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ABSTRACT 
 
Over the years, various evolutionary approaches have been proposed in efforts to solve the Job-Shop Scheduling 
Problem (JSSP), a particularly hard combinatorial optimization problem. Unfortunately, most of these approaches 
are limited to a single objective only, and often fail to meet the requirements for real-world applications. 
Previously, we proposed several evolutionary approaches for multi-objective JSSP using the Jumping Genes 
Genetic Algorithm (JGGA) [1], [2]. Simulation results indicated that these approaches are capable of maintaining 
consistency and convergence of the trade-off, non-dominated solutions. In some rare cases, however, the solutions 
may be too diverse due to the additional diversity that occurs naturally from the jumping operations introduced in 
JGGA. This paper extends the idea by describing a hybrid approach that alleviates the difficulty outlined above. 
Experimental results reveal that our proposed hybrid approach can search for the nearly-optimal and non-
dominated solutions with better convergence by optimizing multiple criteria simultaneously. Concurrently, it is 
capable of producing a set of controlled, diverse solutions that provide a wide range of alternative scheduling 
choices.  
 
Keywords: Job-Shop Scheduling Problem (JSSP), Multi-Objective Evolutionary Optimization, Jumping Genes 
Genetic Algorithm (JGGA). 
 
 
1.0 INTRODUCTION 
 
Scheduling allocates shared resources over time to competing activities with hard or soft constraints given. In 
essence, scheduling can be considered as a searching or optimization problem, with the goal of finding the best 
schedule. Among the various types of scheduling problems, JSSP is one of the most challenging. Except for 
strongly restricted special cases, JSSP is an NP-hard problem that has also been considered the worst among 
combinatorial problems [3]. The exact methods, such as the branch and bound, as well as dynamic programming, 
are computationally expensive to use in searching for an optimum scheduling solution when the search space is 
large—which is natural in the present-day real-world of JSSP. Hence, it makes more sense to employ near-optimal 
solutions to overcome this difficulty. Stochastic search techniques, such as Evolutionary Algorithms (EAs), can be 
used to find such solutions. 
 
Over the years, several classes of scheduling problems have been investigated; consequently, many different 
methods have been developed. However, most research on scheduling concerns with a single objective: the 
optimization of makespan (the maximum completion time of all jobs). Real-life scheduling problems, however, 
often require the decision maker to consider a number of criteria before arriving at a decision. A solution that is 
optimal with respect to one given criterion might be a poor candidate for some others like mean flow-time (the 
average response of the schedule to the individual demands of jobs for service), tardiness (the lateness of any job 
measures the conformity of the schedule to that job’s committed date), etc. Therefore, the trade-offs involved in 
considering several different criteria provide useful insights for decision makers. Surprisingly, research in this 
important field has been scarce in comparison with the research in single-criterion scheduling. The goal of multi-
objective JSSP is to find as many different schedules as possible that are near-optimal and non-dominated with 
regard to different objectives. In this work, we apply makespan and total tardiness as the objectives of our multi-
objective scheduling approach. 
 
The JGGA [4] is a recent Multi-Objective Evolutionary Algorithm (MOEA) that imitates a jumping gene 
phenomenon discovered by Nobel Laureate Barbara McClintock for her work on corn plants. In previous works [1], 
[2], we proposed several multi-objective evolutionary scheduling approaches based on JGGA for JSSP. In those 
approaches, the jumping gene operations exploit scheduling solutions around the chromosomes and the 
conventional genetic operators globally explore solutions from the population using multiple objective functions. 
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The central idea is to provide local search capability to fine-tune scheduling solutions during evolution. The JGGA 
is robust for searching the non-dominated solutions while considering both convergence and diversity [4], [5]. In 
scheduling, it is important to obtain converged and diverse solutions. Converged solutions guarantee that the most 
near-optimal Schedules considering multiple criteria can be obtained. Diverse solutions – in particular, the extreme 
solutions – are useful in helping the production manager to select the most compromised schedule from the non-
dominated set of solutions according to specific objectives. 
 
Experimental results of our previous approaches [1], [2] indicated that JGGA-based approaches are capable of 
producing near-optimal and non-dominated solutions. By following the natural tendency of the conventional JGGA, 
they can find extreme solutions. However, this characteristic causes some deficient effects − scheduling solutions to 
be too diverse in certain cases, and the number of non-dominated solutions per generation to be relatively small. 
This paper addresses this issue by proposing an improved version of the JGGA-based, multi-objective evolutionary 
scheduling approach that employs a hybrid method. Compared to other existing heuristic-based evolutionary 
scheduling approaches, the proposed approach can obtain overall good performance for all applied benchmark 
problems by finding non-dominated solutions with better convergence and diversity. The proposed hybrid approach 
is also compared to another well-established MOEA (NSGAII [6]) based multi-objective scheduling approach. 
Much better performance of the proposed approach has been noted. 
 
The remainder of this paper is organized as follows: Section 2 describes scheduling, JSSP, and related works. The 
importance of multi-objective JSSP and a literature review of the multi-objective Genetic Algorithm (GA) for JSSP 
are presented in Section 3, as well as a discussion of the importance of hybridization. Section 4 offers a brief 
overview of the original JGGA and its effects on multi-objective JSSP. The detailed description of the proposed 
hybrid JGGA for solving JSSP is discussed in Section 5. Section 6 discusses the experimental results, and Section 7 
outlines the conclusions of this paper. 
 
 
2.0 SCHEDULING AND JOB-SHOP SCHEDULING PROBLEM 
 
2.1 Scheduling Problem 
 
The objective of scheduling is to efficiently allocate shared resources (machines, people etc) over time to competing 
activities (jobs, tasks, etc) such that a certain number of goals can be economically achieved and the given 
constraints can be satisfied. The solutions that satisfy these constraints are called feasible schedule. In general, the 
construction of a schedule is an optimization problem of arranging time, space, and (often limited) resources 
simultaneously. Hence, if scheduling is regarded as a search problem, it is desirable to search for any feasible 
schedule, and if it is considered to be an optimization problem, it is preferred to search for the best feasible 
schedule. In this paper, we focus on solving the JSSP since it is widely found in the industry and it is considered as 
a representation of many general scheduling problems in practice. 
  
2.2 Job-Shop Scheduling Problem (JSSP) 
 
A job-shop scheduling involves processing of the jobs on several machines without any ‘series’ routing structure. 
The n x m JSSP can be described by a set of n jobs {Jj}1≤j≤n which is to be processed on a set of m machines 
{Mr}1≤r≤m. Each job has a technological sequence of machines to be processed. The processing of job Jj on machine 
Mr is called the operation Ojr. Operation Ojr requires an exclusive use of machine Mr for an uninterrupted duration 
Pjr, its processing time. A schedule is a set of completion times for each operation {Cjr}1≤j≤n,1≤r≤m that satisfies given 
constraints. The challenge here is to determine the optimum sequence in which the jobs should be processed in 
order to optimize one or more performance measure, such as the makespan, the mean flow time, or the total 
tardiness of jobs etc.  
  
2.3 Complexity of JSSP 
 
The complexity of JSSP increases with its number of constraints and the size of search space. Except for some 
strongly restricted special cases, the JSSP is an NP-hard problem and finding an exact solution is computationally 
intractable [3]. Even a simple version of the standard JSSP is NP-hard if the performance measure is the makespan 
and m > 2. For the standard JSSP, the size of search space is (n!)m and it is computationally unfeasible to try every 
possible solution since the required computation time increases exponentially with the problem size. In practice, 
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many real-world JSSPs have larger number of jobs and machines as well as additional constraints, which in turn 
further increase its complexity. 
 
2.4 Related Works for Traditional and Heuristic Approaches 
 
The JSSP has been extensively studied over the last forty years. A wide variety of approaches have been proposed 
in many diverse areas such as operations research, production management, and computer engineering. The 
comprehensive surveys of the general JSSPs are found in [7], [8]. Branch and Bound is an enumerative strategy 
where a dynamically constructed tree representing the solution space of all feasible schedules is implicitly searched. 
Although this method has proven to be very useful for small to medium sized problems, its excessive computing 
time prohibits its application to large problems [9]. In addition, their performance is quite sensitive to individual 
instances and initial upper bound values. Tabu Search (TS) has revealed to be an effective local search algorithm for 
the JSSP [10]. However, the best solution found by TS may depend on the initial solution used. This is essentially 
due to the fact that, like many other local search technique, TS starts its search from a single solution, which may 
lead the search to a dead-end despite the presence of the taboo mechanism. This happens especially when TS is 
applied to particularly hard optimization problem like JSSP. Simulated Annealing (SA) is the most popular 
technique in threshold algorithm category. It has been applied extensively to JSSP [11], [12] and can avoid local 
maxima/minima. However, as SA is a generic technique, it is unable to achieve good solutions quickly. Shifting 
Bottleneck (SB) [11] has had the greatest influence on approximation methods and was the first heuristic to solve 
the mt10 problem. The primary weakness of this algorithm, however, is the high computing effort required and 
many re-optimizations are necessary to achieve these results. In addition, best solutions are achieved from several 
different parameter settings. Another fundamental problem is the difficulty in performing re-optimization and the 
generation of unfeasible solutions.  Inspired by the principles of behavior found in real ant colonies, the Ant Colony 
Optimization (ACO) meta-heuristic has been applied to a variety of scheduling problems with promising results. 
However, the available results are quite poor and have yet to prove with currents state-of-art algorithms [13]. 
Greedy Randomized Adaptive Search Procedure (GRASP) is a problem-space-based method that consists of a 
constructive and an iterative phase. It generates many different starting solutions using fast problem-specific 
constructive procedures, which are then used by local search. Even though GRASP has been applied successfully to 
several NP-Complete problems, the limited results available so far for JSSP are quite poor [8]. 
 
2.5 Related Works for Genetic Algorithms 
 
Genetic Algorithm (GA), proposed by Holland [14], has been successfully applied to solve many combinatorial 
optimization problems including scheduling. GA finds the best solution from many points of the search domain 
simultaneously rather than analyzing one point of the domain at a time and for that GA does not get stuck in local 
optima easily. In addition, GA is not only effective to perform global search, but also flexible to hybridize with 
other domain-dependent heuristics or local search techniques for solving specific problems. As the exact methods 
usually take exponential time and many heuristic approaches can only find sub-optimal solution for large JSSP, GA 
becomes a more popular approach to solve JSSP. It is already shown in the literature that the GA-based approaches 
can often achieve more robust and better performance than many traditional and heuristic approaches applied in 
JSSP [15].  
 
Various kinds of GA-based solution methods have been proposed by a significant number of researchers so far. It is 
impossible to fairly compare these methods because they are very much focused on their own specific scheduling 
problems. Nakano et al. used a conventional GA with binary-chromosomes for the JSSP [15], but his representation 
did not guarantee to produce legal schedules, requiring a repair mechanism to correct illegal schedules after genetic 
operations. His repair process usually produces a fairly similar but legal schedule at the expense of significant 
computational cost. Fang et al. also successfully used the GA to solve the JSSP with a variant of ordinal 
representation that is developed for the validity of schedule under the conventional cut-and-mix crossover and 
mutation [16]. However, the genotype representation is redundant and thus false competition occurs. An in-depth 
survey of the applications of GAs in JSSP is found in [17]. 
  
 
3.0 IMPORTANCE OF MULTI-OBJECTIVE JOB-SHOP SCHEDULING 
 
In many real-world JSSPs, it is necessary to optimize several criteria, such as the length of a schedule or the 
utilization of different resources simultaneously. In general, the minimization of makespan is used as the 
optimization criterion in a single-objective JSSP. However, the minimization of tardiness, flow time, machine idle 
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time, etc. are also important criteria in JSSP. As discussed in [13], makespan may not be the only commercial 
interest in scheduling; other objectives are equally important. It is desirable, therefore, to generate many near-
optimal schedules considering multiple objectives, according to the requirements of the production order or 
customer demand. On the other hand, if multiple objectives conflict with each other, the production manager need 
not omit any required objective before the assistance of a multi-objective scheduler. Based on the principle of multi-
objective optimization, obtaining an optimal schedule solution that satisfies all the objective functions is nearly 
impossible. Accordingly, it is preferable to obtain as many different Pareto-optimal schedules as possible. These 
should be non-dominated, converged to, and diverse along the Pareto-optimal front, with respect to the multiple 
criteria.  
 
3.1 Related Works of Genetic Algorithms for Multi-Objective JSSP 
 
During the last decades a great deal of attention has been paid to solve JSSP with GAs. Although dealing with 
multiple objectives has received more and more attention over the last few years, these approaches are still 
considered limited, and mostly dominated by the unrealistic single-objective GA. Moreover, most of the multi-
objective GA approaches for JSSP are mainly based on aggregation of preferences method, in which multiple 
objectives are combined into a single scalar objective using weighted coefficients. As the relative weights of the 
objectives are not exactly known in advance and cannot be pre-determined by the users, the objective function that 
has the largest variance value may dominate the multi-objective evaluation. As a result, inferior non-dominated 
solutions with poor diversity will be produced. Hence, it is essential to apply a posteriori articulation of preferences 
and present all the Pareto-optimal solutions to the decision makers in advance. At the time of this writing, there are 
only a few multi-objective GA based JSSP approach utilizing posteriori articulation of preferences are available in 
the literature [18]. 
 
3.2  Necessity for Hybrid Approach 
 
Experimental results from our previous works [1], [2] demonstrate that JGGA-based scheduling approaches are 
capable of producing a set of non-dominated solutions close to the Pareto-optimal front and that have satisfactory 
diversity. In some rare cases, however, the solutions may be criticized for being too diverse. In fact, the properties 
exhibited by the solutions act upon the basic properties of JGGA. The jumping genes in JGGA could jump in and 
out of the chromosomes at different loci and thus, it could provide additional diversity [5]. This additional diversity 
is critical for multi-objective optimization, particularly during the early generations of the evolutionary process. 
However, once the population is somewhat converged in comparison to initial haphazard distribution, the jumping 
operations may produce some solutions that are too diverse. As observed in previous works [2], [5], JGGA can 
identify the extreme solutions, which are very useful for the human experts when selecting the best compromise 
schedule from a set of non-dominated solutions. Still, in some rare cases, the gap between the average and best 
values of the solutions produced by JGGA is more than that of the solutions produced by NSGAII. Indeed, the 
number of non-dominated solutions per generation is not satisfactory enough. Although it happens rarely, care 
should be taken to reduce these instances. We believe that a hybrid approach discussed in Section 5.5 can tackle this 
problem. 
 
 
4.0 JUMPING GENES GENETIC ALGORITHM (JGGA) 
 
To incorporate the jumping genes paradigm into an EA framework, a new operation ― cut and paste or copy and 
paste is introduced after the selection process. The implementation of JGGA is that each chromosome has some 
consecutive genes which are selected as a transposon. The number of transposons in a chromosome can be greater 
than one and the length of each transposon can be more than one unit. The locations of the transposons are also 
assigned randomly, but their contents can be transferred within the same or even to different chromosomes in the 
population pool. The actual implementation of cut and paste operation is that the element is cut from the original 
site and pasted into a new site. In the case of copy and paste, the element replicates itself, with one copy of it 
inserted into a new site, while the original one remains unchanged at the same site. The non-dominated sorting 
strategy, crowding-distance mechanism, and elitism strategy used in JGGA are the same as used in NSGAII. For the 
detailed description of the JGGA, the reader may refer to [4], [5]. 
 
Every conventional genetic operator in GA employs only vertical transmission of genes from generation to 
generation. However, the jumping gene operators introduce a kind of horizontal transmission. The most important 
feature of JGGA is its capability to exploit local search heuristics by emulating a genetic phenomenon of horizontal 
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transmission in which genes can jump from one position to another either within its own or to the other 
chromosomes under multiple stresses. Indeed, the jumping gene operations are better ways for exploration and 
exploitation than the use of Pareto-optimal solutions itself only. Therefore, it creates more chances to achieve better 
convergence and diversity, as well as to avoid premature convergence.  
 
4.1 Advantages of JGGA for Multi-Objective JSSP 
 
It is well known that GA is not very effective for fine-turning the solutions that are already close to the optimal 
solution as the crossover operators may not be sufficient enough to generate feasible schedules [19]. Hence, it is 
necessary to integrate some local search strategies in GA for enhancing the Pareto-optimal solutions. The rationale 
behind the hybridization is that GA is used to perform global exploration among the population, while local search 
strategy is used to perform local exploitation around the chromosomes. In addition, it should be noted that as the 
length of chromosome increases with the problem size of JSSP, the multi-objective GA may suffer from premature 
convergence in large search space [1]. To combat this, the jumping gene operations proposed in JGGA offer the 
local search capability to exploit solutions around the chromosomes, while the usual genetic operators globally 
explore solution from the population using multiple objective functions. 
 
 
5.0 DESIGN ISSUES OF THE PROPOSED HYBRID APPROACH 
 
5.1 Chromosome Representation  
 
Representations used in GAs to solve JSSPs can be grouped into two basic encoding approaches [17]: direct and 
indirect. The direct approach encodes a schedule as a chromosome and the genetic operators are used to evolve 
these chromosomes into better schedules. This approach does not require any schedule builder. However, applying 
simple genetic operators on direct representation string often results in unfeasible schedule solutions. For this 
reason, domain-specific genetic operators are required. In indirect representation, the chromosome encodes a 
sequence of decision preferences, for example simple ordering of jobs in a machine or any heuristic rules, and a 
schedule builder is required to decode the chromosome into a schedule. 
 
In our work, indirect representation incorporated with a schedule builder is applied. This chromosome 
representation is implemented with an un-partitioned operation-based representation where each job integer is 
repeated m times (m is the number of machines), and it is mathematically known as “permutation with repetition” 
[19]. By scanning the permutation from left to right, the k-th occurrence of a job number refers to the k-th operation 
in the technological sequence of this job as depicted in Fig. 1. In this representation, it is possible to avoid the 
schedule operations whose technological predecessors have not been scheduled yet. Therefore, any individual can 
be decoded into a feasible schedule, but two or more different individuals may be translated into an identical 
schedule. The advantage of such a scheme is that it requires a very simple schedule builder because all the generated 
schedules are legal.  
 

 
Fig: 1: Permutation with repetition approach for a 3X3 JSSP 

 
5.2 Schedule Builder 
 
A schedule builder transforms the chromosomes into a feasible schedule. The schedule builder is a module of the 
evaluation procedure and it should be chosen with respect to the performance-measure of optimization. Usually, the 
minimization of makespan plays the major role in converting the chromosomes into feasible schedule [20]. A 
schedule is called semi-active when no operation can be started earlier without altering the operation sequences of 
any machine. Very often, it is possible to reduce the makespan of a semi-active schedule by shifting an operation 
without delaying other jobs. When no such shifting can be applied to a schedule, it is called an active schedule. 
Since searching for active schedules brings a huge reduction of the search space and an optimal schedule is clearly 
active [11], it is safe and efficient to limit the search space to the set of all active schedules.   
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One of the efficient approaches to generate an active schedule builder is the Giffler & Thompson algorithm [21]. 
Here we employ a variant of hybrid Giffler & Thompson Algorithm proposed by Varela et al [22]. We modified this 
algorithm in order to fit with the representation of chromosome and produce active schedules only [1]. In the 
following algorithm, S is the schedule being constructed. The set A is used to hold the set of schedulable operations, 
where an operations o is said to be schedulable if it has not been scheduled yet. 
 
 
Algorithm 1. Hybrid Giffler and Thompson 

1. Set S = {  }; 
2. Let A = {oj1│1≤ j ≤ N}; 
while A ≠ Ø do 

3.  let st(oi) be the lowest starting time of i , if scheduled now; Aoi ∈∀
4. Let ok A∈  such that st(ok) + du(ok) ≤ st(o) + du(o), Ao∈∀ ; where du(o) is the processing time for 

operation o. (if two or more operations are tied, pick the leftmost operation in the chromosome); 
5. Set M* is the machine that is to process ok ; 
6. Let B = { o │it is to process on machine M* and  st(o) < st(ok) + du(ok)}; A∈
7. Let ot B∈  such that st(ot) ≤ st(o), ; Bo∈∀
8. Select o*∈  B such that o* is the leftmost operation in the chromosome and add o* to S with starting time 

st(o*); 
9. Let A = A\{o*} {SUC( o*

 )}; where SUC(o) is the next operation to o in its job if any exists; ∪
end while 
 
 
5.3 Jumping Operations  
 
The chromosome representation in this hybrid JSSP is different from that of the conventional JGGA. As a result, the 
direct application of the original jumping operators may create an illegal schedule. This problem worsens in the case 
of copy and paste. Since the original chromosome representation requires that the number of jobs must be equal to 
the number of machines on which it will be processed, the resulting chromosome may produce an unfeasible 
schedule after the operation. As a result, some problem-specific jumping operators are required. In this paper, we 
classify the jumping operators based on the number of participating parent chromosomes. With one chromosome, 
the concept is relatively easy. Two gene positions are selected randomly. Then the same number (random) of 
consecutive genes are selected and their positions exchanged. 
 
We follow the concept of “partial schedule exchange crossover” [23] to implement jumping operations between two 
different chromosomes. At first, partial schedules from both chromosomes are selected randomly. A partial schedule 
is identified with the same job in the first and last positions of the selected portion, with the restriction that the first 
gene of the second partial schedule must be the same as that of the first. Then, by exchanging these two partial 
schedules, we get two offspring. Usually, the partial schedules being exchanged contain a different number of 
genes, and the offspring may not include − or may have operations in excess of − those required for each job. 
Therefore, the offspring may be illegal. For this reason, repair work is required to convert the chromosomes into a 
legal schedule. Readers may refer to our previous publications [1], [2] for the elaborate explanations with described 
examples. 
 
5.4 Crossover and Mutation Operation  
 
In this approach, we apply the Generalized Order Crossover (GOX) operator [24] for performing the crossover, and 
we follow the concept of the ‘job-pair exchange mutation operator’ [23] for mutation. In mutation, two non-
identical jobs are picked up randomly and then they exchange their positions.  
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Fig. 2: Flowchart of hybrid JGGA for multi-objective JSSP 

 
5.5  Hybrid approach 
 
As stated early, the jumping genes can contribute a lot to attain the diversity while maintaining the appropriate 
convergence. In fact, the power and success of GA is mostly achieved by the diversity of the individuals of a 
population [25]. This is usually done by using the classical crossover and mutation operators. However, the genetic 
diversity of individuals can also be achieved more efficiently by several other mechanisms like gene insertion, 
duplication, or movement. With this respect, Mitchell and Forrest point out the importance of study other 
mechanisms for rearranging genetic material like jumping genes [26]. Conventionally, the influence of diversity is 
more important during the early generations than that of later [5]. For this reason, we utilize the full potential of the 
jumping operations during the early generations of the evolutionary process. We apply the full specified probability 
of the jumping operations in case of the first 60% cycles of the whole process. After that, the jumping probability is 
reduced to 1/3 of the full probability for the remaining cycles. The probabilities of crossover and mutation are kept 
the same for all generations. Experimental results justify that this hybrid approach produces more stable results than 
the previous approaches. Fig. 2 presents the complete evolutionary cycle of the proposed hybrid approach. 
 
 
6.0 EXPERIMENTAL RESULTS  
 
6.1 Benchmark Problems 
 
To evaluate the proposed hybrid approach, we run the algorithm on various benchmark data. The first three well-
known benchmark problems, known as mt06, mt10 and mt20, are formulated by Muth and Thompson [27]. 
Applegate and Cook proposed a set of benchmark problems called the “ten tough problems”, some of which still 
remain unsolved [28]. These problems consist of abz7, abz8, abz9, la21, la24, la25, la27, la29, la38, and la40. The 
problem data and the lower bound information are available in OR-library [29]. 
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6.2 Experimental Evaluation and Discussions  
 
First we perform the experiments in a single objective (makespan) context to justify its capability to optimize the 
makespan. After that, we show its performance as a multi-objective evolutionary JSSP algorithm by optimizing the 
makespan and the total tardiness, which are to be simultaneously minimized:  
 

(i)  Makespan = max[Ci] where Ci is the completion time of job i. 
(ii)  Total tardiness of jobs = [ ]∑ =

n
i iL1 ,0max where Li is the lateness of job i. 

 
We also compare our proposed algorithm with another well-known MOEA (NSGAII [6]) based JSSP algorithm. 
For both algorithms, the experiments are conducted using 100 chromosomes and 150 generations. The probabilities 
of crossover and mutation are 0.9 and 0.3 respectively. For JGGA, the probability of jumping operations is initially 
0.5. After evaluating 60% of generations (90 generations), the jumping probability has been reduced by 2/3 times of 
the initial value. Using the same settings, each benchmark problem is tested for thirty times with different seeds. 
Then, each of the final generation is combined and a non-dominated sorting [6] is performed to constitute the final 
non-dominated solutions. 
 
6.3 Single Objective Context  
 
The values provided in Table 1 show the makespan of the best schedules obtained in case of mt problems by some 
GA-based scheduling algorithms. The column labeled sGA is based on the GA using the simple mutation [30], 
where SGA is based on simple GA proposed by Nakano and Yamada [15]. LSGA and GTGA indicate GA-based 
JSSP algorithm incorporating local search [30] and GT crossover [11] respectively. From the Table 1, it can be 
easily found that the proposed JGGA based hybrid scheduling algorithm is capable of producing near-optimal 
values for the test problems. For mt06 and mt10 problems, it achieves the lower bound. In term of mt20, it cannot 
but it outperforms other contested algorithms.  

 
Table 1: Makespan comparison with some GA based algorithms 

Data Lower Bound sGA GTGA LSGA SGA JGGA 
mt06 55 55 55 55 55 55 
mt10 930 994 930 976 965 930 
mt20 1165 1247 1184 1209 1215 1180 

 
We also perform experiments to compare our proposed JSSP algorithm with some heuristic evolutionary 
approaches. Table 2 summarizes these results for the ten tough problems. As can be seen at the column headings, 
Nowi indicates Tabu Search based approach [10] and CBSA+SB indicates Simulated Annealing with Shifting 
Bottleneck heuristics [11]. Aart, Kopf, and Appl indicate Simulated Annealing results proposed in [12], GA 
performance in [31] and [28], respectively. The MSFX is based on Multi-Step Crossover Fusion [11]. The 
comparative results indicate that the proposed algorithm finds the near-optimal solution in case of five out of ten 
problems and optimal solutions can be found in three of them. However, other algorithms can also find the similar 
makespan in some problems, but not frequently like the proposed one. An exception is the performance of 
CBSA+SB. Despite that CBSA+SB is designed for single objective only, the main goal here is to find trade-off 
solutions for multi-objective JSSP. Moreover, for those cases where the proposed algorithm fails to achieve the 
known best results, it performs consistently and achieves very close to the near-optimal solutions. 
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Table 2: Makespan comparison with various evolutionary and heuristic methods 

Data LD Nowi sGA CBSA
+SB

LSG
A

Aart
s

Kop
f Appl MSFX JGG

A 
abz7 654 - - 665 - 668 672 668 678 665 
abz8 635 - - 675 - 670 683 687 686 685 
abz9 656 - - 686 - 691 703 707 697 694 
la21 1040 1047 1180 1046 1114 1053 1053 1053 1046 1046 
la24 935 939 1077 935 1032 935 938 935 935 935 
la25 977 977 1116 977 1047 983 977 977 977 977 
la27 1235 1236 1469 1235 1350 1249 1236 1269 1235 1235 
la29 1120 1160 1195 1154 1311 1185 1184 1195 1166 1156 
la38 1184 1196 1435 1198 1362 1208 1201 1209 1196 1197 
la40 1222 1229 1492 1228 1323 1225 1228 1222 1224 1225 

 
Table 3: Scheduling results for test problems 

Data  Makespan Tardiness 
  Best Avg Best Avg 

Spread 
(S) 

mto6 JGGA 55 57.6 0 5.333 3.335 
 NSGAII 55 57.48 0 4.357 3.639 

mt10 JGGA 930 968.3 625 887.37 2.003 
 NSGAII 930 966.5 630 893.25 2.046 

mt20 JGGA 1180 1203.4 8359 8761.6 2.132 
 NSGAII 1184 1233.5 7997 8961.16 3.335 

abz7 JGGA 665 693.71 531 663.43 4.521 
 NSGAII 667 691.19 553 674.28 8.377 

abz8 JGGA 685 717.78 654 796.17 3.835 
 NSGAII 686 723.66 757 818.63 7.25 

abz9 JGGA 694 716.43 1009 1123 4.683 
 NSGAII 690 720.2 1213 1340 4.50 

la21 JGGA 1046 1082.64 1299 1699.5 3.362 
 NSGAII 1046 1089.25 1316 1735.85 6.658 

la24 JGGA 935 1035.08 1216 1406.38 1.812 
 NSGAII 935 1036.62 1206 1372.14 3.066 

la25 JGGA 977 999.94 1070 1221.5 1.104 
 NSGAII 977 1016.75 1225 1505.5 3.019 

la27 JGGA 1235 1271.87 3300 4117.12 2.478 
 NSGAII 1235 1270.25 3436 4540.85 7.5013 

la29 JGGA 1156 1184.13 4311 4603.32 6.794 
 NSGAII 1160 1182.5 4419 4730.5 4.8333 

la38 JGGA 1197 1232 1339 1461.63 2.716 
 NSGAII 1196 1261.12 1343 1442.75 2.180 

la40 JGGA 1225 1271 551 778.8 2.245 
 NSGAII 1228 1272.57 535 807.28 4.225 

 
6.4 Multiple Objective Context  
 
Multi-objective optimization deals with two goals − to find a set of solutions as close to the Pareto-optimal front as 
possible, and as diverse as possible. Table 3 shows the performance statistics of the evolutionary JSSP algorithms 
based on JGGA and NSGAII in the context of makespan and tardiness.  The due dates for various benchmark 
problems are available in [2]. The results shown in the Table 3 indicate that both JGGA- and NSGAII-based 
algorithms perform well in achieving the near-optimal solutions. However, the hybrid approach clearly outperforms 
the other in terms of mt10, abz7, abz8, la21, la25, la27, and la29. Only in case of la24 NSGAII outperforms JGGA. 
In other cases, the solutions produced by both algorithms are non-dominated to each other. 
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To illustrate the convergence and diversity of the solutions, the non-dominated solutions of the final generation 
produced by JGGA and NSGAII for the test problems la21, la40 and la38 are presented in Fig. 3. From these, it can 
be observed that the final solutions are well spread and converged. In particular, the solutions produced by our 
proposed hybrid approach are more spread than that of NSGAII; for this reason it is capable of finding extreme 
solutions. It can be further justified by the values of Space (S) metric [32] as specified in Table 3, given that an 
algorithm having a smaller S is better in terms of diversity.  
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Fig. 3: Final Pareto-optimal front 

 
The properties exhibited by the solutions act upon the basic properties of JGGA. In general, the proposed hybrid 
approach is able to achieve consistent near-optimal solutions which are both well spread and converged. As 
compared to NSGAII, JGGA produces much more non-dominated solutions for most of the test problems. The plots 
of the obtained non-dominated solutions per generations in a single run for the test problems la21, la24, and mt20 
which is presented in Fig. 4 justify this. In fact, apart from la25, this approach produces more non-dominated 
solutions than NSGAII for the test problems.  
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Fig. 4: Non-dominated solutions per generation (for a single run) 

 
However, the ability of producing diverse solution has some side effects. From [1], [2], it can be found that in most 
cases the gap between the average and best values of the solutions produced by JGGA is more than that of the 
solutions produced by NSGAII. As discussed above, it is mainly for the extra diversity produced by the newly 
introduced jumping operations. On the contrary, diversity plays the most important role for producing well trade-off 
solutions [25], and the incorporation of jumping genes increases the genetic diversity in the population [4], [5]. To 
balance this phenomenon, we employ the hybrid approach in this work, and the results are very much promising. 
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From Table 4, we can find the gaps between the best and average values are much smaller than previous approach 
without hybridization. In our previous attempt [2], the values of tardiness were relatively unstable than makespan. 
However, the introduction of hybrid jumping operation makes it more stable. In fact, the best values for tardiness 
improve in some cases. Also, the best value, in terms of makespan, for la38 improves than the previous approach, 
and the numbers of non-dominated solutions for most of the test problems increases. This trend justifies the 
application of the proposed hybrid approach in searching for a set of diverse and converged scheduling solutions. 
To summarize the result, the proposed hybrid multi-objective approach is capable of producing near-optimal and 
non-dominated solutions, which are also the lower bounds in many cases. The simulation results clearly show that 
our proposed hybrid approach is able to find a set of rational diverse solutions, which are also close to the Pareto-
optimal front. 
 

Table 4: Comparison between hybrid approach and without hybrid approach 
Makespan Tardiness Data  Best Average Best Average 

Spread 
(S) 

With hybrid 55 57.6 0 5.333 3.335 
mto6 

Without hybrid 55 57.6 0 5.333 3.335 
With hybrid 930 968.3 625 887.37 2.003 

mt10 
Without hybrid 930 990 625 912.6 2.146 

With hybrid 1180 1203.4 8359 8761.6 2.132 
mt20 

Without hybrid 1180 1231.4 8359 8967.6 2.275 
With hybrid 665 693.71 531 663.43 4.521 

abz7 
Without hybrid 665 697.77 531 676.83 4.165 

With hybrid 685 717.78 654 796.17 3.835 
abz8 

Without hybrid 685 717.78 654 881.32 4.336 
With hybrid 694 716.43 1009 1123 4.683 

abz9 
Without hybrid 694 717.6 1009 1142 4.881 

With hybrid 1046 1082.64 1299 1699.5 3.362 
la21 

Without hybrid 1046 1085.75 1299 1746 6.658 
With hybrid 935 1035.08 1216 1406.38 1.812 

la24 
Without hybrid 935 1047.5 1249 1408.18 4.569 

With hybrid 977 999.94 1070 1221.5 1.104 
la25 

Without hybrid 977 998.83 1070 1320.5 1.133 
With hybrid 1235 1271.87 3300 4117.12 2.478 

la27 
Without hybrid 1235 1272.66 3300 4328.12 2.6778 

With hybrid 1156 1184.13 4311 4603.32 6.794 
la29 

Without hybrid 1156 1191.41 4349 4700.2 10.984 
With hybrid 1197 1232 1339 1461.63 2.716 

la38 
Without hybrid 1199 1241.88 1342 1519.22 2.180 

With hybrid 1225 1271 551 778.8 2.245 
la40 

Without hybrid 1225 1290.44 573 835.11 4.061 
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7.0 CONCLUSIONS 
 
Most of the researches in scheduling generally concern with a single objective. Hence they are not suitable for real-
world scheduling problems which are multi-objective by nature. JGGA is a recent MOEA which has been 
previously demonstrated as a robust evolutionary scheduling approach for solving multi-objective JSSP. However, 
it sometimes leads to the solutions which are too diverse − a limitation that can be overcome by the use of hybrid 
approach. The experimental results demonstrate that, as compared to other existing heuristic evolutionary 
scheduling approaches, the proposed hybrid approach can obtain overall superior performance. The comparative 
results with previous approach without hybridization reveal that the proposed hybrid approach performs well to 
balance the diversity versus convergence issue for multi-objective JSSP. The results also illustrates that the main 
strength of the proposed JGGA based hybrid approach is its ability to produce controlled-diverse solutions, while 
maintaining the consistency and convergence of the final trade-off non-dominated solutions.  
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