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ABSTRACT 
 
This paper introduces a new class of assignment decision diagrams (ADD) called thru-testable ADDs based on a 
testability property called thru function. The thru-testable ADDs is an easily-testable set of thru functions that allows 
data transfer from its input to its output.  We also define a design-for-testability (DFT) method to augment a given 
ADD with thru functions so that the ADD becomes thru-testable.  We compare the circuits modified using our 
proposed method with the original circuits and partial scan designed circuits in terms of fault efficiency, area 
overhead, test generation time and test application time. Since the proposed DFT method is introduced at a high 
level, which deals with less number of gates, the information of thru functions can be extracted more easily.  As a 
result, it lowers the area overhead compared to partial scan. 

Keywords: Assignment Decision Diagram (ADD); Thru-testable; Design-For-Testability (DFT); Digital testing 

 
1.0 INTRODUCTION 
 
     With the advance in semiconductor technology, the complexity of Very Large Scale Integration (VLSI) designs is 
growing and the cost of testing is increasing.  Therefore, it is necessary to reduce the cost but enhance the quality of 
testing. The cost of testing depends mainly on the test generation time and test application time. The quality of 
testing is measured by fault coverage. Therefore, we have to reduce test generation time and test application time 
while enhancing fault efficiency. In order to reduce the complexity of the test generation for a circuit, a design-for-
testability (DFT) method is introduced [1-2].  The previous DFT methods are summarized in the following 
subsections. 
 
1.1 Design-for-testability at Gate Level 
 
     Various DFT methods have been proposed to augment a given circuit to make it more easily testable.  The most 
commonly used DFT method is the scan technique (full or partial) [3-5].  However, the area overhead of a full scan 
technique is large because all flip-flops are augmented and chained together into a scan path. Another disadvantage 
of this technique is long test application time, which is a result of the shifting of test vectors through the scan chain.  
Therefore, the cost of testing using the full scan technique increases due to the large area overhead and long test 
application time.  In order to reduce the area overhead, a partial scan technique has been proposed in which only a 
subset of the flip-flops is included in the scan path. It can save an area overhead while maintaining high fault 
coverage.  In a partial scan, the scan flip-flop selection is based on the concept of minimum feedback vertex set 
(MFVS), where only a minimum number of flip-flops is selected to be scanned.  However, the DFT at the gate level 
deals with a huge number of gates that may incur a higher  area overhead. 
   
1.2 Design-for-testability at High Level 
 
     By applying the DFT method at a high level, the number of primitive elements to be dealt with in the circuit is 
reduced [6].   Moreover, DFT at high level can be applied in the early design phase to reduce the area overhead. 
Moreover, the information extraction from a high level description is much faster than that from a gate level netlist. 
 
     Several non-scan DFT methods at RTL which use normal data path flow as a scan path have been proposed.  
These methods reduce hardware overhead and test application time compared with the full scan design. However, the 
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test generation time cannot be reduced because the test generation approach is the same as the full scan design.  In 
the H-scan technique [7], some extra gates are added to the logic of the existing path so that signals transferred 
between the registers is enabled by a new input independent on the signals from the controller.   

      The design-for-testability based on strong testability in [8-9] is guaranteed to generate test plans for all 
combinational hardware elements of the data path.  However, the DFT methods in [8-10] assumed that a controller 
and a data path are separated from each other and the signal lines between them are directly controllable and 
observable from the outside of circuits. Therefore, extra multiplexers are added to the signal lines in between a 
controller and a data path, and an extra test controller is also embedded to provide the test plans for the data path. 
The method in [11] allows speed testing and achieves a much shorter test application time compared to the full scan 
approach. However, the hardware and delay overheads are larger compared to the full scan approach because of the 
extra multiplexers and test controller.   

     The previous works show that DFT methods treat data path and controller separately.  In fact, they need the 
insertion of additional hardware, like a test controller to control the data transfer from the primary input to the 
targeted fault and from the targeted fault to the primary output.  In this paper, we introduce a new DFT method using 
a high level modeling known as Assignment Decision Diagram (ADD) [13] extended from the previous work that 
has been done in [12].  Different from [12], we abstract the DFT from the gate level and extend it to RTL.  
Additionally, our DFT method treats data path and controller unanimously. The DFT method augments a given RTL 
circuit based on the testability properties called thru function.  We extract the thru function from the high level 
description of a given RTL circuit.  Our method will improve test generation time and test application time as well as 
fault efficiency.  

     This paper is organized as follows.  In Section 2, we briefly review ADD.  We present how to extract thru 
function from ADD and define a representation of ADD called R-graph.  We also define a new concept of special 
class of ADDs called thru-testable ADD.  In Section 3, we describe the test generation model for thru-testable ADD.  
In Section 4, we present the DFT method to augment a given ADD with thru functions so that the ADD becomes 
thru-testable.  Experimental results are presented in Section 5 and the conclusions are in Section 6. 

 

2.0  PRELIMINARIES  
 
2.1 Assignment Decision Diagram (ADD) 
 
     ADD is the modeling of behavioral description that has been proposed previously for high level synthesis [13-16].  
The ADD representation consists of four parts: the assignment value, the assignment condition, the assignment 
decision and the assignment target. These parts are implemented with four types of nodes: read nodes, operation 
nodes, write nodes and assignment decision nodes (ADN).  

     The assignment value part consists of read nodes and operation nodes. This part represents the computation of 
values that are to be assigned to a storage unit or output port. This value is computed from the current contents of the 
input ports or storage element or constants which are all represented by the read nodes. The assignment condition 
part consists of read nodes and operation nodes that are also connected as a data-flow graph. The end product of the 
computation is a Boolean value which is the guarding condition for the assignment value.  

     The assignment decision part consists of an ADN. The ADN selects a value form a set of values that are provided 
at its value inputs. If one of the conditions to the ADN evaluates to true, then the corresponding input value is 
selected. The assignment target is represented by a write node. The write node is associated with the selected value 
from the corresponding ADN. A value is assigned to the write node only if one of the condition inputs to the ADN 
evaluates to true. Although ADD was essentially introduced as an internal representation in the high level synthesis 
process, it can be used to describe a functional RTL circuit, the controller part and the data path part of which are 
homogeneously represented. 

2.2 Thru Function 

     Thru function is an important property of a thru-testable ADD. A thru function is a logic that transfers the same 
signals from the input to the output if the thru function is active. The bit width of the input and output are equal.  We 
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define the following definition to describe the thru function concept.  
 
Definition 1. Let X, Y and Z be a set of variables respectively in ADD where X∩Z=� and Y∩Z=�. A thru function 
tXY is a logic, equality, relational and arithmetic operations such that  

1. the operations connectives of the function consist of �(AND), �(OR) and ¬(NOT), < (LESS 
THAN), > (MORE THAN) and = (EQUAL);  

2. the operation variables Z of the function and X consist of read nodes while Y consists of write 
nodes;  

3. the signals at X transfer to Y if Z has an assignment that makes the thru function ‘true’ or active  
( tX Y=1). 


Note that X and Y may have the same variables that make the thru function transfers the signal from one variable to 
the same variable. This thru function is called self thru function. 

Example 1:  Fig. 1 shows two examples of thru functions. Two thru functions are independent if they cannot be 
activated at the same time.  Fig. 1(a) shows that thru functions tA  B and tCB are dependent.  Dependent thru 
functions transfer signal at the same time and activated by same variable.  In this case, signals from A and C are 
transferred to B at the same time when a1 is true.  Fig. 1(b) shows that thru functions, tA B and tCB are independent.  
This means data transfer from A to B cannot happen at the same time as data transfer from C to B.  The former takes 
place when a1 is true. 

 

I J

B

A C A

B

C

a1
a1

a2

(a) (b)  
                                                                    Fig. 1. Thru functions 
 

2.3 R-graph  
 
     To facilitate the implementation of our DFT method, we introduce a graph representation called R-graph, which 
contains the information of connectivity, thru function of an ADD.  R-graph is defined as an ADD representation by 
using read nodes as input and write nodes as output. The R-graph includes ADD properties of thru function, thru tree 
and input dependency. Based on these properties, the class of thru-testable ADDs is defined.  

Definition 2. An R-graph of an ADD is a directed graph G=(V,A,w,t) that has the following properties.  
1. v�V is a read node or write node. If a read node and a write node correspond to the same        variable, 

they are represented by the same vertex; 
2. (vi, vj)�A denotes an arc if there exists a path from the read node vi  to the write node vj; 
3. w:V→Z+ (the set of positive integers) defines the size of read or write node corresponding to a vertex 

in V;  
4. t:A→T�{0,1} (T is a set of thru functions) where t(u,v)=0 if there is no thru function for (u,v)�A and 

t(u,v) is a thru function that transfers signals from the read node u to the write node v. If t(u,v)=1 (also 
called identity thru function), the signal values are transferred from u to v  directly. Note that identity 
thru function is always active.  
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Fig. 2. ADD S1 

 
 

Fig. 3. An R-graph for ADD S1 
 

Example 1: Fig. 3 shows the R-graph of the ADD S1of Fig. 2. Read nodes A, B, E, J, K, S, T, M, N, and F are primary 
inputs while write node Y is primary output. An arc exists from the read node to the write node. For example, arc (A,D) 
exists in the R-graph because there exists a path from read node A to write node D through an assignment decision  node 
(ADN).  According to the R-graph, node D forms a self thru function. Note that vertices S, T, M and N are assignment 
indices.  
 
2.4 Thru Testability  
 
     The thru-testable ADD is a class of ADDs that is easily testable.  The class of thru-testable ADDs is defined below. 
Before defining the thru-testable ADD, we visualize a certain set of thru functions as a thru tree using R-graph 
representation, which is defined as follows. 
Definition 3. A thru tree is a sub graph of the R-graph such that:  

1. it is a directed rooted tree;  
2. there is only one sink (root) with no outgoing arcs;   
3. the sources are vertices that correspond to primary inputs without incoming arcs;  
4. each arc is labeled with a thru function. 
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Fig. 4.  Thru trees of R-graph for ADD S1 
 

Example 2: Fig. 4 shows a thru trees of the R-graph of ADD S1. Each arc is labeled with a thru function. The sources 
are represented by vertices that correspond to the primary inputs without incoming arcs. 
 
Definition 4. If Vti is a set of vertices that activates a thru function ti in a thru tree Tj, Tj is said to be dependent on Vti. 
Furthermore, if Vti includes a vertex in a thru tree Tk, Tj is said to be dependent on Tk.  
 
Definition 5. Let G be the R-graph of ADD S, and let B be a set of thru trees in G. Let (u,v) be a set of all paths starting 
at u and ending at v. Two distinct paths p1,p2�(u,v) have input dependency if the following conditions are satisfied: 

1. the first arc of one of the paths is different from the first arc of another path;  
2. the first arc of at least one of the paths is labeled with a thru function in a thru tree in B;  
3. each path contains at most one cycle; 
4. p1 and p2 have the same length.  
Input dependency can be resolved by self thru functions. 

 
Using the newly defined concepts of thru tree and thru function, we can identify whether an ADD of an R-graph is thru-
testable or not. 

  
Definition 6. An ADD is said to be thru-testable if the R-graph of the ADD contains a set of disjoint thru trees such that 
the following conditions are satisfied:  

1. the thru trees cover all the vertices of a feedback vertex set;  
2. for any thru tree Ti, Ti is not dependent on itself;  
3. for any pair Ti, Tj of the thru trees, if Ti (resp. Tj) is dependent on Tj (resp. Ti), Tj (resp. Ti) is not dependent on Ti 

(resp. Tj);  
4. for each pair of reconvergent paths p1 and p2, p1 and p2 does not have input dependency.  

The thru tree that does not depend on any vertex in any thru tree to become active is called independent thru tree. 
 

 
(a) ADD S2 
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(b) R-graph for ADD S2 
 

 
 
 
 
 
 

 
 

 
 
 

 
(c) Thru trees of T1, T2 and T3 

 
Fig. 5. R-graph of thru-testable ADD S2. 

 
Example 3: Fig. 5(b) shows the R-graph of the ADD S2. Thru functions t3=C is activated by C. S2 is a thru- testable 
circuit because there are three thru trees, namely T1, T2 and T3 (shown in Fig. 5(c)) that contain C, B and A which are 
the vertices in the feedback vertex set (FVS).  Moreover, each variable that activates the thru functions in each thru tree 
is not a vertex in the thru tree.  T2 is dependent on T1 because thru function t3 in T2 is activated vertex by C in T1.  But 
thru functions in T1 do not depend on any vertex in T2. There is also no input dependency in S2.  Note that node C forms 
a self loop.  Other loop is combination of nodes C, A and D. 
  
 
3.0 TEST GENERATION MODEL AND PROCEDURE  
 
     The test generation model is used to perform a test generation.  The thru-extended time expansion model (TTEM) is 
defined to perform test generation on thru-testable ADD. 
 
3.1 Time Expansion Model  
 
     The time expansion model (TEM) is derived from the time expansion graph (TEG) for a given ADD represented by a 
R-graph. The time expansion graph (TEG) is redefined to facilitate the discussion of test generation model for thru-
testable ADD.  
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Definition 7. Let GR=(V,A,z,t) be an R-graph of an ADD [15] S. Let GT=(VE,AE,F,l) be a directed graph, where VE is a 
set of vertices, AE is a set of arcs, F is a mapping from VE to a set of integer and l is a mapping from VE to the set of 
vertices in R. If graph GT satisfies the following five conditions, graph GT is said to be a time-expansion graph (TEG) of 
GR.  
 

1. C1 (Input/Output preservation): The mapping l is a surjective, i.e., �v�V,�u�VE, s.t. v=l(u);  
2. C2 (Logic preservation): Let u be a vertex in GT. For any direct predecessor v(�pre(l(u))) of l(u) in GR where 

v≠l(u), there exists a vertex u’ in GT such that l(u’)=v and u’� pre(u). Here, pre(v) denotes the set of direct 
predecessors of v;  

3. C3 (Time consistency): For any arc (u,v) (�AE), there exists an arc (l(u),l(v)) such that F(v)-F(u)=1; 
4. C4 (Time uniqueness): For any pair of vertices u,v (�VE), if F(u)=F(v) and if l(u)=l(v), then the vertices u and 

v are identical, i.e., u=v;  
5. C5 (self loop consistency): For any arc (u,v) in GT, if F(v)-F(u)=1 and l(v)=l(u)=z, z is a self loop vertex and 

the number of predecessor of v is one. 
 
 
3.2 The Thru-Extended Time Expansion Model (TTEM)  
 
     A thru-extended time expansion model (TTEM) of a thru-testable ADD is created using R-graph and the thru trees.  
TTEM is defined after the TTEG definition. 
 
Definition 8. Let S be a thru-testable ADD [15] with thru trees B and let GR=(V,A,z,t) be the R-graph of S. The thru-
extended time expansion graph (TTEG) GT=(VT,AT,F,l) with respect to B is a directed graph that satisfies the following 
conditions.  

1. (Input/Output preservation): The mapping l is surjective, i.e., �v�V, �u�VA, s.t. v=l(u);  
2. (Logic preservation for fault excitation phase): Let u be a vertex in GR. For any direct predecessor v(� pre(u)) 

of u in GR, there exists vertices y and x in GT such that l(y) = u, l(x) = v, x � pre(y) and |pre(y)| = |pre(u)|. Here, 
pre(y) (resp. pre(u)) denotes the set of direct predecessors of y (resp. u) and |pre(y)| (resp. |pre(u)|) denotes the 
number of all direct predecessors of y (resp. u);  

3. (Thru tree for justification and propagation): Let u be a vertex in a thru tree Ti in B in GR. Let W� pre(u) be a 
set of all direct predecessors of u in Ti. Let tj be a thru function on all incoming arcs of u in Ti and Vtj be a set of 
vertices that activate tj. For each u in Ti in B in GR, there exists a vertex v in GT which satisfies the following 
conditions;  

a. l(v) = u;  
b. For each vertex x in pre(v), the following conditions are satisfied.  

i. If there exists a vertex w’ in W such that l(x) = w’ then x� pre(z) for any z where l(z) is a 
vertex included in any other thru tree Tk except Ti and x� pre(y) such that l(y) = l(x);  

ii. Let Tk be a thru tree that is activated by l(x). If l(x) = l(v), then |pre(v)| = 1 and x� pre(z) for 
any z where l(z) ≠ l(v) and l(z) is a vertex that is not included in thru tree Tk;  

iii. If l(x)� Vtj, then x�pre(z) for any z where l(z) ≠ l(x) and l(z) is a vertex that is not included 
in thru tree Ti.  

|pre(v)| is the number of vertices in pre(v).  
4. (Time consistency): For any arc (u, v) (� AT), there exists an arc (l(u), l(v)) such that F(v) − F(u) = 1; 
5. (Time uniqueness): For any pair of vertices u, v (�VT), if F(u) = F(v) and if l(u) = l(v), then the vertices u and v 

are identical, i.e., u = v;  
6. (Self loop consistency): Let u be a vertex in GT. Let v (� pre(u)) be a predecessor of u. If |pre(u)| < |pre(l(u))| 

and l(u) = l(v) = z then |pre(u)| = 1 and z is a self loop vertex; 
7. (Input Independency): Let u, v be two vertices in GT. Let pi and pj be a pair of reconvergent paths that start from 

u and end at v. Let z be a vertex on pi such that u� pre(z). Let x be a vertex on pj such that u�pre(x). For each 
pair of paths pi, pj where z≠x, |pre(z)| = |pre(l(z))| and |pre(x)| = |pre(l(x))|;  

 
Definition 9. Let the given thru-testable ADD be denoted by S. The thru-extended time expansion model (TTEM) of S 
is obtained by the following procedure.  
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Replace each vertex in the second slot with the corresponding write node.  Replace each arc with ADD nodes 
between read node and write node according to the given R-graph. 

 
Example 4: Fig. 6 shows the TTEG and TTEM for ADD S2. S2 has no input dependency.  Note that node A has a self 
thru function, t8.    
 
  

 

(a)  TTEM for ADD S2 
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(b) TTEG of S2 

Fig. 6. Test generation model for thru-testable for ADD S2 

 
4.0 DESIGN-FOR-TESTABIITY (DFT) METHOD  
 
     We introduce a new DFT method using a high level modeling known as ADD based on testability properties called 
the thru function.  The input to our DFT insertion is a RTL description which consists of non-separable data path and 
controller. Fig. 8 shows our proposed DFT methodology. 

 
     Firstly, the behavioral description is transformed into ADD for thru function extraction. The procedure to extract thru 
function consists of the following definitions and steps:   
 
Definition 10.  Let A be a read node and B be a write node.  A connects to data input of an ADN and B connects from 
the output of the ADN.  If data transfer is allowed from path A to B, then A is called on-path input. 
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Definition 11.  Let A and B be read nodes and C be a write node.  A and B connect to data input of the ADN and C 
connects from the output of the ADN.  If data transfer is allowed from path A to C then B is called off-path input. 
 
Step 1 Identify a set of ADD paths where each path contains one or more of the following: 
 1.1 any input of addition node 

1.2 the first input of subtractions node 
1.3 any input of multiplication node 
1.4 the first input of division node 
1.5 any data input of ADN. 

Step 2 Compute the symbolic operations for each line in assignment value part and assignment condition part in terms 
of variable of read nodes to obtain the operational expression for each line. For example, after the symbolic 
operation of addition in Fig. 7, the operational expression for line a is (L+M). 

Step 3 For each operation node (resp. ADN) on each ADD path, identify the logic, equality, relational and arithmetic 
operations or any combination of the operations that allows the data transfer from the input (resp. data input) of 
the operation node (resp.ADN) to its output.   
3.1 For an addition node, the condition is the inversion of the operational expression of the off-path input.  

For example, in the addition node in Fig. 7, data of L is transferred to line a when the off-path input M 
is 0.  In other words, the condition that allows data transfer is M’. 

3.2 For a subtraction node, the condition is inversion of the operational expression of the off-path input.  
For example, in subtraction node in Fig. 7, data of line a is transferred to line b when the off-path input 
N is 0.  In other words, the condition that allows data transfer is N’.  

3.3 For a multiplication node, the condition is the operational expression of the off-path input.  For 
example, in the multiplication node in Fig. 7, data of read node N is transferred to line c when the off-
path input F is 1.  In other words, the condition that allows data transfer is F. 

3.4 For a division node, the condition is the operational expression of the off-path input.  
3.5 For ADN, the condition is the operational expression of the condition input that corresponds to the on-

path input.  For example in Fig. 7, data of line b is transferred to write node N when H is 1. 
Step 4   Given a path from a read node to a write node, obtain the thru function by ANDing all the conditions that allow 
data transfer along the path.  For example, in Fig. 7, the thru function from L to N (tLN ) = M’.N’.H. 
 
 

 
                        Fig. 7. ADD S3 

 
     After extracting the thru functions, ADD is transformed into its R-graph and then identify its thru tree to make thru- 
testable R-graph.  If the R-graph is not thru-testable, we need the DFT insertion by adding minimum number of edges 
with thru functions into the R-graph so that the R-graph becomes thru-testable. Definition and steps for DFT insertion 
are taken as follows:  
 
Definition 12. Let A be an input vertex and B be an output vertex. Let C be a vertex which activates a thru function tAB. 
If data transfer is allowed from A to B through a thru function tAC then C is called an activator. 
 
Step 1 Using the depth first search, start traversing an input vertex to the output vertex without considering whether 

the outgoing arc has a thru function or not.  If the vertex is visited for second time, then the vertex is included in 
the feedback vertex set (FVS). 

Step 2 For each vertex, choose the outgoing arc that has a thru function to continue the traversing. If there is no 
outgoing arc with thru function then the traversing is stopped.   
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Step 3 Group each thru function (TF) in the R-graph into sets called TF1, TF2, TF3 and onwards as follows 
3.1 Initially include the first thru function into TF1.  
3.2 For any i, include the current thru function into TFi if the following conditions i&iii or conditions ii&iii are 

satisfied.   
i. Its input (resp. output) of the current thru function is same with the output (resp. input) of any thru 

function in TFi.    
ii. Its output of the current thru function is same with the output of any thru function in TFi and the 

activators of the two thru functions are the same. 
iii. Its activator is different from any input or output of the thru functions in TFi.   

3.3 Create a new TFj (j≠i) if necessary.  
Step 4 Check whether all the vertices in feedback vertex set (FVS) are covered by the generated thru function set.  If 

not, group those vertices into FVS’.   
Step 5 For each vertex of FVS’, add a new thru function so that the output (resp. input) of the new thru function is the 

vertex of FVS’ and input (resp. output) of the new thru function is one of the vertex of any existing thru 
function sets such that the output (resp. input) is not an activator for any thru function in the set. 

Step 6 Repeat Step 5 until all vertices in FVS’ are covered by the generated thru function set. 
Step 7   If FVS’ is not empty, link the vertices with thru function such that a new thru function is formed. 
Step 8 Check whether each thru function set has a primary input and primary output vertex or not.  If the set does not 

have any, one primary input vertex (resp. primary output vertex) in the R-graph is included into the set.  If R-
graph does not have one, a new vertex is added into the set.  

Step 9 Add a new thru function so that the input (resp. output) of the new thru function is the added new input (resp. 
output) vertex and the output (resp. input) of the new thru function is one of the vertices of any existing thru 
function sets. 

 
 
     After the DFT insertion, we transform back thru-testable R-graph into thru-testable ADD.  We synthesize the thru-
testable ADD to gate level netlist.  The newly generated gate level netlist has additional gates to realize the new thru 
functions.  
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Fig. 8. Our proposed design for testability methodology 

 

5.0  EXPERIMENT SETUP AND RESULTS 

5.1 Experiment Setup 

    The experiment is conducted on ITC’99 benchmark circuits [17] where the behavioral descriptions are given.  We 
extract the information of thru functions from the behavioral descriptions.  Tetramax is used to generate tests for the 
circuits.  We show the comparison of the results with partial scan circuits whose minimum feedback set of flip-flops are 
scanned.  Table 1 presents the characteristic of the benchmark circuits.  As can be seen in Table 1, #FF represents the 
number of flip-flops while PI/PO represents the number of inputs/outputs of the circuit.  The number of existing thru 
functions from the behavioral descriptions is described by the column of # thru functions. 
 
 
 
 
 
 
 
 

Assignment Decision Diagram (ADD) 

Extracting thru function 

Transforming ADD into its R-graph  

Identifying thru tree 

DFT insertion

Thru-testable ADD

Synthesis using Design Vision 

Behavioral description 

Gate level netlist
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Table 1. Characteristic of the ITC’99 benchmark circuits [17] 
                                              

IO pins Circuit # Flip-flops Area 

PI PO 

# Thru functions 

ex2 59 901 35 8 8 
b03 30 422 6 4 17 
b04 66 1179 13 8 40 
b07  45 795 3 8 8 
b08 21 350 11 4 8 
b09 28 396 3 1 1 
b10 17 344 13 6 10 
b11 31 788 9 6 6 
b12 121 2109 7 6 8 
b13 51 777 12 10 12 
b14 215 10651 34 54 31 
b15 417 12810 38 69 69 

 

 

 

 

 

 

 

 

 

5.2 Experimental Results 

     We evaluate the effectiveness of the circuits in terms of fault efficiency, area overhead, test generation time and test 
application time.  Table 2 shows the area overhead where one unit of area corresponds to the size of an inverter.  The 
#TF added represents the number of newly added thru function and the AO(%) represents the percentage of the area 
overhead. Table 3 provides the pin overhead, where the PinO denotes the number of the pin overhead while Table 4 
provides the fault efficiency where red. denotes redundant faults.  Table 5 and Table 6 contain the test generation time 
and test application time, respectively.  

    Our method shows that most of the benchmark circuits with thru testability have lower area overhead compared to 
partial scan designed circuits (Table 2).  We added new thru functions at behavioral description before generating the 
gate level netlist.  Therefore, we dealt with less number of components to insert the new thru functions so that the area 
overhead becomes low.  Since the area overhead comes from the newly added thru function, a high area overhead is 
incurred for circuits b09, b11 and b13 because the existing thru function are less. However, these circuits have a high 
fault efficiency.     

Table 2. Area overhead 

      

Partial Scan [3] Proposed DFT Circuit Area 
#TF added 
(#TF at bit level) 

Area AO(%) #TF added 
(#TF at ADD x bitwidth) 

Area AO(%) 

ex2 901 59 1314 45.84% 49 1143 26.86% 
b03 422 30 632 49.76% 12    519 22.96% 
b04 1179 66 1641 39.19% 40 1476 25.19% 
b07  795 44 1103 38.74% 38 1122 41.13% 
b08 350 21 497 42.00% 10 437 24.86% 
b09 396 21 543 37.12% 22 557 40.66% 
b10 344 17 463 34.59% 8 427 24.13% 
b11 788 31 1004 27.41% 38 1065 35.15% 
b12 2109 117 2928 38.83% 31 2502 18.63% 
b13 777 50 1127 45.05% 56 1146 47.49% 
b14 10651 213 12142 14.00% 164 10671 0.18% 
b15 12810 414 15708 22.62% 157 13368 4.35% 
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As shown in Table 3, all the benchmark circuits with thru testability have higher pin overhead compared to partial scan 
designed circuits because in ADD, whenever a new thru function whose input (resp.output) is a new read node 
corresponding to a primary input (resp.output), this results in a number of new input (resp.output) pins equal to the 
bitwidth of that read (resp.write) node after synthesis.  For example, two new thru functions have been added in the 
ADD of benchmark circuit b03 which result in one new read node and one new write node. This one new read node is 
three bits input and one new write node is also three bits output.     

Table 3. Pin Overhead 

 
Partial Scan [3] Proposed DFT Circuit Pins 

Pins PinO Pins PinO 
ex2 37 38 1 58 21 
b03 10 11 1 20 10 
b04 21 22 1 31 10 
b07  11 12 1 38 27 
b08 15 16 1 27 12 
b09 4 5 1 26 22 
b10 19 20 1 22 3 
b11 15 16 1 38 23 
b12 13 14 1 34 21 
b13 22 23 1 58 36 
b14 88 89 1 127 35 
b15 108 109 1 127 19 

 

 

 

 

 

 

 

 

     Our method shows that most benchmark circuits with the thru testability having a comparable fault efficiency 
compared to partial scan designed circuits as presented in Table 4.  In fact, the fault efficiency of our method is higher 
than a partial scan designed circuit.  For example, the fault efficiency of our method is 92.42% while the fault efficiency 
of partial scan is 72.03% for benchmark circuit b15. 

Table 4. Fault efficiency 

 
Partial Scan [3] Proposed DFT Circuit FE 

Detected Red Total FE Detected Red Total FE 
ex2 69.35% 4220 0 4228 99.83% 3778 1 3856 98.22% 
b03 69.58% 1703 0 1704 99.94% 1427 0 1446 98.89% 
b04 83.39% 4742 36 5040 94.76% 4484 36 4814 94.27% 
b07  4.11% 2303 4 3300 69.90% 3612 8 3684 98.37% 
b08 92.62% 1352 0 1528 88.48% 1345 0 1358 99.26% 
b09 88.18% 1417 0 1421 99.51% 1522 0 1538 99.15% 
b10 94.32% 1485 0 1486 99.93% 1464 0 1468 99.83% 
b11 81.1% 3393 15 3432 99.30% 3868 13 3916 99.18% 
b12 13.75% 7968 2 8962 88.95% 7506 5 8042 93.48% 
b13 34.23% 3081 67 3170 99.29% 3265 67 3380 98.79% 
b14 63.08% 47104 359 48024 98.82% 38783 1983 41530 98.08% 
b15 4.54% 43012 176 59888 72.03% 49751 56 53892 92.42% 

 

 

 

 

 

 

 

 

    The test generation time in Table 5, shows that most of the benchmark circuits with thru testability have shorter test 
generation time compared to partial scan designed circuits except for benchmark circuits like b04 and b14.  However, 
the test generation times of these circuits are still shorter or not so longer than original circuit.  
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Table 5. Test generation time (in seconds) 

 
Circuit Original Partial scan [3] Proposed DFT 
ex2 9263.78 108.91 131.93 
b03 2229.25 48.13 40.21 
b04 1341.99 227.46 547.57 
b07  16821.17 11385.33 218.83 
b08 326.20 878.07 2.04 
b09 516.66 42.80 3.27 
b10 514.10 88.91 33.93 
b11 4999.26 64.50 44.68 
b12 23725.42 13360.22 6474.27 
b13 10848.61 113.84 56.25 
b14 6540.87 3890.92 6872.46 
b15 104084.22 225848.62 95379.67 

 

 

 

 

 

 

 

    For our method, the test application time is lower than partial scan designed circuits. However, the test application 
time for benchmark circuits like b08, b12 and b15 are longer than partial scan designed circuits.  For benchmark circuit 
such as b12, although its test application time is longer than partial scan designed circuit but it has shorter test generation 
time.  

Table 6. Test application time (in clock cycles) 

 Circuit Original Partial scan [3] Proposed DFT 
ex2 321 1467 891 
b03 340  1649 1177 
b04 1448 1784 1419 
b07  8 2606 1365 
b08 1284 463 766 
b09 2652 5958 1210 
b10 1013 998 946 
b11 1022 2039 1322 
b12 132 6204 14568 
b13 465 1751 1298 
b14 1335 15518 3074 
b15 50 3739 18117 

 

 

 

 

 

 

 

 

6. CONCLUSIONS 

A new design for testability method has been introduced in this paper based on thru-testability ADD at behavioral 
description.  The DFT method augments a given ADD to become thru-testable ADD.  Our method shows that high fault 
efficiency, lower area overhead, shorter test generation time and shorter test application time in most of the ITC’99 
benchmark circuits compared to partial scan designed circuits.  Nowadays, the top-down design has become popular, so 
the DFT at behavioral description is introduced during the early stages of the design flow to improve the testability of 
the circuits.        
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