of data with a broader
mix of query types, which are not supported by the conventional archiving of data. As a result, this increased data
put a number of strains on physical resources, IT aspects and management spectrum. Performance can be improved
using compression based distributed warehouse. In contrast, several distributed warehouse architectures have been
put forward without the application of compression methods. Integrating these two technologies, our work exhibits
a complete solution to a compression based distributed data warehouse management in a parallel environment,
which is the first part of our contribution, and we named it as ‘Distributed Multi-Block Vector Architecture
(DMBVA)’.

Next, Data cube construction requires computation of aggregations on all possible combinations of each dimension
attribute. Pre-computation of this data cube is very critical to improve the query performance of data warehouse.
However, as the data warehouse size grows, this pre-computation becomes a significant performance bottleneck,
because the required computation cost grows exponentially with the increase of dimensions. Hence, this paper
demonstrates virtual data cube construction directly from the compressed and distributed data warehouse in parallel
on a shared nothing multiprocessor system. We named it as ‘Parallel Construction of Virtual Data Cube (PCVDC)’.
Additionally optimization techniques are applied onto the data cube for better performance.

We have developed a three-tier data warehouse architecture as shown in Fig. 1. In tier one, data is collected from
the external source of operational data, which are then extracted, transformed, refreshed, and loaded into the data
warehouse server. Next with the intension of compressing the warehouse data, we have designed a Distributed
Multi-Block Vector Architecture (DMBVA) in tier two to store the relational schema in a compressed and
distributed format. In tier three, we have generated the data cube directly from the compressed vector in parallel.
This procedure is named as PCVDC and it belongs to the main focus of our work. To achieve the optimal result in
terms of storage space and construction time of data cube, prefix and suffix redundancy are eliminated. Finally the

Malaysian Journal of Computer Science, Vol. 20(1), 2007

63

DMBVA - A compression-based Distributed Data Warehouse Management in Parallel Environment pp. 63 - 76

clients do their queries from the virtual data cube with the help of the query manager, which is synchronized by the
application server.

Analysis

Query/Reporting

Data Mining

Fig. 1: Overall system architecture

The rest of this paper is organized as follows: Section 2 describes different related work, their utility and drawbacks.
Section 3 depicts our compressed relational architecture – DMBVA, with detailed analysis of its components –
domain dictionary, compressed vector and index structure. Then the PCVDC algorithm with the data cube file
format, their detailed analysis and evaluation is exposed in Section 4. The optimization for data cube creation and
storage is presented in Section 5. In Section 6, experimental outcome is discussed, where various comparisons are
made on the basis of storage space, construction and query response time against other work. Finally conclusion and
future work is delivered in Section 7.

2.0 RELATED WORK

Some of the aspects of creating, maintaining, and querying a distributed and parallel data warehouse are outlined in
[1]. Teradata’s parallel processing architecture [2] possesses distinct advantages for highly complex, large scale data
warehouse. Cost optimization for distributed data warehouse is addressed in [3] which is based on a weighted sum
of query and maintenance costs. WHIP architecture [4] performs identification, transformation and incremental
integration of distributed heterogeneous data. SAND Technology [5] proposed new architecture of data warehouse
that reduces storage requirements and therefore costs. Agent-Based Warehouse [6] architecture put forward a great
contribution for seamless integration of new data. None of these works addresses the use of compression in storage
and querying warehouse data.

Alternatively, research on database compression put a great role on performance improvement. A dictionary based
compression technique HIBASE model [7] is further extended by the three-layer architecture [8] for sparsely
populated and XML data. Migrating a multi terabyte archive from object to relational database is depicted in [9].
CMBVS [10] disk based compression technique handle terabyte level database.

Data cube computation algorithm mostly based on sorting and hashing techniques. PipeSort, Overlap and
MemoryCube [11] are sort based where as Pipehash [11] is hashing based algorithm. Since sorting a terabyte sized
data warehouse takes a huge computation time, our approach is based on hashing technique. Dwarf [12] and
PrefixCube [13] separately present compact data cube structures and addresses the issues of prefix and suffix
redundancy, but their structures store the lexemes of the dimension attributes which occupy massive space. On the
contrary, in our approach, prefix and suffix redundancy is automatically abolished for the absence of lexemes.
Recently, different fast parallel methods are developed for constructing data cubes [14, 15] based on partitioning
and efficient parallel merge procedure with a cost of lexeme storage. This merge cost is much higher in case of very
large scale data warehouse.

3.0 DISTRIBUTED MULTI-BLOCK VECTOR ARCHITECTURE

With the intension of compressing the warehouse data, we apply our Distributed Multi-Block Vector Architecture
(DMBVA) to store the relational schema in a compressed and distributed format. DMVBA is an extended

64
Malaysian Journal of Computer Science, Vol. 20(1), 2007

DMBVA - A compression-based Distributed Data Warehouse Management in Parallel Environment pp. 63 - 76

modification of CMBVS [4]. Here for successful storage management, the relational warehouse is compressed and
distributed over multiple column servers as shown in Fig. 2. Each column server is associated with a domain
dictionary, a large compressed vector and an index structure. Application server stores the measure attributes and
synchronizes among those column servers.

Fig. 2: General architecture of distributed compressed data warehouse containing a fact table
of four dimensional attributes 'ABCD' and one measure attribute 'M'.

3.1 Domain Dictionary

The domain dictionary consists of set of lexemes with corresponding token values. It is updated dynamically
whenever facing a new lexeme. We have created disk-based multiple part dictionaries to accommodate huge
quantities of lexemes, where some parts resides in the memory and others are in the disk, which are fetched on
demand basis. There are two main operations in the dictionary. (i) getToken(lexeme): this operation return the token
of the given lexeme. If the lexeme is not present in dictionary, then add it there and return the corresponding new
token. (ii) getLexme(token): it returns the corresponding lexeme of the token. The size of the resultant dictionary in
the ith column server is: . Where, Cii LC × i = cardinality of domain attribute, Li = average length of lexeme, I =

index structure storage size. To search the dictionary hashing technique is applied, where the time cost is ()1O .

3.2 Compressed Vector

A compressed vector represents a single column of relational database. Here only the tokens of the corresponding
lexemes are stored and hence compressed. As the main memory is limited, so each vector is partitioned into blocks,
each block is partitioned into machine words, and a certain number of blocks reside in memory, the others are kept
in the disk. We store fixed number of elements per block. The size of element stored in the vector is uniform within
any block, but may vary between blocks. Any operation in the vector ultimately propagated to the block. Multi-
block structure reduces reorganization cost of vector and also reduces the wastage of space.

The main operations of the block are, (i) isEmpty(): check whether the block is empty. (ii) addToken(token): insert
a new token to the block. The insertion always occurs at the end of the block. The element size of the inserting
element should be same as the element size of the block. If the element size of the token is larger than the element
size of the block then widening operation is issued. (iii) getToken(index): This operation returns the ith token from
the block and i must be smaller than or equal total number of elements in the block. (iv) widen(numBit): Widening
operation is issued when the element-size of inserting token is larger than that of existing element-size. During the
widening operation, all the elements in the block are reorganized and element-size is set to new element-size. To
perform this operation, all the existing tokens are inserted to a temporary wordlist with new element size then the
new element is added to the temporary wordlist. The old wordlist is deleted and the properties of the block are set
with new element-size. (v) getTupleId(token): This operation returns a set of record_IDs from the block that has the
same token found in parameter. This record_ID represents the index of matching tuple within the block (not the

65
Malaysian Journal of Computer Science, Vol. 20(1), 2007

DMBVA - A compression-based Distributed Data Warehouse Management in Parallel Environment pp. 63 - 76

database record_ID). If no matching token found in the block then it returns –1. The overall size of the compressed
vector is:

⎡ ⎤

∑
=

⎥⎥
⎤

⎢⎢
⎡ ×mn

i

i

w
vw

/

1

m

Here, n = total number of elements in the vector, m = total number of elements in a block, vi = width of each
element in the ith block (bits), w = word size (bits).

The overall creation time complexity is the sum of the,

(i) Overall widening operation (U= ⎡ ⎤()mmnO 2log/ ×).

(ii) Time to store blocks in disk: ⎡ ⎤()sTmnO ×/ .
(iii) Dictionary creation time: total dictionary search time + total block storage time =

()ddi TBOCO ×+ () .
Here, TS = time to store a compressed block into the disk, Td = time to store a dictionary block into the disk and Bd
= size of the dictionary block. Here, the network delay will be zero, because each compressed vector and its
corresponding domain dictionary resides in the same column server.

3.3 Index Structure

An index file is created if the lexeme is a search key. The index structure is associated to <lexeme, token> instance.
We transform lexeme to token using dictionary and then token is used as a new search key. A hashing technique is
used to extract the specific token from the multi-block vector structure.

4.0 PARALLEL CONSTRUCTION OF VIRTUAL DATA CUBE

A data warehouse is based on a multidimensional data model which views data in the form of a data cube. Data
cube is the computation of aggregation on all possible combination of dimension attributes. For a base relation R
with N dimension attributes {D1, D2 …., DN} and one measure attribute M, the full data cube of R on all the
dimensions is generated by CUBE BY on D1, D2 …., DN. It is equivalent to the union of 2N distinct GROUP BY.
Each group-by is called a cuboid. The CUBE BY is a very expensive operator, and the size of its result is extremely
large especially when the number of CUBE BY attributes and the number of tuples in the source relation is large.

4.1 Data Cube File Format

Data cube construction format is depicted in Fig. 3. Here the smallest unit is the record_ID, which is a sequence of
bit string. Every single record_ID and its corresponding measure_Value melded into a cube_Record. Multiple
cube_Record form a cube_Word, where multiple cube_Word fused into a cube_Block. Every cube_Block is
independently addressable so the structure is suitable for large data cube. Here each cube_Block contains a fixed
number of cube_Records and hence the memory requirement for different blocks of different cuboids may be
varied. However the cube_Records of a particular cuboid are mapped contiguously to the underlying cube_Words.
So no space is wasted at the word boundaries except at the block boundaries. Then, multiple cube_Block form a
cube_Vector, alternatively which is called a cuboid. Finally all the cuboids collectively form the resultant data cube.

Fig. 3: Data Cube construction procedure.

cube_
Block

We have generated the data cube directly from the compressed vector in parallel. A data cube is constructed from a
schedule tree, whereas a schedule tree is generated from a cuboid lattice (Fig. 4(a)) by solving a minimum spanning
tree problem. This is illustrated in Fig. 4 for a four dimensional attribute ‘ABCD’. Here we assume that
|A|≥ |B| |C| |D|. There are two types of data cube file: root cuboid and child cuboid. Fig. 4(b) depicts the flow of
data cube generation.

≥ ≥

cube_Vector
Or Cuboid

cube_
Word

cube_
Record

Data
Cube

measure_Value
+

record_ID

66
Malaysian Journal of Computer Science, Vol. 20(1), 2007

DMBVA - A compression-based Distributed Data Warehouse Management in Parallel Environment pp. 63 - 76

4.2 PCVDC Algorithm

The general idea of our Parallel Construction of Virtual Data Cube (PCVDC) [16] is: starting from the first token,
each column server extracts a chunk of tokens from their individual compressed vector in parallel and sends it to the
application server. Application server then generate and broadcast {record_ID, measure_val} to all the column
servers. These are stored into the blocks of the cube_vectors. Repeating this process the root cuboid is generated.
Each column server then locally computes the child cuboids from its smallest parent cuboid in parallel as assigned
in the schedule tree. Eventually the complete data cube is constructed. The detailed algorithms are depicted in
Algorithm 1, 2 and 3.

Fig. 4: (a) A cuboid lattice of four dimensional attributes ‘ABCD’.
(b) A Schedule tree produced from the aforementioned lattice

Algorithm 1: PCVDC in the Application Server Algorithm 2: PCVDC in the Column Server

Input: tokens from column server
Output: record_IDs and measure_Values
1. create a server socket
2. create as many as child threads for each column
 server
3. pass socket acceptance to each thread constructor
4. for each column server thread pardo
5. while(true) do
6. wait to receive a chunk of tokens from each
 column server
7. send this token to the root thread
8. root thread generates the record_IDs using the
 collected tokens and extract the corresponding
 measure values
9. send these record_IDs and measure_Values to
 the column server
10. if the last token had received then break
11. end while
12. end for

Input: schedule tree, compressed vector file
Output: complete data cube
1. create a thread for this column server
2. create a socket and connect to the server port
3. while EOF of all compressed vector file is not

reached
4. extract a chunk of tokens from the vector
5. send these tokens to the application server
6. wait to receive the record_IDs and the

measure_Values from the application server
7. store them to the rootCuboid file
8. end while

Algorithm 3:
constructChildCuboid(rootCuboid)

1. r ← rootCuboid
2. generate all childCuboids of r
3. for each children c of r from left to right do
4. if c has no children then
5. return to parent cuboid
6. else constructChildCuboid(c)
7. end if
8. end for

4.3 PCVDC Analysis & Evaluation

Let, m = average cardinality of each dimension attributes. n = Average number of tuples (elements) in compressed
vector. d = Number of dimension attributes. b = Total number of blocks. For a single server system, time
complexity to construct a data cube:

67
Malaysian Journal of Computer Science, Vol. 20(1), 2007

DMBVA - A compression-based Distributed Data Warehouse Management in Parallel Environment pp. 63 - 76

()

()
() () ()nmOdmOnmO

mCmCmCO

d
m
nnmO

ddd

dd
d

dd
d

d

d

=+=

+++

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎭
⎬
⎫

⎩
⎨
⎧ −+

++−
−

+−
−

11
1

12
2

11
1

1

L

In the case of root cuboid generation: total number of tuples in the data cube is md, for each tuple in the data cube,
we have to search sequentially all the n tuples of the first dimensional attribute (vector) to match with the first
element of that data cube tuple. If a match is found then we have to extract the same tuple of the next dimensional
attribute (vector) in order to find a match with the next element of that particular tuple in the data cube. On an
average, there are n/m replicas of each tuple of the domain dictionary in the vector. So for each tuple in the data
cube, total searching for the rest of the d-1 dimension attributes (vectors) is: ()()1/ −dmn . In the case of child

cuboid generation: since there are total ‘d-x’ dimensional child cuboids of a d dimensional cuboid, for each

of this child cuboid, a total of comparison is made. Now, For a multiple server system, time complexity to

construct a data cube is

xd
d C −

1+−xdm
() () ()dd mOmOnO =+ . Here to generate the root cuboid, only n number of searching

is made in parallel through the compressed vectors. Whereas, for child cuboid generation, it is same as single server

system, but the generation is distributed among d number of servers. So a maximum of comparison is made. If
the number of dimensions in the source relation is N, i.e. total number of cuboids is 2

dm
N, number of dimension in the

cth cuboid is dc, cardinality of the jth domain of the cth cuboid is Ccj, size of the block-ID is Bc and measure value is
M in cth cuboid. Therefore the maximum size of the data cube is:

() ()∑ ∏
= = ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

N
c

c
c

d

j
cj MBC

2

1 1

1

4.4 Query from the Data Cube

For centralized systems, the primary criterion for measuring the cost of a particular strategy is the number of disk
accesses. In a distributed system, other issues must be taken into account:

• The cost of data transmission over the network.
• The potential gain in performance from having several sites process parts of the query in parallel.

The relative cost of the data transfer over the network and data transfer to and from disk varies widely depending on
the type of network and on the speed of the disk. Thus, we cannot focus solely on disks cost or on the network cost.
Rather, we must find a good tradeoff between the two. We speed up the processing of a query by executing the
different operations in parallel of a query expression. Here the resultant data cube is independently distributed and
the different query expressions which are imposed onto the same cube_Record are managed by pipelining.
Therefore is no necessity of locking and logging in the query operations and cache-coherency problem is eliminated
as well. A detailed query operation is shown in Fig. 5 and the corresponding algorithm is depicted in Algorithm 4.

68
Malaysian Journal of Computer Science, Vol. 20(1), 2007

DMBVA - A compression-based Distributed Data Warehouse Management in Parallel Environment pp. 63 - 76

Fig. 5: Architecture of PCVDC query operation

Algorithm 4: Query Operation
Input: query
Output: resultant dataset
1. Application server creates a client session for each client when client connected to application server.

The client session is created by multithreading.
2. Application server talk over the query manager for each query and the cheapest execution plan is found

out among the many possible execution plans that give the same answer.
3. Translate each query into the SQL form.
4. Select the appropriate Middleware server from its metadata, which is associated with the column servers

under which the query results reside.
5. Middleware server decomposes the tokenized query into individual projection, sort, where condition,

join operation and determine the dependency between them. Then it forwards the request for projection
and condition operation to the pertinent column servers.

6. Column servers extract the result of the condition and projection operation from the appropriate cuboids
with the help of the cube index.
6.1. For condition it creates two stages Pipeline for Domain Dictionary (DD) in the 1st stage and Data

Cube (DC) in the 2nd stage. Here Cx implies condition number x.
6.2. For projection it also creates two stages pipeline for Data Cube (DC) in the 1st stage and Domain

Dictionary (DD) in the 2nd stage.
6.3. When different pipelining stages try to invoke the same domain dictionary or data cube block, it is

handled thread synchronization.
7. Finally, the results containing facts and lexemes are sent back to the Middleware server, which are

packed with the query ID and eventually passed back to the Application server.

4.4.1 An Example Query Operation

A simple query example is shown in Fig. 6, which is constructed from the schedule tree (Fig. 4 (b)) of the PCVDC
architecture. The example query is made based on customer relation entropy. Given five dimensional attributes,
which are ID (X), Name (A), Street (B), City (C), Status (D), and one measure attribute named Salary (M). Let the
query is “Select Name, Max (Salary) From Customer Relation Where Street = ‘bijoy’ AND Status = ‘Unmarried’.”

69
Malaysian Journal of Computer Science, Vol. 20(1), 2007

DMBVA - A compression-based Distributed Data Warehouse Management in Parallel Environment pp. 63 - 76

This query is imposed to the query manager which is forwarded to application server in a different manageable
format. Then it is partitioned into sub-query by the application server and send on to the appropriate column server
for tokenizing the query attributes. After that, as the result of the query lies in the cuboid ‘ABD’, whereas the
cuboid ‘ABD’ resides in the column server-B, so the query tokens are passed to column server-B. Then the result,
Name = ‘011..0’ and Salary = ‘40000’ is passed back to application server. Token ‘011..0’ is further sent to column
server ‘C’ for decompression, therefore Name = ‘Obayed’ is returned, which is passed back to the query manager.

Query manager

Application Server

A= *
B= ‘Dhaka’
D= ‘Unmarried’

Column
Server - B Column

Server - D
Column

Server - C

“Unm
arried” “Dhaka”

‘*1
00

10
11

10
1’

Cuboid - ABD

M
ax

(*
10

0
10

11
10

1)

A
=’

01
1.

.0
’

M
=’

40
00

0’
A=

’0
11

..0
’

M
=’

40
00

0’

’0
11

..0
’

‘O
ba

ye
d’

Select name, Max (salary)
From Customer Relation
Where city=”Dhaka” and

status=”Unmarried”

A= ‘Obayed’
M= ‘40000’

Which unmarried person in
Dhaka city get the maximum

salary and how much ?

“100101110” “1”

Fig. 6: A simple query example

4.4.2 Time Complexity to Query from a Data Cube

Let, t = Query tokenization time, m = Average no. of cube records per cube_block. d = Number of dimension
attributes, and netd = overall data transmission delay through the network. Now, the overall query response time =
Query tokenization time + Cube_block search time + Cube_record searching time + Network delay. Since a hash
indexing is used to locate the cube_block and binary search is applied to locate the cube_record, therefore
cube_block searching time is and cube_record searching time is()1O ()mO 2log . So, the overall query response

time we achieved is: . ()dnetmtO ++ 2log

5.0 OPTIMALITY ISSUE OF PCVDC

Prefix and suffix redundancy are identified in our approach and eliminated as well. Prefix redundancy is understood
by the fact that there is a cube with dimensions A, B and C. Each value of dimension A appears in 4 group-bys (A,
AB, AC, ABC) and possibly many times in each group-by. This prefix redundancy can be further classified into
inter-cuboid and intra-cuboid prefix redundancy. Since there is no direct storage of dimension attribute values, the
prefix redundancy is automatically wiped out. Suffix redundancy occurs when two or more group-bys share a
common suffix (like ABC and BC). For example, consider a value Bj of dimension B that appears in the fact table
only with a single value Ai of dimension A. Then, the group-bys <Ai, Bj, x> and <*, Bj, x> always have the same
value for any value x of dimension C. More specifically taking an extreme case as an example, let a fact table R
have only a single tuple r = <A2, B1, C3, M>. Then, the data cube of R will have 23 = 8 tuples, <A2, B1, C3, V1>, <
A2, B1, *, V2>, <A2, *, C3, V3>, <A2, *, *, V4>, <*, B1, C3, V5>, <*, B1, *, V6>, <*, *, C3, V7>, <*, *, *, V8>. Since
there is only one tuple in relation R, we have V1 = V2 = … = V8 = aggr(r). Therefore, we only need to physically
store one tuple <A2, B1, C3, V>, where V= aggr(r). So the cube for R with 8 tuples can be condensed into one tuple.
Our optimization feature detects and purges this type of redundancy. Algorithm 4 depicts the optimal cuboid
construction procedure where the suffix redundancy is eliminated.

70
Malaysian Journal of Computer Science, Vol. 20(1), 2007

DMBVA - A compression-based Distributed Data Warehouse Management in Parallel Environment pp. 63 - 76

Algorithm 4: Constructing Optimal Cuboid
Input: name: cuboid name = ‘X1X2…Xn tokens from column server
 metadata: name.dat = ‘X1X2…Xn’.dat
Output: optimal cuboid
1. Load ‘X1X2…Xn’.dat into the memory.
2. t 1st tuple going to be added into the cuboid ‘X1X2…Xn’
3. while any tuple remains to be added do
4. bID blockID of t
5. mVal measureValue of t
6. check the existence of t into the metadata
7. if not found
8. add the bID and mVal into the cuboid
9. end if
10. if Xjvalj …Xkvalk is a constant suffix of Xivali …Xj-1valj-1, where i <=
 j <= k, then
11. broadcast (fileName=Xj…Xk, suffixToken=valj…valk,

prefixName = Xi…Xj-1, prefixToken= vali…valj-1) targeted to
the column servers which contain any cuboid, whose name
starts with Xj…Xk.

12. end if
13. t next tuple going to be added into this cuboid
14. end while

Algorithm 5: Update Metadata
Input: broadcastInfo
Output: updated metadata file
(Running under an infinite thread on each column server)
1. if the file addressed in the broadcast_Info do not exist then
2. create this file.
3. else if the broadcastInfo is already exist then return
4. else
 add ‘suffixToken, prefixName, prefixToken’ into the file referred as
 fileName.dat

6.0 EXPERIMENTAL SETUP

In our experimental setup there were one application server and several column servers (one for every compressed
vector) connected via LAN. Each server having 3GHz Pentium IV processor, 40GB hard disk and 512MB RAM.
The platform was windows XP and was implemented by java development kit 1.5.

We used TCP (Transmission Control Protocol) for the communication between two of our applications residing in
different computers. During the root cuboid of the data cube construction process we used multicasting which can
be thought of as broadcasting data over a network connection to many connected agents, as opposed to unicasting
packets between two agents on a normal connection. To support concurrent access onto the Application server by
multiple Column servers for the root cuboid generation we used multithreading. Also multiple tokenized query
requests which are imposed onto the Column servers are handled by multithreading. When the multiple query
threads in our system tried to access the same data cube or dictionary block asynchronously, it was handled by
Thread Synchronization. Collection of threads is managed by Thread Pool to improve the performance when
executing large numbers of tasks as a result of reduced per-task invocation.

We chose a classical retail data warehouse of an enterprise which is collected from the oracle data warehouse
corporation. A synthetic data generator was implemented to generate the data that resembles the real data sets for
merchandising relation. We assumed six attributes (Table 1) and considered approximately 4 million customers of
an enterprise. Based on this, the approximate cardinality of each dimension attribute is shown subsequently. Each

71
Malaysian Journal of Computer Science, Vol. 20(1), 2007

DMBVA - A compression-based Distributed Data Warehouse Management in Parallel Environment pp. 63 - 76

record is estimated as 104 bytes in the uncompressed base relation, whereas each compressed record occupies at
most 7 bytes.

Table 1: The sales relation structure

Attribute
Name

Data
Type Cardinality Length

(bytes)
Bits
required

Sales_Id Integer Primary
key 4 22

Product Name Varchar 507 30 9
Customer
Name Varchar 5000 30 13

Customer
Status Varchar 2 10 1

Sales City Varchar 64 30 6
Price Charged Double Measure value

Total 104
bytes

51bits
≈7bytes

Table 2: Storage requirement of DMBVA versus SQL Server

Number
of records
(million)

Storage space
in SQL Server
(MB)

Storage
space in
DMBVA
(MB)

Compression
Factor against
SQL Server

1 251.92 9.525 26.45
2 501.86 18.312 27.40
3 755.76 26.32 28.71
4 1011.65 33.56 30.14
5 1289.36 41.20 31.30

6.1 DMBVA Storage

The storage space occupied by DMBVA demonstrates a significant compression factor against SQL Sever, as
shown in Table 2. The average compression ratio is 28.87 with respect to SQL Server. This is because SQL Server
needs to store the original source relation in an uncompressed format with some additional information which
contrasts with our work.

6.2 Data Cube Storage

The compressed vector act as the source relation for the generation of the data cube, and the data cube was
generated directly from this compressed format in a parallel environment. Since the data cube was generated
directly from this compressed vector and its contents are virtual, a great deal of reduction in the ultimate storage
space was achieved. We compared our system with binary storage footprint (BSF) and Dwarf [12]. In PCVDC the
fact table i.e. the compressed vector contained 100000 tuples with a uniform distribution of the dimensional values
over a cardinality of 1000. In Table 3, the storage occupied by different methods for different dimensions is
demonstrated. This experimental result is consistent with the analytical evaluation which is stated in section 4.3.

BSF comparatively took much more space for all the dimensions, because all the cuboids are stored here in non-
indexed binary summary table without eliminating the redundancy. Excluding Prefix but Including Suffix
redundancy (EPIS) both Dwarf and PCVDC perform better. However, in this case, PCVDC dominates Dwarf in the
data cube storage reduction due to the absence of lexemes. After eliminating the suffix redundancy (noted as ES)
the storage cost reduced a lot for both methods. We achieved a significant storage reduction for all the dimensions
with respect to Dwarf, because of the elimination of lexeme storage and data cube storage format in PCVDC.
Again, in our system this storage was reduced by a factor of 1/N, where N is the number of column server. This is

72
Malaysian Journal of Computer Science, Vol. 20(1), 2007

DMBVA - A compression-based Distributed Data Warehouse Management in Parallel Environment pp. 63 - 76

because different cuboids were stored by different servers according to the schedule tree. So it is clear that PCVDC
dominate all other methods in the case of storage reduction, where suffix redundancy is a crucial factor in the
overall performance. Therefore, our parallel system architecture scales well with the number of dimensions. Here a
constant running time can be maintained as the dimension is increased by adding a proportion number of
processors.

Table 3: Data Cube storage cost comparison with other system

Dim BSF Dwarf
EPIS

PCVDC
EPIS

Dwarf
ES

PCVDC
ES

Storage /column
server

10 2333
MB 1322 MB 538.33 MB 62 MB 25.26 MB 2.53 MB

15 106 GB 42.65 GB 21.57 GB 153 MB 77.38 MB 5.16 MB
20 4400 GB 1400 GB 838.37 GB 300 MB 179.65 MB 8.98 MB
25 173 TB 44.8 TB 30.83 TB 516 MB 355.09 MB 14.20 MB
30 6.55 PB 1.43 PB 1.16 PB 812 MB 658.69 MB 21.95 MB

6.3 PCVDC Construction Time

The data cube was generated directly from this compressed vector in parallel, hence a great deal of reduction in the
ultimate construction time was achieved. We compared the construction time of PCVDC with Dwarf (Fig. 7). The
same data set was used here. Dwarf construction time was proportional to its size, and required much less time as it
avoids computing large parts of the cube by eliminating the suffix redundancy. On the contrary, PCDVC creation
time was little higher for smaller dimensions with respect to Dwarf. This is because, during the construction of root
cuboid, it faced the data transmission overhead through the network channel. But after that all other cuboids were
constructed independently in parallel from their parent cuboids in different column servers. Due to this parallel
nature, a significant reduced creation time was achieved for bigger dimensions.

0
50

100
150
200
250
300
350
400
450

5 10 15 20 25 30

Dimensions

C
re

at
io

n
Ti

m
e

(s
ec

)

Dw arf

PCVDC

0
20
40
60
80

100
120
140
160
180

4 5 6 7 8 9 10

Dimensions

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(s

ec
) Cubetrees

Dw arf

PCVDC

Fig. 7: Creation time comparison between Dwarf
and PCVDC

Fig.8: Response time of Dwarf, PCVDC
and Cubetrees

6.4 Query Response Time

We speed up the processing of a query by executing different operations in parallel in a query expression. Therefore
we achieved a significant reduced query response time by applying the intraquery and interquery parallelism. The
response time was experimented with Dwarf [12] and Cubetrees [15] (Fig. 8). Here the query was made against a
complete cube of 4−10 dimensions with 300000 tuples in the fact table. We made almost 1000 queries on projection
operation and multiple predicates select queries which include multiple attributes in the where clause. Both range
and point queries were made. Query against a data cube was actually be reduced to a sub-query against only one
particular cuboid or a union of such sub-queries, and this is done by the query manager. The full Cubetrees [15]
took a huge response time since it calculates the entire cube. Dwarf cube performed better in case of smaller
dimensions but as the dimension grows it became difficult to manage the condense storage in the main memory. In

73
Malaysian Journal of Computer Science, Vol. 20(1), 2007

DMBVA - A compression-based Distributed Data Warehouse Management in Parallel Environment pp. 63 - 76

contrast with that, PCVDC performed much better for higher dimensions with a little sacrifice in the query
tokenization time. But it was overcome by the parallelization of the query operation. Up to 10 dimensions, the
average speedup in the response time were 16.34 and 1.59 with respect to Cubetree [15] and Dwarf Cube
respectively. This speedup would be further accelerated for higher dimensions due to our parallel architecture.

To compare the access speed of projection operation we choose 4 example queries shown in Table 4. Query Q1, Q2,
Q3 and Q4 represents the projection operation of 1, 2, 3 and 4 attributes respectively. The set of quires were
imposed onto 1 million tuples. Because the conventional database system accesses the entire tuple for any type of
query, so the number of attributes has no significant effect in the query time. The PCVDC accesses only the
information related to the attributes used in query. The average access speed for projection operation is a factor of
45.78 with respect to SQL Server.

Table 4: Comparison of Access Speed on Projection Queries

Average Elapsed Time
(sec) Sl.

No. Number of Attributes SQL Server
(Ts)

PCVDC
(Tc)

Access
Speed
(Ts/Tc)

Q1 Single attribute
projection 220 6.29 34.98

Q2 Two attribute projection 285 6.85 41.60
Q3 Three attribute projection 342 7.13 47.97
Q4 Four attribute projection 457 7.80 58.59

We also imposed the Multiple Predicates SELECT queries onto one million tuples. We take here four queries given
in Table 5. Query Q5, Q6, Q7 and Q8 has one, two, three and four attributes respectively in the WHERE clause.
We run the same query in SQL Server and PCVDC. The average access speed we achieved was a factor of 38.8.

Table 5: Multiple Predicates SELECT Queries

Average Elapsed Time
(sec) Sl.

No
.

SQL Command SQL Server
(Ts)

PCVDC
(Tc)

Q5 SELECT * FROM Sales_Table WHERE Ai=’XXX’ ; (2≤ i ≤ 5) 245.43 8.24

Q6 SELECT * FROM Sales_Table WHERE Ai=’XXX’ AND Aj=’YYY’;
(2≤ i, j ≤ 5 and i ≠ j) 337.67 9.17

Q7 SELECT * FROM Sales_Table WHERE Ai=’XXX’ AND Aj=’YYY’
AND Ak=’ZZZ’ ; (2≤ i, j, k ≤ 5 and i ≠ j ≠ k) 388.44 9.45

Q8 SELECT * FROM Sales_Table WHERE Ai=’XXX’ AND Aj=’YYY’
AND Ak=’ZZZ’ AND Al=’WWW’ ; (1≤ i, j, k, 2 ≤ 5 and i ≠ j ≠ k ≠ l) 444.55 10.55

7.0 CONCLUSION AND SCOPE OF FUTURE WORK

There are works with distributed and parallel architecture of data warehouse without compression. Again, there are
works with data warehouse compression but no distribution. Therefore integrating these two technologies, in this
thesis, we have first presented a distributed data warehouse architecture using compression-based multi-block
vector structure for relational database. Using this architecture, we achieved a compression factor around 26.45 to
31.30 against the SQL Server for source relation. Afterwards, using our PCVDC Algorithm, the data cube was
generated directly from this compressed form of data in a parallel environment without any decompression. Hence,
it took significantly reduced creation and storage cost for the data cube. The PCVDC method was compared with
BSF, Dwarf and Cubetrees. The cube size reduction effectiveness of PCDVC was around 18.88% to 59.26%, with
an average of 39.77% better than that of the Dwarf cube and far more against BSF. The average speedup in the
response time was 16.34 and 1.59 with respect to Cubetree and Dwarf Cube respectively. All of our experimental
results are consistent with the analytical evaluation. Here we picked out the source relation as uniformly distributed,
so that we can find out the upper bound of complexity for the data cube storage and query response time. If the

74
Malaysian Journal of Computer Science, Vol. 20(1), 2007

DMBVA - A compression-based Distributed Data Warehouse Management in Parallel Environment pp. 63 - 76

source relation is unevenly distributed then we would get a reduced complexity for both the case of compressed
vector and data cube.

Our future work includes data migrating tools for compression based PCVDC system in a distributed and parallel
environment. Using this tool, compressed data blocks can be migrated to remote servers and query can be answered
from there without any decompression. Our architecture can also be used for parallel mining, where clustering and
classification techniques can be applied in parallel onto the compressed vectors and virtual data cube. Back-up and
recovery mechanism of these distributed data cube and compressed vectors can be considered in future. The system
has been tested using synthetic data set. However, it can also be implemented in real life environment. We believe
that the system will behave as our findings.

REFERENCES

[1] H. G. Molina, W. J. Labio, J. L. Wiener, and Y. Zhuge, “Distributed and Parallel Computing Issues in Data
Warehousing”, in Proceedings of the 17th Annual ACM Symposium on Principles of Distributed Computing,
Mexico, 1998, pp. 77-85.

[2] R. Burns, D. Drake, and R. Winter, “Scaling the Enterprise Data Warehouse, Teradata’s Integrated Solution,”
A Winter Corporation White Paper, Waltham, 2004, http://www.teradatalibrary.com/ pdf/teradata_7.pdf

[3] H. Ma, K. D. Schewe, and J. Zhao, “Cost Optimisation for Distributed Data Warehouses”, in Proceedings of
the 38th Annual Hawaii International Conference on System Science, Hawaii, 2005, pp. 283-288.

[4] J. L. Wiener, H. Gupta, W. J. Labio, Y. Zhuge, and H. G. Molina, “The WHIPS Prototype for Data
Warehouse Creation and Maintenance,” in Proceedings of the 1997 ACM SIGMOD International Conference
on Management of Data, Arizona, 1997, pp. 557–559.

[5] P. Howard, “A New Architecture for Data Warehousing”, Bloor Research White Paper, June 2005. pp. 1-19.
http://www.itdirector.com/research.php? viewpdf=742&mode=full.

[6] G. Kalra and D. Steiner, “Weather Data Warehouse: An Agent-Based Data Warehousing System,” in
Proceedings of the 38th Annual Hawaii International Conference on System Sciences, Hawaii, 2005, pp. 217-
221.

[7] W. P. Cockshott, D. McGregor and J. Wilson, “High-Performance Operations Using a Compressed Database
Architecture”, The Computer Journal, Vol. 41, No. 5, 1998, pp. 283-296.

[8] A. S. M. L. Hoque, “Compression of Structured and Semi-Structured Information”, Accepted for the degree
of Ph. D, Dept. of Computer & Information Science, University of Strathclyde, Glasgow, UK, 2003.

[9] A. Thakar, A. Szalay, P. Kunszt and J. Gray, “Migrating a Multiterabyte Archive from Object to Relational
Database”, IEEE Computer Society Digital Library, 2003, Vol. 5, No. 5, pp. 16-29.

[10] M. A. Rouf, A. S. M. L. Hoque, “Dtabase Compression for Management of Terabyte Level Relational Data”,
in Proceedings of 8th International Conference on Computer and Information Technology, Dhaka, 2005, pp.
281-285.

[11] S. Agarwal, R. Agrawal., Deshpande, Gupta, Naughton, Ramakrishnan and Sarawagi, “On the Computation
of Multidimentional Aggregates,” in Proceedings of the International Conference on Very Large Databases,
1996, pp. 506-521.

[12] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, Y. Kotidis, “Dwarf: Shrinking the PetaCube,” in
Proceedings of ACM SIGMOD, Madison, USA, 2002, pp. 464-475.

[13] J. Feng, Q. Fang and H. Ding, “PrefixCube: Prefix-Sharing Condensed Data Cube,” in Proceedings of the 7th
ACM International Workshop on Data Warehousing and OLAP, Washington, DC, USA, 2004, pp. 38–47.

75
Malaysian Journal of Computer Science, Vol. 20(1), 2007

DMBVA - A compression-based Distributed Data Warehouse Management in Parallel Environment pp. 63 - 76

[14] Y. Chen, F. Dehne, T. Eavis and A. Rau-Chaplin, “Building Large ROLAP Data Cubes in Parallel,” in
Proceedings of the International Database Engineering and Applications Symposium, Montreal, 2004, pp.
367–377.

[15] R. Jin, K. Vaidyanathan, G. Yang and G. Agrawal, “Communication and Memory Optimal Parallel Data
Cube Construction”, IEEE Transactions on Parallel and Distributed Systems, 2005, Vol. 16, pp. 1105–1119.

[16] A. S. M. L. Hoque and F. H. Siddiqui, “Parallel Virtual Data Cube Construction from a Distributed
Compressed”, in Proceedings of the International Conference on ICT for the Muslim World, Malaysia, 2006,
paper ID 52, pp. 1-8.

BIOGRAPHY

Fazlul Hasan Siddiqui received a B.Sc. (first class honors) in Computer Science & Information Technology from
Islamic University of Technology (IUT), Bangladesh in 2002, and completed his coursework for the M.Sc. Engg.
(first class honors) in Computer Science & Engineering in 2005 and is currently performing thesis work from
Bangladesh University of Engineering & Technology (BUET), Bangladesh. He is a member of “Institute of
Engineers Bangladesh (IEB)” and currently working as an Assistant Professor of Dhaka University of Engineering
& Technology, Gazipur in Computer Science & Engineering Department. His research interest includes Data
Warehouse, Data Mining, and Database Compression.

Abu Sayed Md. Latiful Hoque received his PhD in the field of Computer & Information Science from University of
Strathclyde, Glasgow, UK in 2003 with Commonwealth Academic Staff Award. He obtained M.Sc. in Computer
Science & Engineering and B.Sc. in Electrical & Electronic Engineering from Bangladesh University of
Engineering & Technology (BUET) in 1997 and 1986 respectively. He has been working as a faculty member in the
Department of Computer Science & Engineering at BUET since 1990 and currently his position is an Associate
Professor. He is a Fellow of Institute of Engineers Bangladesh (IEB) and Bangladesh Computer Society. His
research interest includes Data Warehouse, Data Mining, Information Retrieval and Compression in Database
Systems.

76
Malaysian Journal of Computer Science, Vol. 20(1), 2007

