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ABSTRACT 

Image reconstruction is an important part of computed tomography imaging systems, which converts the 

measured data into images. Because of high computational cost and slow convergence of iterative 

reconstruction algorithms, these methods are not widely used in practice. In this paper, we propose a hybrid 

iterative algorithm by combining multigrid method,Tikhonov regularization and Simultaneous Iterative 

Reconstruction Technique (SIRT) for reconstruction of the computed tomography image that reduces this 

drawback. To do so, we reduce the time and the volume of computations considerably by finding astable and 

appropriate starting point.The experimental results indicate that the proposed iterative algorithm has more 

rapid convergence and reconstructs high quality images in short computational time than the classical ones. 

 

Keywords: Computed Tomography, iterative methods, reconstruction. 

 

1.0 INTRODUCTION 

Computed tomography (CT) is a mathematical technique that combines a series of projections of the body 

taken from many different angles to produce cross-sectional images of the internal structure of a body. A 

projection is the line integral of an object in a given direction [1,2]. In CT imaging systems, X-rays pass 

through the patient’s body. The body absorbs some amount of X-ray energy and the remainder, after passing 

through the body,is measured by the detector. After being digitized, it is stored in the computer memory as a 

signal. This isdone for different angles until the information of the given areas is completely collected [3,4]. 

After data acquisition process, the series of projections are then used as an input for reconstruction methods. 

Reconstruction methods are important parts of any computed tomography (CT) system, which converts the 

measured data into images (see Fig. 1) [5]. 

 

Generally, reconstruction methods for CT images can be classified as analytical or iterative. The difference 

between two classes is in accuracy and computational time. Analytical methods such as filtered back-

projection (FBP) have low computational cost. They can reconstruct images with high quality when the 

number of projections is large, projections are uniformly distributed over 180° or 360° and noise level is 

low.Otherwise, reconstructed images have artifacts, noiseand low quality [6,7,8]. 

 

Iterative methods are more suitable for the reconstruction of CT images when data is noisy, there are low 

numbers of projection or they are not uniformly distributed over 180° or 360°. But, according to the high 

computational cost and slow convergence of iterative methods, these are not widely used in practice 

[6,7,9].Iterative methods aredividedinto two categories:Algebraic Reconstruction Techniques (ART) 

andSimultaneous Iterative Reconstruction Techniques (SIRT).  In ART, the unknown vector (image) is 

updated based on one equation in each step and the result is used in the subsequent calculations.In SIRT, 

information from all equations is used in each step for updating the unknown vector [10,11]. W. Lei and et 

al. proposed hybrid reconstruction algorithm by combining Tikhonov regularization theory and SIRT to 

improve the quality of Electrical Capacitance Tomography reconstructed image (called as TSIRT here) [12]. 

W.Guoand et al. proposed an improved version of SIRT for improving CT image reconstruction [13]. 
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Acceleration of iterative reconstruction methods is an active area of research. The goal of this paper is to 

accelerate the convergence speed of iterative reconstruction techniques, and to achieve better-reconstructed 

image quality. To do so, we propose a hybrid iterative reconstruction algorithm by combining multigrid 

method,Tikhonov regularization and SIRT. In addition,we use some concepts in digital imaging and 

interpolation.  

 

The rest of the paper is organized as follows: In section 2, the formulation of problem is described. Section 3 

discussesthe proposed method, Section 4 is about simulations and experimental results and finally section 5 

is comprised of some conclusions. 

 

2.0 FORMULATION OF PROBLEM 

Tomographic imaging reconstructs a function from its projections collectedfrom different angles. This 

approach was first introduced by Radon in 1917. When an X-ray beam travels through tissues, the 

attenuation of its intensity can be mathematically represented by 

𝑝𝑖 = 𝐼0 𝑒𝑥𝑝  − 𝑓 𝑥, 𝑦 𝑑𝑙
𝐿

  
(1) 

where𝐼0is the intensity of the incident X-ray beam, 𝑝𝑖 is the beam intensity at the detector, 𝑓 (𝑥, 𝑦) is the 

distribution of the X-ray attenuation coefficient inside the body, and 𝐿is the straight line through which beam 

travels. The reconstruction problem is to determine the values of the function 𝑓(𝑥, 𝑦) from the set of the 

projection data 𝑝 (see Fig. 1)[8,14]. 

 

 

 

Fig. 1:Reconstruction of computed tomography 
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In algebraic modeling of tomography, a function 𝑓(𝑥, 𝑦) is discretized into an𝑁 × 𝑁Cartesiangrid of pixels. 

Suppose 𝑓 =  𝑓1, 𝑓2,… , 𝑓𝑛  
𝑇  is the unknown image to be reconstructed, 𝑝 =  𝑝1 , 𝑝2 ,… , 𝑝𝑚  

𝑇  is measured 

date or projection data, 𝐴 =  𝑎𝑖𝑗  𝑚×𝑛
 is the coefficient matrix created from modeling of ray geometry (the 

intersection of the 𝑖𝑡ℎ ray with the𝑗𝑡ℎpixel). 𝑛 = 𝑁 × 𝑁and𝑚are the number of pixels in image 𝑓 and the 

total number of rays, respectively. The weighting coefficients 𝑎𝑖𝑗  have value [0,1] and represent the 

contribution of the 𝑗𝑡ℎ  cell to the 𝑖𝑡ℎ  ray integral. So, the reconstruction problem can be expressed in the 

following linear system of equations[3,4,15]:  

(2) 
𝐴𝑚×𝑛𝑓𝑛×1 = 𝑝𝑚×1 

 

Because 𝑚 < 𝑛, the system 𝐴𝑓 = 𝑝 is under-determined; we consider the Linear Least Squares problem to 

find the value of𝑚𝑖𝑛𝑓 𝐴𝑓 − 𝑝 2. The matrix 𝐴  is the discretization of the Radon transform, so it is ill-

posed. Since a small number of pixels contributes in any ray, most 𝑎𝑖𝑗 ’s are zero and matrix 𝐴 is sparse. To 

solve a sparse, large and ill-posed system of equations, iterative methods must usually be employed. 

 

2.1 Simultaneous Iterative Reconstruction Technique (SIRT) 

 

In Simultaneous Iterative Reconstruction Techniques (SIRT), information from all equations isused 

simultaneously in each step to updateimage𝑓. This method has the following scheme: 

∀𝑗     𝑓𝑗
(𝑘+1)

= 𝑓𝑗
(𝑘)

+ 𝜆
1

𝑚
 

𝑝𝑖 − 𝑎𝑖𝑙𝑓𝑙
(𝑘)𝑛

𝑙=1

 𝑎𝑖𝑙
2𝑛

𝑙=1

𝑎𝑖𝑗
𝑚

𝑖=1
 (3) 

where 𝑓𝑗
(𝑘+1)

is the current estimation of the attenuation coefficient associated with the 𝑗𝑡ℎ  projection ray in 

iteration 𝑘 + 1, 𝑎𝑖𝑗  is the weighting factor representing the contribution of the 𝑗𝑡ℎ  cell to the 𝑖𝑡ℎ  ray integral, 

and 𝜆 is the relaxation parameter that controls the convergence rate [16,17]. 

 

W. Guo and et al. improved SIRT [13]. From an algebraic view, the denominator in Eq. 3 is associated with 

the matrix 𝐴. Since the matrix 𝐴 is large, sparse and ill-posed, any little error in the matrix elements may 

result in the deviation from its exact solution and convergence to a naive solution. Therefore, to consider the 

compensation of obtained 𝑓𝑗  in the last iteration; the denominator of Eq. 3is adjusted to: 

∀𝑗     𝑓𝑗
(𝑘+1)

= 𝑓𝑗
(𝑘)

+ 𝑘
1

𝑚
 

𝑝𝑖 −  𝑎𝑖𝑗 𝑓𝑙
(𝑘)𝑛

𝑙=1

 𝑎𝑖𝑙
𝑛
𝑙=1

𝑓𝑙
(𝑘)

𝑓
𝑗
(𝑘)

𝑎𝑖𝑗
𝑚

𝑖=1
 

(4) 

2.2 Tikhonov regularization 

 

The most commonly used method to solve discrete ill-posed problems with datapolluted by noiseis 

Tikhonov regularization.The Tikhonov regularization method converts the ill-posed system of 𝐴𝑓 = 𝑝 to the 

following minimization problem:  

𝑚𝑖𝑛𝑓  𝐴𝑓 − 𝑝 2
2 + 𝛼2 𝑓 2

2  
(5) 

where𝛼 ≥ 0 is the regularization parameter andvalue𝛼2keepsa balance between 𝐴𝑓 − 𝑝 2
2and  𝑓 2

2. The 

regularized solution of Eq. 5 is given as 

𝑓 =  𝐴𝑇𝐴 + 𝛼2𝐼 −1𝐴𝑇𝑝 
(6) 

where𝐼 is the identity matrix [18]. 
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3.0 PROPOSED METHOD 

Fundamentally, the reconstruction problem of CT images is aninverseproblem and leads to solving a system 

of linear equations𝐴𝑓 = 𝑝 by iterative methods. The nature of the system has a significant impact on the 

quality and speed of the reconstruction process. Unfortunately, this system is large and sparse and, due to 

noise in the projections,ill-posed.On the other hand,iterative methods to solve this system of equations, such 

as SIRT, are computationally expensive and have a slow convergence to the solution. 

 

The goal of this paper is to accelerate the convergence speed of iterative reconstruction techniques, and to 

achieve better reconstructed image quality.To do so, we propose a hybrid iterative reconstruction algorithm 

whichcombines the multigrid method,Tikhonov regularization and SIRT. First by using some concepts in 

digital imaging, interpolation and multigrid method, we reduce unknowns (image 𝑓) and thus, the linear 

system can be solvedin a more rapid time. Because the system is ill-posed, Tikhonov regularization theory is 

used to solve it. Finally, SIRT is used to accelerate reconstruction and improve reconstructed image 

quality.The proposed method is called MTSIRT. 

 

The hybrid proposed algorithm consists of two stages. In the first stage, we construct a system of linear 

equations in smaller dimension and solve it. In the second stage, we use the solution resulting from the first 

step as a starting point for the original system of linear equations. 

 

As computed tomography images are grayscale images, the intensity values of pixels are real numbers 

between 0and 1. Usually, pixels in adjacent neighborhoods (e.g. in blocks of 2×2, 4×4 or 8×8) have intensity 

values very close together (see Fig. 2) [15]. In our proposediterative method, we use this property to reduce 

unknowns and thus the linear system can be solved faster. In addition, we find an appropriate starting point 

for the iterative reconstruction method. 

 

 

Fig. 2: Examples of intensity values of 2×2, 4×4 and 8×8blocks. 

 

 

As shown in Fig. 3(a), the object is discretized into an𝑁 × 𝑁Cartesian grid of pixels(𝑁 × 𝑁 is the resolution 

to be reconstructed). Let 𝑓1
ℎ , 𝑓2

ℎ ,… , 𝑓𝑛
ℎ  be the pixels on the fine grid Ωℎ  where 𝑛 = 𝑁 × 𝑁.  The 𝑖𝑡ℎ  ray 

passes through a slice of the object. The object absorbs some amount of ray energy and the remainder passes 

through the object and is measured by the detector. For these settings, we construct a system of linear 

equations 

𝐴ℎ𝑓ℎ = 𝑝ℎ  where𝑝𝑖
ℎ  is the line integral along the 𝑖𝑡ℎ rayand the entry 𝑎𝑖𝑗

ℎ  of 𝐴ℎ  is the weighting factor 

representing the contribution of the 𝑗𝑡ℎ  pixel along the 𝑖𝑡ℎ  ray [19,20]. 

 

Suppose 𝑛 = 2𝑡 × 2𝑡 = 22𝑡 . According to Fig. 3(b),𝑓1
𝐻 , 𝑓2

𝐻 ,… , 𝑓𝑛/4
𝐻  are pixels of the coarse grid Ω𝐻obtained 

by considering the bigger pixels formed by a 2 × 2 block of adjacent pixels from the fine grid. Now, we 

should construct coarse grid matrix𝐴𝐻 . The entry 𝑎𝑖𝑗
𝐻  of matrix 𝐴𝐻is defined according to the indices of fine 

grid pixels from which the coarse grid pixels are built, as follow: 
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𝑎𝑖 ,2𝑘+𝑗
𝐻 = 𝑎𝑖 ,2𝑘𝑁+2𝑗−1

ℎ + 𝑎𝑖 ,2𝑘𝑁+2𝑗
ℎ + 𝑎𝑖 , 2𝑘+1 𝑁+2𝑗−1

ℎ + 𝑎𝑖 , 2𝑘+1 𝑁+2𝑗
ℎ  

 𝑗 = 1,… ,
𝑛

4
 , 𝑘 = 0,… , (

𝑛

4
− 1) 

(7) 

 

Let 𝑃, 𝑅 and𝑚 = 𝑃 × 𝑅 be the number of projections, number of rays in each projection and total number of 

rays, respectively. Now select a subset of the original projection vector𝑝ℎ . We use the projectionsonly in 

angles 

𝜃𝑖
𝐻 = 8𝑖𝜋 𝑃 , 𝑖 = 1, 2,… , [𝑃 8 ] from projection angles𝜃𝑖

ℎ = 𝑖𝜋 𝑃 , 𝑖 = 1, 2,… ,𝑃 and use𝑅 (2 × 2)  rays in 

each selected projection corresponding to exploiting 2 × 2 blocks. Thus, the new projection vector 𝑝𝐻is 

constructed in this way.  

 

 

 
Fig. 3:(a) Fine grid Ωℎ , (b) coarse grid Ω𝐻 , (c) the coarse grid points are considered as representative of 

block of fine grid points, (d) the values of coarse grid points are distributed to blocks of fine grid points. 

 

 

 

Using the concepts of multigrid method in the numerical linear algebra, we can reduce unknowns and thus, 

the system of linear equationscan be solvedmore rapidly. The size of new system of linear equations𝐴𝐻𝑓𝐻 =
𝑝𝐻is 1/128 of the original system of linear equations.  

 

The matrix 𝐴𝐻is ill-posed and the projection 𝑝𝐻is polluted by noise. This noise can be caused by 

discretization or measurement errors.Therefore, we use Tikhonov regularization (Eq. 6) to find the 
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solution𝑓′𝐻 . This solution, used as the starting point for SIRT, accelerates the convergence of SIRT to the 

optimal solution and improves the quality of reconstructed image. 

 

Suppose 𝑓𝐻is the resulting solution of coarse grid Ω𝐻in the first stage of the proposed algorithm. Now, the 

values of coarse grid points 𝑓𝐻are distributed to respective blocks of fine grid points (see Fig. 3(c) and (d)). 

𝑓ℎ ,(0)is used asastarting pointto solvethe original system of linear equations𝐴ℎ𝑓ℎ = 𝑝ℎ . Algorithm 1 shows 

the proposed iterative algorithm. 

 

 

 

Fig. 4: MTSIRT algorithm 
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4.0 EXPERIMENTAL RESULTS 

In this section, our experimental results are presented. We use MATLAB for implementation of 

reconstructed methods.We use the Shepp-Logan phantom and Chest phantom as benchmarks to evaluate the 

quality of images reconstructed. Fig. 5(a) showsthe Shepp-Logan phantom, a famous model of the brain in 

medical tomography.The size of phantomsis 256×256 pixels.64 projections within 180° with 2.8125° 

interval and 367 parallel rays per projection were taken for the reconstruction process. The size of matrix 𝐴 

is 23488×65536 (see Fig. 5(b)).To evaluate speed, accuracy and the quality of the reconstruction methods, 

we use three criteria: computational time, Mean Square Error (MSE) and Correlation Coefficient (CC). 

 

 The computational time: One of thecriteria to compare severalalgorithmstosolveaproblem is the 

computational time. An Intel® Core™ i7-870 Processor (8M Cache, 2.93GHz) and 8GB of RAM 

are used in our experiments. 

 

 Mean Square Error (MSE): One common measure of the quality and accuracy of a reconstruction 

technique is MSE of the reconstructed image related to the original image.MSE  is calculated by the 

following formula: 

(8) 𝑀𝑆𝐸 =
   (𝑂𝑖𝑗 − 𝑓𝑖𝑗 )2

𝑗𝑖

𝑁2
 

where𝑂𝑖𝑗  and 𝑓𝑖𝑗  are theintensity of (𝑖, 𝑗)𝑡ℎ  pixel of the original and reconstructed image 

respectivelyand 𝑁2 is number of pixels in image. 

 

 Correlation Coefficient (CC): Correlation Coefficient has been widely used in image processing to 

compare thesimilarity between two images. We are going to answer the following questions: If 

there exists a linear relationship between two images, what can we say about the strength and the 

direction of this relationship?The sample correlation coefficient is calculated by the following 

formula: 

(9) 
𝐶𝐶 =

   𝑂𝑖𝑗 − 𝑂  (𝑓𝑖𝑗
𝑘 − 𝑓𝑘   )𝑗𝑖

    𝑂𝑖𝑗 − 𝑂  
2

(𝑓𝑖𝑗
𝑘 − 𝑓𝑘   )2

𝑗𝑖

 

where𝑓𝑖𝑗
𝑘  and 𝑓𝑘   are theintensity of (𝑖, 𝑗)𝑡ℎ  pixel and meanintensity of reconstructed image in 

iteration 𝑘 ,and 𝑂𝑖𝑗  and𝑂 are intensity of the (𝑖, 𝑗)𝑡ℎ  pixel and meanintensity of the original image. 

The correlation coefficient varies between -1 and 1, with magnitude indicating the strength of linear 

relationship and sign indicating the direction. 𝐶𝐶 = 1if two images are absolutely identical, and 

𝐶𝐶 = 0 if they are completely uncorrelated, and 𝐶𝐶 = −1 if they are completely anti-correlated 

[19]. 

 

 
Fig. 5: (a) Shepp-Logan phantom, (b) structure of matrix 𝐴. 
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Table 1shows the computational time, MSEand CC of SIRT, TSIRT and MTSIRT methods for Shepp-Logan 

and Chest phantom.The Time, MSE and CC in Table 1indicate values of computational time, Mean Square 

Error and Correlation Coefficients in the stopping time of algorithms based on the stopping criteria. Fig. 

6shows the reconstructed images for bySIRT, TSIRT and MTSIRT methods. 

 

 
 

 

Table 1. The iterations, time, Mean Square Error and Correlation Coefficients form reconstruction methods 

Phantom Algorithm Iterations Time (Seconds) MSE  CC 

Shepp-Logan  
SIRT 184 17.8741 0.0332 0.9267 

TSIRT 141 9.5023 0.0243 0.9503 

MTSIRT 91 5.6388 0.0232 0.9632 

Chest 

SIRT 201 20.4349 0.0330 0.9337 
TSIRT 153 13.1552 0.0242 0.9553 
MTSIRT 98 6.8740 0.0227 0.9681 

      

 

 

 

 

 

 

 

 

 

   

(a)SIRT (b)TSIRT (c)MTSIRT 

   

(d)SIRT (e)TSIRT (f)MTSIRT 

Fig. 6: Reconstruction of 256×256 Shepp-Logan and Chest phantomsby SIRT,TSIRT and MTSIRTmethods 
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The convergence of the iterative reconstruction method is considered in terms of Mean Square Error and 

visual image quality. The convergence speeds of the SIRT, TSIRT and MTSIRT methods are shown in Fig. 

7and Fig. 8in terms of the number of iterations. 

 

Fig. 7 shows the Mean Square Error plots of reconstructed image with SIRT, TSIRT and MTSIRT methods. 

In iterative methods, determining the optimal number of iterations has a significant impact on finding a 

meaningful answer. On the other hand, according to the concept of semi-convergence, the number of 

iterations is the regularization parameter for the iterative methods [17]. The iteration column in Table 1 

shows the optimal iteration. The results indicate that SIRT and TSIRT methods are to converge far much 

slower than the MTSIRT. 

 

 
(a)Shepp-Logan phantom (b)Chest phantom 

Fig. 7: The Mean Square Errorplots of reconstructed images 

 

Fig .8shows the Correlation Coefficient plots of reconstructed images by SIRT, TSIRT and MTSIRT 

methods. The value of CC increases monotonically towards 1.0 as the number of iterations increases. 

Whatever the value of CC is closer to 1, the similarity between reconstructed image andShepp-Logan and 

Chest phantomsisincreased, which concludes better quality of reconstructed image. 

 

 
(a) Shepp-Loganphantom (b) Chest phantom 

Fig. 8: The Correlation Coefficient plots of reconstructed images 

 

Fig. 9 and Fig. 10 show the profile of the 128
th

 row and column of Shepp-Logan and Chest phantom and 

reconstructed images by SIRT, TSIRT and MTSIRT methods. This 1D profile plot shows the quality of the 

reconstructed image. Regarding tothese figures, it is evident thatthe profile of MTSIRT matches well to the 

profile of original phantoms. Therefore, the reconstructed image quality by the MTSIRT method is more 

efficient than the SIRT and TSIRT method. 
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(a) Shepp-Logan phantom (b) SIRT (c) TSIRT (d) MTSIRT 

 
(e) Profile of 128

th
 row (blue lines)  (f) Profile of 128

th
column (red lines) 

Fig. 9: Pixel-intensity profiles of 128
th

row and column ofShepp-Logan phantom and reconstructed images 

by SIRT, TSIRT and MTSIRT methods 
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(a) Chest phantom (b) SIRT (c) TSIRT (d) MTSIRT 

 

(e) Profile of 128
th

 row (blue lines)  (f) Profile of 128
th

column (red lines) 

Fig. 10: Pixel-intensity profiles of 128
th

 row and column of Chest phantom and reconstructed images by 

SIRT, TSIRT and MTSIRT methods 

 

According to experimental results, it is obvious that the MTSIRT method consumes less computational time 

compared to SIRT and TSIRT methods, and in terms of quality, is better. Therefore, by finding an 

appropriate starting point using concepts in digital imaging, interpolation and multigrid 

methodandusingTikhonov regularization to overcome ill-posedness, we could reduce the time and volume of 

computations considerably, and accelerate the convergence speed of SIRT, which is one of the main 

challenges in iterative reconstruction methods. 

 

5.0 CONCLUSIONS 

In this paper, we proposed ahybrid iterative algorithm (MTSIRT) by combining multigrid method,Tikhonov 

regularization and SIRT methodsfor reconstruction problem of computed tomography image. The drawbacks 

of iterative reconstruction algorithms are high computational cost and slow convergence. To reduce these 

drawbacks, we try to find appropriate starting points, whichreduce the time and the volume of computations 

considerably, accelerate convergence of iterative methods, and achieve a better quality of image 

reconstruction. To do so, we usedconcepts in digital imaging, interpolation and multigrid method to reduce 

unknowns. We obtaineda coarse grid model from the algebraic modeling of tomography and then 

distributedits value to surrounding fine grid points and finally, the reconstructed image is regarded as an 

intermediate result and is used for reconstruction high-resolution images. As the linear system of equationsis 

ill-posed, Tikhonov regularization was used to find a stable starting point for SIRT. Based on experimental 

results, the proposed iterative method reconstructs CT images with quicker convergence and higher quality 
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images in shorter computational time than the classical ones. Future work includes faster implementation 

using parallel computing and GPU. 
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