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ABSTRACT 
 
In this paper we introduce a new approach for adjustment of membership functions, generation, and reduction of 
fuzzy rule base from data in the same time. The proposed approach consists of five steps: First, generate fuzzy rules 
from data using Mendel & Wang Method introduced in [1]. Second, calculate the degree of similarity between 
rules. Third, measure the distance between the numerical values which induces similar rules. Four, if the distance is 
greater than base value then merge membership functions. Finally, regenerate rules from data with new fuzzy sets. 
This approach is applied to truck backer-upper control and Liver trauma diagnostic. A comparative study with a 
simple Mendel Wang method shows the advantages of the developed approach. 
 
Keywords: fuzzy inference system, rule base generation and reduction, similarity, numerical data. 
 
 
1.0 INTRODUCTION 
 
Fuzzy logic techniques implementing the expert knowledge and experiences have been widely applied to many 
complex control systems with unknown dynamics [2]. 
 
The main issues associated with a fuzzy system are  

1. Estimation parameter, which involves determining the parameters of premises and consequences 
2. Structure identification, which concerns partitioning the input space and determining the number of 

fuzzy rules for a specific performance [3].  
 
The first issue can be based on expert knowledge available from human experts. This point of view, which seems 
natural, was historically the first one to be implemented, as in [4]. However, it soon appeared that for complex 
partially unknown systems, the interactions are very difficult to grasp and expert rules are not sufficient to yield a 
satisfactory simulation of the system. For this reason, fuzzy rule induction from sample data has been proposed in 
the bibliography for the problem of function approximation [1], [5], [6]. Tong [7] was the first to use numerical 
information to construct fuzzy systems. Using a relation model, a relation matrix was constructed by testing fuzzy 
propositions about the process against non fuzzy data. An important study in this context was carried out by Wang 
[1], whose paper proposes a procedure in which the principal characteristic is that each training datum is assigned to 
a region in the decomposition of the input space formed by the fuzzy partitions of the input domains. The element 
that has the maximal value within that region is used to create the rule for this one. As consequence of the rule is the 
fuzzy set in the output domain in which the training instance has maximal value. This is produced in a simple way; 
as for a datum, it first selects the membership functions that are activated to the greatest degree for each of the 
variables and then relates them (discarding the remaining linguistic values activated, both in the premise and the 
conclusion). Naturally, this algorithm produces an enormous number of rules when the total input data is 
considerable. There also arises the problem of contradictory rules, that is, rules with the same antecedent but 
different consequences. Furthermore, the determination of the consequence of a rule using a single training example 
can be adversely affected by noisy data in the training examples [8]. 
 
To acquire fuzzy rules, several paradigms have also been developed to generate fuzzy rules from numerical training 
data. In general, these approaches are simple and fast, i.e., they involve neither time-consuming iterative procedures 
nor a complicated rule-generation mechanism. The major drawbacks of these methods are that they are heuristic 
methods, and the membership function and the number of fuzzy rules needs to be predefined [9]. Among these 
methods are those based on hybrid techniques like methods using genetic algorithms [8-24] and methods using 
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neural networks [25]-[41]. We can also find methods based on Fourier series [42], locality [18] or self organisation 
[24]. 
 
The classical approaches of fuzzy control deal with dense rule bases where the universe of discourse is fully 
covered by the antecedent fuzzy sets of the rule base in each dimension, thus, for every input there is at least one 
activated rule. The main problem is the high computational complexity of these traditional approaches. If a fuzzy 
model contains k variables and maximum T linguistic (or other fuzzy) terms in each dimension, the order of the 
number of necessary rules is Tk. This expression can be decreased either by decreasing T, or k, or both [43].  
 
Several research efforts have been made in the fuzzy rule base reduction. We distinguish the interpolation approach 
([17], [21], [37], [38]), the orthogonal methods based on the singular value decomposition ([44], [45]), and neural 
networks [15]. In recent years, some research has been undertaken in simplification of fuzzy rule-base using 
similarity analysis [46]. We consider three kinds of similarity: The first compares two fuzzy sets like in [23]. The 
second is defined between rule premises [31]. The third is proposed between two fuzzy numbers [47]. Every type of 
these approaches gives interesting results.  
 
In this paper, a method to generate and reduce a fuzzy rule base and to adjust fuzzy membership functions is 
introduced. It is based on computing the similarity degree between fuzzy rules and numerical data. In fact, in some 
cases of similarity we propose to merge two fuzzy sets in the same set, thereby reducing fuzzy rules number. The 
remainder of this paper is organized as follows. In Section 2, a brief description of the Mendel-Wang Method is 
reviewed. Section 3 presents similarity method from the literature. The proposed approach is described in Section 4. 
In Section 5, simulation and experiment results are illustrated to indicate the effectiveness of the proposed method 
through a comparison with the Mendel Wang method. Finally, Section 6 provides the conclusion. 
 
 
2.0 MENDEL & WANG METHOD 
 
To design a control system, we first need to see what information is available. We assume that there is no 
mathematical model, i.e., we consider a model of free design problem. Since there is already a human controller, 
there are two kinds of information available: 1) the experience of human controller; and, 2) sampled input-output 
(state-control) pairs that are recorded from successful control by the human controller. The experience of the human 
controller is usually expressed as some linguistic “IF-THEN” rules that state in what situation(s) which action(s) 
should be taken. The sampled input-output pairs are some numerical data that give the specific values of the inputs 
and the corresponding successful outputs [1]. 
 
Each of the two kinds of information alone is usually incomplete. Although the system is successfully controlled by 
a human controller, some information will be lost when human controllers express their experience by linguistic 
rules. Consequently, linguistic rules alone are usually not enough for designing a successful control system. On the 
other hand, the information from sampled input-output data pairs is also generally not enough for a successful 
design because the past operations usually cannot cover all the situations the control system will face [1]. 
 
The method developed in [1] by Mendel and Wang generates fuzzy rules from numerical data pairs, collects these 
fuzzy rules and the linguistic fuzzy rules into a common fuzzy rule base, and finally designs a control or signal 
processing system based on the combined fuzzy rule base. A five-step procedure for generating fuzzy rule from 
numerical data pairs is proposed:  
 

Step 1: divide the input and output spaces of the given numerical data into fuzzy regions 
 
Step 2: generate fuzzy rules from the given data. First, determine the degrees of given data in different regions. 
Second, assign it to the region with a maximum degree. Finally, obtain one rule from one pair of desired input 
output data 
 
Step 3: assign a degree of each of the generated rules for the purpose of resolving conflicts among the generated 
rules 
 
Step 4: create a combined fuzzy rule base based on both the generated rules and linguistic rules of human 
experts 
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Step 5: determines a mapping from input space to output space based on the combined fuzzy rule base using a 
deffuzification procedure. 

 
As we have already seen in the introduction, this method can be the origin of an enormous number of rules 
especially if the fuzzy sets choice is not discriminating enough. The introduction of noisy data can also be the 
source of erroneous rules. A similarity measure between fuzzy rules and a review of numerical data which generate 
these rules for alternative merging process can be a solution to these problems.  
 
 
3.0 SIMILARITY MEASURES 
 
The concept of similarity has been interpreted in different ways depending on the context. The interpretation of 
similarity in everyday language is “having characteristics in common” or “not different in shape, but in size or 
position.” This interpretation of similarity differs from the one we use [47].  
 
In the literature, we can find several kinds of similarity measure. In the next three sections, we cover three different 
approaches. 
 
3.1 Similarity measure between two fuzzy sets 

 
Since the theory of fuzzy sets [48] was proposed in 1965, many measures of similarity between fuzzy sets have been 
developed in the literature [26 - 32], [35]. 
 
We define similarity between fuzzy sets as the degree to which the fuzzy sets are equal. This definition is related to 
the concepts represented by the fuzzy sets. Consider the fuzzy sets A and B in Fig. 1. They have exactly the same 
shape, but represent clearly distinct concepts, e.g., respectively a low and a high value. They have zero degree of 
equality and are considered dissimilar. On the other hand, the two fuzzy sets have a high degree of equality in Fig. 
2, even though they differ in shape. They represent compatible concepts and are considered similar [47]. 
 
Let A and B be two fuzzy sets with membership functions μA and μB, respectively. The similarity of those fuzzy sets 
may vary from 0, which means “completely distinct”, to 1, which means that the fuzzy sets are similar. The most 
common similarity measure of fuzzy sets in the literature is based on the intersection and union operations among 
fuzzy sets and given by: 

BABA
BA

BA
BA

BAS
∩−+

∩
=

∪
∩

=),(  (1) 

where S is the similarity measured and |.| designates the cardinality or the size of a set, and intersection and union 
operators are shown by ∩ and ∪, respectively. However, implementation of this measure in a discrete universe is 
an easy task. In a continuous universe of discourse, it proves computationally intensive, particularly for Gaussian 
membership functions [49]. 

  
Fig.1: Distinct fuzzy sets with no degree of equality Fig. 2: Overlapping [47] 
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3.2 Similarity measure between rule premises 
 
In [40] a similarity of rule premise (SRP) is adopted. This kind of similarity has been described first in [39] as 
follows: 
 

Ri : if x1 is Ai1 and ... and xn is Ain then y is Bi 
Rk : if x1 is Ak1 and... and xn is Akn then y is Bk 

 
The SRP of the two rules is defined by Equation (2). 

),(min),(
1 kjij

n

j
AASkiSRP

=
=  (2) 

Where S(A, B) is a fuzzy similarity measure for fuzzy sets A and B, which is defined by Equation (1)  
 
By checking the SRP of the fuzzy rules, redundant and inconsistent rules can be removed. In this way, the rule base 
can be simplified greatly. 
 
3.3 Similarity measure between generalized fuzzy numbers 

 
The measure of the similarity of fuzzy numbers is very important in the research topic of fuzzy decision [31]. In 
[29] and [30], Chen represented a generalized trapezoidal fuzzy number as  = (a,b,c,d;w), where 0<w≤1, and 
a, b, c and d are real numbers [31]. 

A~ A~

 
Assume that there are two trapezoidal fuzzy numbers, where  = (a1, a2, a3, a4; w) and A~ B~  = (b1, b2, b3, b4; w), 
then the degree of similarity )~,~( BAS between the trapezoidal fuzzy numbers  and A~ B~  can be calculated as 
follows [28]: 

4
1)~,~(

4

1
∑ −

−= =i
ii ba

BAS  (3) 

where ]1,0[)~,~( ∈BAS . If  and A~ B~  are triangular fuzzy numbers,  = (a1, a2, a3) and A~ B~  = (b1, b2, b3), 
then the degree of similarity between them can be calculated by the same formula when 4 is replaced by 3. There 
exist others definitions of similarity measure described in [31].  In the following section, similarity measure will be 
used in order to reduce an over dimensioned fuzzy rules sets. 
 

4.0 PROPOSED METHOD 
 
In the literature we find especially methods of fuzzy rule generation through numerical data [8-10]. The reduction 
step is generally made when the rule base is more complete. Our main objective in this work is to link reduction and 
generation process to obtain better benefit from the numerical values. Thus, one gets an adequate rule base with 
well adjusted membership functions and a necessary and sufficient number of fuzzy sets.  
 
The key ideas of our new approach are to generate fuzzy rules from numerical data according to Mendel and Wang 
method. Then, the degree of similarity between fuzzy rules is computed. In case of similar rules, we check the 
distance between input data which permitted the generation of these rules. If the distance is higher than the 
intersection base between concerned fuzzy sets, then we merge them. So there will be rules deletion and 
membership function adjustment at the same time. Next, we return to the generation of rules from numerical data. 
Finally, we obtain fuzzy rules and collect linguistic fuzzy rules into a common fuzzy rule base. We cover these five 
steps next. 
 
(i) Step 1 
Generate an initial fuzzy rule base from data using Mendel & Wang Method (see more detail in section III) 
 
(ii) Step 2 
In this step, we propose a new similarity measure between two fuzzy rules defined by Equation (4).  
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Similarity relation ( )jkik AAS ,  is the same as the one defined in Equation (1). For the sake of simplicity, we 

consider the particular case where similarity is Boolean. This means S(Aik, Ajk) is equal to zero if the fuzzy sets are 
different.    
 
The step consists of the computation of the degree of similarity between all rules in the order of apparition.  
 

• Consider these two rules:  
 

R1: if x1 is A1 and x2 is B1 and x3 is C1 then y is D1   
R2: if x1 is A1 and x2 is B1 and x3 is C2 then y is D1   

 
The degree of similarity in this case is computed as follows: 

ds = 3/4 = 75 % 
 

• Consider these two rules:  
 

R1 : if x1 is A1 and x2 is B1 and x3 is C1 and x4 is D1 then y1 is E1 and y2 is F1   
R2 : if x1 is A1 and x2 is B1 and x3 is C2 and x4 is D1 then y1 is E1 and y2 is F2   

 
The degree of similarity in this case is computed as follows: 

ds = 4/6 = 66,67 % 
 
(iii) Step 3 
 
One can give a minimal value of the degree of similarity between two rules: dsmin 
 

if (ds > dsmin) then  
 Go to step 4 
else 
 Stop algorithm 

 
In the first example of the last step, we can choose dsmin equal to 50%. Since 66.67 > 50 we can go to the next step. 
 
(iv) Step 4 
 
Compute the absolute value of the distance between the numerical data which gives different fuzzy sets in the 
concerned rules (dnum)  

 
If dnum is greater than the base intersection distance of the membership function (db), then the two concerned fuzzy 
sets is merged. The same process is applicable for premise and conclusion parts.  
 
Example: 
 
Consider these two rules Ri and Rj (with i<j precedence at the generation process): 
 

Ri: if x1 is Ai1 and x2 is Ai2 and x3 is Ai3 and x4 is Ai4 then y is Ai5 
Ri: if x1 is Aj1 and x2 is Aj2 and x3 is Aj3 and x4 is Aj4 then y is Aj5 

 
We suppose: Ai1 = Aj1, Ai2 = Aj2 and Ai4 = Aj4  
The degree of similarity is ds = 3/5 = 60% 
We suppose: dsmin = 50%, so we go from Step 3 to 4. Data pairs which permit the two rules Ri and Rj generation are 
respectively: 
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This step consists of the validation of the possibility of adjustment of the fuzzy sets relative to the first rule through 
numerical data. This can be achieved by verification of the following assumption:  

( ) ),(, , jbibbj
c
ibnum

c
ib AAdRXdX >∀  (5) 

This relation must be verified for each data pairs of D1. It justifies the merging process. In fact, if the numerical data 
pairs exist in an intersection zone, then the similarity value computed in the third step is a logic consequence. 
 
Consider the same example with the following data pairs: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

6.0
7.0
8.0

475.22515
5.35.22412

325.22210
1

4321 YXXXX

D  

With the stated equalities, rules Ri and Rj are written as: 
 

R : if x1 is A and x2 is B and x3 is C  and x4 is D then y is E  i i i
Rj: if x1 is A and x2 is B and x3 is Cj and x4 is D then y is Ej 

 
Graphically these points are located in Fig. 3. 
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Fig. 3: Graphically representation of Ri and Rj rules 

Thus Ci and Cj must be merged by generating a new fuzzy set. In the same way Ei and Ej are merged. Only one rule 
is therefore obtained: 

 
The merging process is represented in Fig. 4.  A conflict problem does not arise. Indeed, if we have three similar 
rules Ri, Rj, and Rk which can be subjected to merging operations we treat its rules according to their generation 
order. 

 
(v) Step 5 

Regenerate fuzzy sets from initial numerical data with new fuzzy sets. 
 
So one can note that this new algorithm gives the possibility to generate and reduce fuzzy rules with membership 
function adjustment from numerical data in the same process. Note that different fuzzy sets (having no common 
region) are not concerned with the merging process and the linguistic significance of fuzzy sets should be respected 
in the merging operation to preserve the interpretability of obtained fuzzy rules.  
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Fig. 4: Merging operation 

 
 

5.0 ILLUSTRATIONS 
 
In this section, the proposed method will be tested on two examples. The first is the same as that described in [1]; 
only parameter values are different. It is about truck backer upper control. The second is a medical application. It is 
about treatment of liver trauma. 
 
5.1 Truck backer-upper control 
 
Backing a truck to a loading dock is a difficult exercise. It is a non linear control problem for which no traditional 
control system design methods exist [1].  
 
The truck position is exactly determined by three state variables Φ, x, and y, where Φ is the angle of the truck with 
the horizontal as shown in Fig. 5. The manipulated variable to control the truck is the angle θ. Only backing up is 
considered. The truck moves backward by a fixed unit distance every stage. For simplicity, we assume enough 
clearance between the truck and the loading dock such that y does not have to be considered as an input [1].  
 

 
Fig. 5: Diagram of simulated truck and loading zone 

 
The following kinematics approximation is used (see [50] for details): 
 

x(t+1) = x(t) + cos[Φ(t)+ θ(t)] + sin[θ(t)] sin[Φ(t)]        (6) 
y(t+1) = y(t) + sin[Φ(t)+ θ(t)] - sin[θ(t)] cos[Φ(t)]         (7) 
Φ(t+1) = Φ(t) – sin-1 [2 sin(θ(t)) / b ]  (8) 

 
where b is the length of the truck. We assume b = 4 in the simulation of this paper [1].  
 
The task here is to design a control system, whose inputs are Φ Є [-90°, 270°] (see Fig. 6) and x Є [0, 20] (see Fig. 
7), and whose output is θ Є [-40°, 40°] (see Fig. 8), such that the final states will be (xf, Φf) = (9,90). 
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Fig. 6: Φ membership function 

 
Fig. 7: x membership function 

 
Fig. 8: θ membership function 

Numerical data for simulation are the same as that defined in [1] (see Table 2) 

 
Table 1: Truck backer-upper (Numerical data) 

X Φ θ 
1.00 0.00 -19.00 
1.95 9.37 -17.95 
2.88 18.23 -16.90 
3.79 26.59 -15.85 
4.65 34.44 -14.80 
5.45 41.78 -13.75 
6.18 48.6 -12.70 
7.48 54.91 -11.65 
7.99 60.71 -10.60 
8.72 65.99 -9.55 
9.01 70.75 -8.50 
9.28 74.98 -7.45 
9.46 78.7 -6.40 
9.59 81.9 -5.34 
9.72 84.57 -4.30 
9.81 86.72 -3.25 
9.88 88.34 -2.20 
9.91 89.44 0.00 
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Table 2: Truck backer-upper  (Fuzzy rules generated from numerical data) and  
degree of truth Step 1 to 3 of MW method 

 

X Φ Θ Degree of truth 

S2 S2 S2 0,925 
S2 S2 S2 0,793 
S2 S2 S2 0,598 
S2 S2 S2 0,415 
S2 S1 S2 0,426 
S1 S1 S2 0,481 
S1 S1 S2 0,439 
S1 S1 S2 0,359 
S1 S1 S1 0,484 
S1 S1 S1 0,429 
S1 S1 S1 0,332 
CE S1 S1 0,28 
CE S1 S1 0,2751 
CE CE S1 0,19 
CE CE S1 0,457 
CE CE S1 0,464 
CE CE CE 0,45 
CE CE CE 0,91 

 
The fuzzy rules obtained after the application of the first to third steps of Mendel-Wang method are regrouped in 
Table 3. After the application of fourth and fifth steps of Mendel-Wang algorithm, five fuzzy rules have been 
obtained (See table 4).  
 
Let;s measure similarity between these two following rules: 

R1 : if x is S2 and Φ is S2 then θ is S2 
R2 : if x is S2 and Φ is S1 then θ is S2 

 
ds = 2/3 = 66.66 % , and suppose that dmin_s = 50 % 
 
These two rules are obtained from the first and the fifth numerical data. One can calculate dnum as:  
 

dnum = 34.44 - 0 = 34.44 > db = 45 – 15 = 30 
 
So we merge the S1 and S2 fuzzy sets. After this, we apply Mendel-Wang algorithm for the numerical data with the 
new fuzzy sets. Obtained rules are regrouped in Table 5. 

Table 4: Truck backer-upper  (Initial rule base) 

X 
 S3 S2 S1 CE B1 B2 B3

S3        
S2  S2      
S1  S2 S1 S1    
CE    CE    
B1        
B2        

Φ 

B3        
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Table 5: Truck backer-upper  (Final rule base) 

X 
 S3 S2 CE B1 B2 B3

S3       

S1  S2 S1    

CE   CE    
B1       
B2       

FI 

B3       
 
One can calculate the degree of similarity between the rules: 

R1 : if x is S1 and Φ is S1 then θ is S1 
R2 : if x is CE and Φ is S1 then θ is S1 

 
A new merge solution can be proposed. The final rule base is proposed in Table 6: 
 

Table 6: Truck backer-upper   
(Rules after first fuzzy sets merge and similar rules) 

X Φ θ Degree of truth 
S2 S1 S2 0,925 
S2 S1 S2 0,793 
S2 S1 S2 0,598 
S2 S1 S2 0,415 
S2 S1 S2 0,426 
S1 S1 S2 0,481 
S1 S1 S2 0,439 
S1 S1 S2 0,359 
S1 S1 S1 0,484 
S1 S1 S1 0,429 
S1 S1 S1 0,332 
CE S1 S1 0,28 
CE S1 S1 0,2751 
CE CE S1 0,19 
CE CE S1 0,457 
CE CE S1 0,464 
CE CE CE 0,45 
CE CE CE 0,91 

 
In the following we compare simulation results obtained with each of these two methods:  
- The evolution of Φ shows a similar behaviour with a faster response for the Mendel-Wang method (see Fig. 9).  
- The compared methods present the same evolution for the variables Φ, x, and y (see Fig. 9, 10 and 11 

respectively).  
- The evolution of θ shows a similar evolution toward the solution in the beginning. Then, we observe an  

alternation of behaviour (see Fig. 12) 
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Time (s) 

Fig. 9: Φ evolution 

 
Fig. 10: x evolution 

Through these results, we can conclude that these two methods give the same solution in the end with a small rapid 
convergence for the initial Wang and Mendel method.  
 
However, with the first solution, we obtain 5 rules. In the second method, only three rules are obtained with the best 
cover of universe. 

 
Time (s) 

Fig. 11: y evolution 
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Fig. 12: θ evolution 

5.2 Liver trauma 
 
The liver is the largest solid abdominal organ with a relatively fixed position, which makes it prone to injury (See 
Fig.13). The liver is the second most commonly injured organ in abdominal trauma, but damage to the liver is the 
most common cause of death after abdominal injury. The most common cause of liver injury is blunt abdominal 
trauma, which is secondary to motor vehicle accidents in most instances.  
 
Most liver injuries (>85%) involve segments 6, 7, and 8 of the liver [12]. This type of injury is believed to result 
from simple compression against the fixed ribs, spine, or posterior abdominal wall. Pressure through the right hemi 
thorax may propagate through the diaphragm, causing a contusion of the dome of the right lobe of the liver. The 
liver’s ligamentous attachment to the diaphragm and the posterior abdominal wall can act as sites of shear forces 
during deceleration injury.  
 
Different types of treatment have been recommended over the past decades such as no operative treatment, 
aggressive surgery, and conservative surgery [36]. However, surgical literature confirms that as many as 86% of 
liver injuries have stopped bleeding by the time surgical exploration is performed, and 67% of operations performed 
for blunt abdominal trauma are no therapeutic[12]. 
 
Several systems have been devised to classify liver injuries; however, the lack of consistency of scoring severity in 
organ injury is a problem. To rectify the problem, the American Association for the Surgery of Trauma (AAST) 
developed a system based on the amount of anatomic disruption of an individual organ. Currently, the scoring 
system which includes grades 1-6 is used routinely in the United States. A CT scan classification of liver injuries 
based on the AAST liver injury criteria has been devised by Mirvis et al [12]. This classification has been found to 
be valuable in predicting prognosis and treatment needs in adult patients with liver trauma. 

 

 
Fig. 13: Axial fast scan breaths hold [51] 

A retrospective study about 77 consecutive patients admitted at general surgery service of Habib Bourguiba 
Hospital of Sfax for hepatic injury was developed in [52]. Among objectives of this survey is the precision of 
selection criteria’s to adopt a CT. Then different parameters have been considered which include:  
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- Age 
- pulse 
- Blood pressure - Systolic 
- Blood pressure - Diastolic 
- Hemoglobin (HGB) 
- Hematocrit (HCT) 
- White Blood Cell Count (WBC) 
- Serum Glutamic-Pyruvic Transaminase - ALT (SGPT) 
- Serum Glutamic-Oxalocetic Transaminase – AST (SGOT) 
- Prothombin time 
- Hemoperitoneum 
- Contusion 
- Number of Segments 

 
In the following, we briefly define the retained parameters to develop the desired fuzzy system. Usually, in 
medicine we differentiate the fuzzy sets for men, women, and the children as their normal values are not the same. 
In this study, we will only treat the men case.   
 

 Age 
‘Young’, ‘Middle Age’, ‘Adult’ and ‘Aged’ are retained fuzzy sets for ‘Age’. Fig. 14 shows the MF corresponding 
to its. 
 

 
Fig. 14: Age MFs 

 Pulse 
Many factors affect normal heart rate, including age, activity level, and the time of day. Table 7 shows the normal 
range of a resting heart rate (pulse rate after resting 10 minutes) in beats per minute, according to age [8].  
 

Table 7: Normal range of a resting heart rate 

Age or fitness level Beats per minute (bpm) 
Babies to age 1: 100–160 
Children ages 1 to 10: 60–140 
Children age 10+ and adults: 60–100 
Well-conditioned athletes: 40–60 

 
‘Very Low’, ‘Low’, ‘Normal’, ‘High’, and ‘Very High’ are retained Fuzzy sets for ‘Pulse’. Fig. 15 shows the 
retained corresponding MFs. 
 

 
Fig. 15: Pulse MFs 
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 Blood pressure (Systolic / Diastolic): Blood is carried from the heart to all parts of body in vessels called arteries. 
Blood pressure is the force of the blood pushing against the walls of the arteries. Each time as the heart beats 
(about 60-70 times a minute at rest), it pumps out blood into the arteries. Blood pressure is at its highest when the 
heart beats, pumping it. This is called systolic pressure. When the heart is at rest, between beats, blood pressure 
falls. This is the diastolic pressure [45]. ‘Very Low’, ‘Low’, ‘Normal’, ‘High’, and ‘Very High’ are retained 
Fuzzy sets for ‘Systolic’ (see Fig. 16). Fig. 17 shows the retained corresponding MF for ‘Diastolic’. 

 

 
Fig. 16: Systolic MFs 

 
Fig. 17: Diastolic MFs 

 Hemoglobin (HGB) is the iron-containing protein (pigment) found in red blood cells. Hemoglobin transports 
oxygen from the lungs to the body's tissues. [3]. ‘Very Low’, ‘Low’, ‘Normal’, ‘High’, and ‘Very High’ are 
retained Fuzzy sets for ‘HGB’. Fig. 18 shows the retained corresponding MFs. 

 
 Hematocrit (HCT) is the percentage, by volume, of red cells in blood. Normal range for males is about 40-54 and 
for females 37-47 (values may vary slightly between laboratories)[3]. ‘Very Low’, ‘Low’, ‘Normal’, ‘High’, and 
‘Very High’ are retained Fuzzy sets for ‘HCT’. Fig. 19 shows the retained corresponding MFs. 

 

 
Fig. 18: HGB MFs 

 
Fig. 19: HCT MFs 

 White Blood Cell Count (W.B.C.) :  blood cells that engulf and digest bacteria and fungi; an important part of 
the body's defence system [3].  ‘Very Low’, ‘Low’, ‘Normal’, ‘High’, and ‘Very High’ are retained Fuzzy sets 
for ‘WBC’. Fig. 20 shows the retained corresponding MFs. 
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 Serum Glutamic-Pyruvic Transaminase - ALT (SGPT)  : Alanine aminotransferase (commonly abbreviated ALT) 
is a type of enzyme. An enzyme is a type of protein that helps produce chemical reactions in the body. The 
normal range of ALT on blood work tests is less than 35 units per liter (U/L) or 5 to 35 International Units per 
liter (IU/L) [27]. ‘Low’, ‘Normal’, and ‘High’ are retained Fuzzy sets for ‘ALT’. Fig. 21 shows the retained 
corresponding MFs. 

 

 
Fig. 20: W.B.C MFs 

 
Fig. 21: ALT MFs 

 Serum Glutamic-Oxalocetic Transaminase - AST (SGOT) is a type of enzyme. The normal range is 10 to 34 IU/L 
(Note: IU/L = international units per liter) [27]. ‘Low’, ‘Normal’, and ‘High’ are retained Fuzzy sets for ‘AST’. 
Fig. 22 shows the retained corresponding MFs. 
 

 Prothombin time (PT) : The prothrombin time, or PT, test measures the time it takes blood to form a clot. This 
test is also often called protime. The normal PT range is 11 to 14 seconds. The normal range may vary slightly 
from lab to lab. ‘Low’, ‘Normal’, and ‘High’ are retained Fuzzy sets for ‘PT’. Fig. 23 shows the retained 
corresponding MFs. 

 

 
Fig. 22: AST MFs 

 
Fig. 23: PT MFs 

 Hemoperitoneum is the blood into peritoneal cavity. Four grades are considered: ‘Large’, ‘Medium’, ‘Small’, and 
‘Not’ (see Fig. 24). These grades are attributed by the radiology doctor.    

 Contusion or hematoma deep is the direct impact against the abdominal partition engendered by a shock (for 
example: against the Wheel, a kick, a stroke of clog, a bruising). ‘Low’, ‘Medium’, and ‘High’ are retained Fuzzy 
sets for ‘Contusion’. Fig. 25 shows the retained corresponding MFs. 
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Fig. 24: Hemoperitoneum MFs 

 
Fig. 25: Contusion MFs 

 Number of segments 
The liver is generally divided into segments for accurate localization of liver lesion (8 segments) [51]. Four MF are 
considered ‘Small’, ‘Medium’, ‘Large’, and ‘Very Large’ (see Fig. 26). 
 

 
Fig. 26: Nb Segments MFs 

In the following, we proceed to the construction of the fuzzy systems. Numerical values were extracted from a 
retrospective study in [52]; about 77 consecutive patients admitted at general surgery service of Habib Bourguiba 
Hospital of sfax for hepatic injury.  Only men patients (Sex = M and Age > 10 years) were considered in this paper.   
 
Numerical data is presented in Table 8.  Rules obtained after application of Mendel Wang method are regrouped in 
Table 9. There are 19 rules.  
 
In first step, similarity measure can be applied to rules 2 and 4.  
ds = 11/14 = 78 %  and suppose that dmin_s = 70 % 
 
These two rules are obtained from the second and the fourth numerical data. So one can calculate dnum(HGB) , 
dnum(HCT) and dnum(PT) as :  
 

dnum(HGB) = 15.6 – 13.5 = 2.1 > db = 1.5  
dnum(Contusion) =  10 - 4 = 6  > db = 1 
dnum(NbSegments)   = 2 - 1 = 1 >= db = 1  

 
We proceed to the merge of: 

- Low and Very Low (HGB) 
- Medium and Large (Contusion) 
- Small and Medium (NbSegments) 

 
The same procedure can be applied between rule 6 and 10 (see table 9). The final rule base is represented in Table 
10. 
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One can say that the medical domain remains difficult to explore seen the number of parameters and membership 
functions that are associated to them. Indeed, mathematically the total rule number is about: 101250000. This 
number is in the order of 43200000 after reduction processes. In reality, this remains to discuss existence of 
impossible combinations. For our example, the initial number of rules is small compared to these last. The goal for 
the application of the algorithm is to have a best configuration and definition of the rule base.   
 
 
6.0 CONCLUSION 

In this paper, we propose an idea of using numerical data for generation and reduction fuzzy rules and adjustment of 
membership function. In our approach, we first generate fuzzy rule base using Mendel & Wang method. Then, we 
compute the degree of similarity between each rule in the order of apparition. In other words, we select candidate 
rules. Next, we compute the absolute value of the distance between the numerical data which gives different fuzzy 
sets in the concerned rules. If this last is greater than the base intersection distance of the membership function, we 
merge the two concerned fuzzy sets. The same process is applicable for premise and conclusion parts. Finally, we 
regenerate fuzzy sets from initial numerical data with new fuzzy sets. 
 
The performance of this approach has been evaluated through two examples: a truck backer upper controller and a 
liver trauma diagnostic. Appreciate results are obtained with both of these applications. In fact, a best cover of 
universe and definition of the rule base is assured. See the big number of inputs, medical application is still more 
difficult.  
 
The advantage of our approach is that it can theoretically be applied to any kinds of numerical method. 
Furthermore, the approach can treat a large data set because the number of candidate rules is decreased by the 
prescreening procedure.   
 
Finally, different axes from generalization can be discussed. In fact, the study can cover model TSK [53] via 
similarity study of conclusion coefficient of this last. 
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Table 8: Liver Trauma (Numerical data about 19 patients) 

Case Age pulse Systolic Diastolic HGB HCT W.B.C ALT AST PT Hemo Cont Nb Seg TOP 

1 37 90 13 8 13.3 40 10400 48 149 52 2 6 2 0 

2 18 84 13 8 15.6 43.3 11200 113 116 75 2 4 1 0 

3 18 88 9 6 11.3 36 29600 339 243 65 2 4 1 0 

4 21 80 12 8 13.5 41.5 24900 1400 835 74 2 10 2 0 

5 23 79 10 6 11.6 35 17000 70 46 80 0 8.5 1 0 

6 12 100 10 5 9 25 9000 187 75 90 2 5 1 0 

7 37 100 14 8 14.2 42.2 17000 1145 1146 90 0 12 3 0 

8 19 100 12 5 14.4 40.8 16000 98 119 70 0 2.5 1 0 

9 37 100 8 5 9.6 27 13300 800 580 62 4 9 2 0 

10 22 100 12 8 14 40 10400 1400 1600 78 2 6 1 0 

11 32 130 11 8 17.5 46.3 14700 615 630 45 2 10 1 0 

12 15 90 13 7 12 37.8 8900 204 208 58 1 5 1 0 

13 34 90 12 7 13.5 39.3 19900 93 106 70 1 4 1 0 

14 22 99 14 7 11.6 36.7 12400 150 140 70 2 5 2 0 

15 56 140 6 3 12 40 13000 380 442 90 2 10 4 1 

16 36 140 8 4 12.7 39.7 14900 116 57 58 2 5 2 1 

17 47 76 11 6 13 37 10600 58 135 59 2 3 1 1 

18 12 100 10 6 10.9 34.2 11600 440 650 40 1 2 1 1 

19 29 75 13 7 11.6 35.3 6500 480 500 36 1 7 2 1 

Nb Seg : Number of segments   Cont : Contusion 

Table 9: Liver Trauma (Rule Base) 

Case Age pulse Systolic Diastolic HGB HCT W,B,C ALT AST PT Hemo Contusion Nb Segments TOP 

1 Adult High VLow VLow VLow Low High High High Low Medium Large Medium NCT 

2 Young Normal VLow VLow Low Low VHigh High High Normal Medium Medium Small NCT 

3 Young Normal VLow VLow VLow VLow VHigh High High Low Medium Medium Small NCT 

4 Young Normal VLow VLow VLow Low VHigh High High Normal Medium Large Medium NCT 

5 Young Normal VLow VLow VLow VLow VHigh High High Normal NOT Large Small NCT 

6 Young High VLow VLow VLow VLow High High High Normal Medium Large Small NCT 

7 Adult High VLow VLow VLow Low VHigh High High Normal NOT Large Large NCT 

8 Young High VLow VLow Low Low VHigh High High Low NOT Small Small NCT 

9 Adult High VLow VLow VLow VLow VHigh High High Low Large Large Medium NCT 

10 Young High VLow VLow VLow Low High High High Normal Medium Large Small NCT 

11 MAge VHigh VLow VLow Normal Normal VHigh High High Low Medium Large Small NCT 

12 Young High VLow VLow VLow Low High High High Low Small Large Small NCT 

13 Adult High VLow VLow VLow Low VHigh High High Low Small Medium Small NCT 

14 Young High VLow VLow VLow Low VHigh High High Low Medium Large Medium NCT 

15 Adult VHigh VLow VLow VLow Low VHigh High High Normal Medium Large Large CT 

16 Adult VHigh VLow VLow VLow Low VHigh High High Low Medium Large Medium CT 

17 Adult Normal VLow VLow VLow Low High High High Low Medium Small Small CT 

18 Young High VLow VLow VLow VLow VHigh High High Low Small Small Small CT 

19 MAge Normal VLow VLow VLow VLow Normal High High Low Small Large Medium CT 

VLow : Very Low   VHigh : Very High 
Mage : Middle Age   VLarge : Very Large 
Nb Seg : Number of segments  Cont : Contusion 
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Table 10: Final Liver Trauma Rule Base 

Case Age pulse Systolic Diastolic HGB HCT W,B,C ALT AST PT Hemo Contusion Nb Segments TOP 

1 Adult High VLow VLow Low Low High High High Low Medium Large Medium NCT 

2 Young Normal VLow VLow Low Low VHigh High High Normal Medium Large Medium NCT 

3 Young Normal VLow VLow Low Low VHigh High High Low Medium Large Medium NCT 

               

5 Young Normal VLow VLow Low Low VHigh High High Normal NOT Large Medium NCT 

               

6 Adult High VLow VLow Low Low VHigh High High Normal NOT Large Large NCT 

7 Young High VLow VLow Low Low VHigh High High Low NOT Medium Medium NCT 

8 Adult High VLow VLow Low Low VHigh High High Low Big Large Medium NCT 

9 Young High VLow VLow Low Low High High High Normal Medium Large Medium NCT 

10 MAge VHigh VLow VLow Normal Normal VHigh High High Low Medium Large Medium NCT 

11 Young High VLow VLow Low Low High High High Low Small Large Medium NCT 

12 Adult High VLow VLow Low Low VHigh High High Low Small Large Medium NCT 

13 Young High VLow VLow Low Low VHigh High High Low Medium Large Medium NCT 

14 Adult VHigh VLow VLow Low Low VHigh High High Normal Medium Large Large CT 

15 Adult VHigh VLow VLow Low Low VHigh High High Low Medium Large Medium CT 

16 Adult Normal VLow VLow Low Low High High High Low Medium Medium Medium CT 

17 Young High VLow VLow Low Low VHigh High High Low Small Medium Medium CT 

18 MAge Normal VLow VLow Low Low Normal High High Low Small Large Medium CT 

VLow : Very Low VHigh : Very High Mage : Middle Age VLarge : Very Large 
Nb Seg : Number of segments Cont : Contusion 
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