
Q-gram Based Encrypted Codeword Dictionary for Fast Searches Over a Large Collection of Encrypted Unstructured Documents. pp 263-282

263

Malaysian Journal of Computer Science. Vol. 28(4), 2015

Q-GRAM BASED ENCRYPTED CODEWORD DICTIONARY FOR FAST SEARCHES OVER A

LARGE COLLECTION OF ENCRYPTED UNSTRUCTURED DOCUMENTS

Mohammed Afzal Khan
1
and Shoab Ahmad Khan

2

1, 2
Electrical & Computer Engineering Department, Center of Advance Studies in

Engineering, Islamabad, Pakistan

Email:
1
afzalmkhan@yahoo.com,

2
Shoab@carepvtltd.com

ABSTRACT

With the advent of cloud computing, many businesses prefer to store their unstructured documents over the

cloud. The preference is to store the encrypted unstructured document over the cloud for security. In most of

these instances, one of the main criteria is to support fast searches without requiring any form of decryption. It

is thus important to develop methods and architectures that can perform fast searches without compromising

security and return the rank results for a client query. Our technique uses the enhanced version of the symmetric

encryption algorithm for unstructured documents and develops a novel secure searchable hierarchical in-

memory indexing scheme for each encrypted document using multiple Bloom filters and construct a dictionary

over a large collection of encrypted unstructured documents. The paper also proposes a dynamic index

construction method based on hierarchical in-memory index to perform fast and parallel rank searches over a

large collection of encrypted unstructured documents. To the best of our knowledge, this is a novel contribution

that propose methodology of constructing a dictionary using hierarchical in-memory index for performing fast

and parallel rank searches over a large collection of encrypted unstructured documents. We introduce the

concept of Q-gram for building the encrypted searchable index, and provide multiple Bloom filters for a given

encrypted unstructured document or a chunk to build encrypted searchable indexes using separate Bloom filter

for a set of bytes. Our proposed construction enables fast rank searches over encrypted unstructured documents.

A detailed study of 44 billion code-words is worked out using off the shelf serves to demonstrate the effectiveness

of Layer Indexing method.

Keywords: Cloud computing, cloud security, searchable encryption, ranked search, encrypted Bloom filters

1.0 INTRODUCTION

The explosive growth of cloud computing provides many organizations a way of storing their information in the

clouds and utilizing the cheap computing resources effectively. Many businesses want to ensurethat information

stored in clouds remains confidential and not easily accessible to non-privileged users. The preference is to store

the encrypted unstructured documents over the cloud. The businesses also want to run searches on encrypted

unstructured document databases in a fast and effective manner, is an active area of research among the

researchers.

In the literature, searchable symmetric encryption [14] is a helpful technique that allows the user to perform

queries over the encrypted documents. However, a faster search over a large collection of encrypted

unstructured documents is not possible. There are two high-level approaches to design reasonably efficient and

secure schemes using the searchable symmetric encryption; dynamic and static. In Dynamic Searchable

Symmetric Encryption (DSSE) [14, 15, 18, 19, 20, 24], encrypted keyword searches should be supported even

after the documents are randomly inserted or deleted from the collections. In this approach, one of the first

notable papers by Goh presented an algorithm for a document index construction based on the secure word [1, 2,

15]. Goh also presented a technique to perform searches on these secure word indexes without having to decrypt

the complete document. This scheme provides linear time search over a document collection.

The second approach is Static Searchable Symmetric Encryption (SSSE) [16, 17, 22, 23], work on static data i.e.,

there is a setup phase that produces an encrypted index for a set of collection of documents and after that phase

no insertion or deletion of documents is supported. In static approach, first notable paper by Curtmola et al. [17]

mailto:1afzalmkhan@yahoo.com

Q-gram Based Encrypted Codeword Dictionary for Fast Searches Over a Large Collection of Encrypted Unstructured Documents. pp 263-282

264

Malaysian Journal of Computer Science. Vol. 28(4), 2015

presented a Searchable Symmetric Encryption (SSE) scheme [17]. The SSE scheme executes in sub-linear time.

The formation of the dictionary is through a combination of the lookup table and array. Curtmola et al. [17] first

gathers all unique words from a set of documents and then creates the link list using the list of document

identifiers for each unique word. The link list for the distinct words is constructed, and then the list is encrypted,

flattened and scrambled into an array. Each element is packaged with the key that is used to encrypt the next

element in the list. This allows the server to find all the document identifiers from a given word and a key.

The Dynamic schemes based on the index are used in most recent research publications due to its efficiency [14,

18, 19, 20, 24]. In DSSE schemes, there are four areas that require further attention:

1. How to improve search time to make it practical over a large collection of document?

2. What is the computational complexity of searches? Is it practical in multi-user environment?

3. How well your index scheme supports fast rank searches over a collection of encrypted unstructured

documents?

4. Lastly, how well your index scheme supports security to minimize leakage?

Before we dwell into other discussions lets briefly summarized ideal security environment. Ideally, the DSSE

considers secure where there is no partial leakage of information and they are characterized against three

parameters:

Table 1: Comparison of Several DSSE Schemes

Scheme Dynamic Security

-leakage

Search time Indexing method

Goh [15] yes N/A 𝑂(𝑛/𝑝) N/A

Liesdonk et al.

[20]

yes similar 𝑂(𝑛) -

Kamara et al. [19] yes similar 𝑂(𝑟) hashing plus link list

Kamara and

Papamanthou [18]

yes similar

𝑂((𝑟/𝑝)𝑙𝑜𝑔𝑛)

hashing plus tree based

Emil et al. [24] yes better 𝑂(𝑚𝑖𝑛{𝛼

+ log 𝑛 , 𝑟𝑙𝑜𝑔3𝑛}))

hashing using multi-levels

Proposed method yes similar 𝑂(1/𝑝𝑙𝑜𝑔(𝒲/ 𝔜) layers indexing (in-memory) plus

tier's for ranking

Table 1 compares our construction with the previous DSSE schemes. In Table 1, 𝑛 is the size of the document

collection, 𝑟 is the number of documents containing keyword 𝔴, 𝑝 is the number of processors, 𝛼is the number

of times historically the document is added, 𝒲 = ∑𝔴number of words in 𝑛 collection of documents and 𝔜 is

the number of nodes in a page.

i. The hash of keywords that we used for searches are referred to as search pattern in the literature [21,

24].

ii. The matching document identifiers of a keyword, addition, deletion operations referred to as access

pattern in the literature [21, 24].

iii. The number of document in the collection is referred to as size pattern [24].

The above DSSE security parameters are further described and analyzed in the next sections.

DSSE [14, 15, 18, 19, 20, 24] and SSSE [16, 17, 22, 23] schemes allow the client to perform the secure searches

over the encrypted data using the search patterns constructed from keywords. All these schemes do not provide

any relevance of the documents in their search results. Although [6, 25] provides a methodology to perform

relevant searches over encrypted data, both of them fall in the category of static (SSSE) scheme.

The relevance of the document in the search result is important when applied to cloud environment due to two

main reasons. Firstly, without relevance of the documents, client needs to go through the entire encrypted

documents set against a keyword to find documents of interest after decrypting and analyzing these documents

that involve a large amount of post processing overhead. Secondly, invariably sending back all the documents

Q-gram Based Encrypted Codeword Dictionary for Fast Searches Over a Large Collection of Encrypted Unstructured Documents. pp 263-282

265

Malaysian Journal of Computer Science. Vol. 28(4), 2015

creates large unnecessary traffic that may not be desirable in the cloud environment due to pay-as-you-use cloud

paradigm [6].

Technical Highlights: In this paper, we focused on the problem of constructing DSSE scheme for the purpose of

designing fast searchable cloud storage systems to perform searches on encrypted unstructured documents.

Some of the technical highlights are:

1. We enhanced the Goh [15] algorithm for building index over a large collection of encrypted

unstructured documents using separate Bloom filter (Bloom filter is defined in Section 2) for set of

bytes. We improve the search time by describing new method to locate Bloom filter for set of bytes.

We further minimize the probability of Bloom filter saturation.

2. Our main contribution is a new dynamic hierarchical in-memory index construction method to perform

fast searches over a large collection of encrypted unstructured documents. Searches for keywords runs

in 𝑂(𝑙𝑜𝑔(𝒲/ 𝔜) sub-linear time, where 𝒲 = ∑𝔴 is number of words in n collection of documents, 𝔜

is the number of nodes in a page.

3. In multi-user environment, searches can be performed in parallel time using multiple processors and the

search time is 𝑂(1/𝑝𝑙𝑜𝑔(𝒲/ 𝔜), where p is the number of processors.

4. We provide relevant results in ranked order for searches. No other dynamic algorithms in our

knowledge [14, 15, 18, 19, 20, 24]returns ranked result on client queries.

Related 𝑤𝑜𝑟k: Song et al. [14] were the first to propose the Dynamic Searchable Symmetric Encryption and

their index searches are linear to the size of data collection. Their constructions provide the addition or deletion

of documents in a simple way. Goh [15] address the Dynamic Searchable Symmetric Encryption using the

Bloom filter, but Goh construction does not use the dictionary. Goh scheme has the linear search time and

results in false positive. Kamara et al. [19] constructed a DSSE scheme that has sub-linear search time. Their

construction uses the hash dictionary with complex and difficult list structures. Their construction leaks

information for keywords during update operations. The work of Kamara and Papamanthou [18] improves the

dictionary construction using the hash dictionary with the KRB tree structure. Their construction requires sub-

linear search time and also utilizes the parallel searching, increasing the space requirement for their data

structures. Liesdonk et al. [20] were the first to explicitly present the Dynamic Searchable Symmetric Encryption

and in worst case has linear search time. Their construction supports a limited number of update operations.

Emil et al. [24] proposed DSSE scheme based on constructing dictionary from hash using multiple levels instead

of a flat hash table. Their construction achieve better security (called forward privacy) using fresh key for

encrypting the entries for new level and thus utilizing new tokens for every new level.

Swaminathan et al. [25] propose confidentially preserving rank order search. Their paper looks at practically

building a ranking system into a secure index based search scheme. Their scheme defines a method for ranking

documents based on relevance, which is similar to SSSE. Wang et al. [6] define a method for adding new scores

for newly created documents or modification of old scores of existing documents in the collection. Their scheme

incorporated random size non-overlapping buckets where within each bucket all the document with the same

rank are arbitrarily placed.

2.0 NOTATION AND PRELIMINARIES

We use 𝑥 ← 𝑆 to denote random variable 𝑥 that is drawn uniformly at random from the set S. We denote

𝑥 ← [1, 𝑁] to denote a random variable 𝑥is chosen uniformly from the set of integers in [1, 𝑁]. We denote

𝑥 ← 𝑋 is the output of the algorithm.

We are using different types of data structures, including link lists, arrays and hierarchical index. We give

name of our hierarchical index as layers indexing. Assume that𝑙 is the list and𝑙𝑘 denotes total number of layers

that contains the list. The array is presented through 𝐴 and total number of cells in the array is presented as∑𝐴.

A layers indexing consists of multiple layers (𝑙1, . . . , 𝑙𝑘) and leaf tiers (𝑡1, . . . , 𝑡𝑗). Layers (𝑙1, . . . , 𝑙𝑘) are in the

external memory and leaf tiers 𝑡1, . . . , 𝑡𝑗 are in the disk. Each layer of (𝑙1 , . . . , 𝑙𝑘) is made of multiple pages,

where each page size is equal to the array size ∑𝐴. We further define a layer node in a page that store structure

at location i ∈ [∑𝐴]as𝐴[𝑖] and 𝐴 𝑖 ∶= (𝑠1 , … , 𝑠𝑚) represent the operation that stores 𝑠 at location 𝑖in 𝐴.

Similarly, a leaf node in a page that store structures at location i ∈ [∑𝐴]as𝐴[𝑖] and 𝐴 𝑖 ∶= (𝑑1, … , 𝑑𝑚) represent

operation that stores 𝑑 at location 𝑖in 𝐴. Each leaf node represents a leaf tier 𝑡𝑗 and multiple tiers 𝑡1, . . . , 𝑡𝑗 are

connected together through a link list.

Q-gram Based Encrypted Codeword Dictionary for Fast Searches Over a Large Collection of Encrypted Unstructured Documents. pp 263-282

266

Malaysian Journal of Computer Science. Vol. 28(4), 2015

Let 𝑊 denotes the universe of words. If 𝑑 = (𝑤1 , . . . , 𝑤𝑚) ∈ 𝑊𝑛 is a document, then ∑𝑑 denotes its total

number of words and its bit length is |𝑑|.We also assume that 𝑑 is the document that has the distinct list of

words. We use {} to denote string concatenation. The data can be seen as a sequence of 𝑛documents 𝒅 =
 (𝑑1 , . . . , 𝑑𝑛), where document 𝑑𝑖 is a sequence of words (𝑤1 , . . . , 𝑤𝑚) from a universe 𝑊. We assume that each

document has a unique identifier𝐼 = (𝑑𝑖).

Let 𝑐 = (𝑐1, . . . , 𝑐𝑛) is a set of encryptions of the documents in 𝒅. If 𝑑 = (𝑤1 , . . . , 𝑤𝑚) ∈ 𝑊𝑛 then these

words are represented in equivalent secure form as codewords𝑑𝑐𝑤 = 𝑐𝑤1 , . . . , 𝑐𝑤𝑚 ∈ 𝑊𝑛 . The sequence of 𝑛

codeword documents is 𝒅𝒄𝒘 = (𝑑cw 1 , . . . , 𝑑𝑐𝑤𝑛). We define binary codeword as the converted form of

codeword in binary. We can delete or add or update document at any time as we are working with dynamic data

using codeword. Given a keyword 𝑤, its equivalent codeword is 𝑐𝑤. To add a document 𝑑, the client generates

an add codeword𝑐𝑤𝑎 and given 𝑐𝑤𝑎 and encrypted index 𝛾, the provider can update the encrypted index 𝛾.

Similarly, for the delete codeword𝑐𝑤𝑑 , document can be deleted from the database.

Definition 1 (Layers Indexing Scheme):Our construction consists of the following eleven algorithms:

𝐾 ← 𝐾𝑒𝑦𝐺𝑒𝑛(𝑠): Given the security parameter s, outputs the secret key 𝐾.

(𝑑𝑐𝑤 , 𝑐) ← 𝐷𝑜𝑐𝐸𝑛𝑐(𝐾, 𝑑): is an algorithm that takes as input secret key 𝐾, keywords in a document 𝑑. It

outputs the list of codewords in document 𝑑𝑐𝑤 , and a sequence of ciphertexts 𝑐.

𝛶 ← 𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥(𝑑𝑐𝑤): is an algorithm that takes as input the list of codewords in document 𝑑𝑐𝑤 . It outputs

the layers index 𝛶 that contains the list of codewords.

𝑐𝑤𝑠 ← 𝑆𝑟𝑐𝐶𝑜𝑑𝑒𝑤𝑜𝑟𝑑(𝐾, 𝑤): is an algorithm that takes as input a secret key 𝐾 and a keyword 𝑤. It outputs a

search codeword 𝑐𝑤𝑠 .

𝑛𝑜𝑑𝑒𝐴𝑑𝑑𝑐𝑤 ← 𝐴𝑑𝑑𝐶𝑜𝑑𝑒𝑤𝑜𝑟𝑑(𝑑𝑐𝑤 , 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝐼𝑛𝑑𝑒𝑥): is an algorithm that takes as input document 𝑑𝑐𝑤 that

contains list of codewords and the index number for a particular codeword. It outputs a node 𝑛𝑜𝑑𝑒𝐴𝑑𝑑𝑐𝑤 that

contains the (codeword, doc id, doc size) for addition.

𝑛𝑜𝑑𝑒𝐷𝑒𝑙𝑐𝑤 ← 𝐷𝑒𝑙𝐶𝑜𝑑𝑒𝑤𝑜𝑟𝑑(𝑑𝑐𝑤 , 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝐼𝑛𝑑𝑒𝑥): is an algorithm that takes as input document 𝑑𝑐𝑤 that

contains list of codewords and the index number for the codeword. It outputs a node 𝑛𝑜𝑑𝑒𝐷𝑒𝑙𝑐𝑤 that contains

the (codeword, doc id, doc size) for deletion.

𝐿𝑒𝑎𝑓𝑁𝑜𝑑𝑒 ← 𝑆𝑒𝑎𝑟𝑐(𝛶, 𝑐𝑤𝑠 , 𝑡𝑖𝑒𝑟𝐸𝑛𝑎𝑏𝑙𝑒, 𝑡𝑖𝑒𝑟𝐴𝑑𝑟𝑒𝑠𝑠): is a deterministic algorithm that takes as input an

encrypted layers index 𝛶, a search codeword 𝑐𝑤𝑠 , a leaf tier enable bit 𝑡𝑖𝑒𝑟𝐸𝑛𝑎𝑏𝑙𝑒, and the next tier

adddress𝑡𝑖𝑒𝑟𝐴𝑑𝑟𝑒𝑠𝑠 . It outputs a leaf tier node 𝐿𝑒𝑎𝑓𝑁𝑜𝑑𝑒.

𝑅𝑐𝑤 ← 𝑅𝑎𝑛𝑘(𝑛, 𝑑𝑓𝑤 , 𝑤𝑓𝑤 ,𝑑): is a deterministic algorithm that takes as input total number of documents in the

collection 𝑛,𝑑𝑓𝑤number of documents in the collection that contains the word 𝑤, 𝑤𝑓𝑤 ,𝑑 is the word frequency. It

outputs the ranking number of codeword𝑅𝑐𝑤 .

𝛶′ ← 𝐴𝑑𝑑(𝛶, 𝑅𝑐𝑤 , 𝑛𝑜𝑑𝑒𝐴𝑑𝑑𝑐𝑤): is a deterministic algorithm that takes as input an encrypted layers

index 𝛶,ranking number of codeword 𝑅𝑐𝑤 and a node 𝑛𝑜𝑑𝑒𝐴𝑑𝑑𝑐𝑤 that contains the (codeword, doc id, doc size)

for addition.It outputs new encrypted layers index 𝛶′ that contains the new list of codewords.

𝑛𝑜𝑑𝑒𝐷𝑒𝑙 ← 𝐷𝑒𝑙(𝛶, 𝑛𝑜𝑑𝑒𝐷𝑒𝑙𝑐𝑤): is a deterministic algorithm that takes as input an encrypted layers

index 𝛶 and a node 𝑛𝑜𝑑𝑒𝐷𝑒𝑙𝑐𝑤 that contains the (codeword, doc id, doc size) for deletion. It outputs a node

𝑛𝑜𝑑𝑒𝐷𝑒𝑙 that has the delete structure.

𝑑 ← 𝐷𝑒𝑐(𝐾, 𝑐): is an algorithm that takes as input secret key 𝐾and a ciphertext c and outputs a 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑.

A dynamic SSE scheme is correct for all keys generated by 𝐾𝑒𝑦𝐺𝑒𝑛(𝑠) for all 𝑑 for all (𝑑𝑐𝑤 , 𝑐) output by

𝐷𝑜𝑐𝐸𝑛𝑐(𝐾, 𝑑) and for all sequences of add, delete, update or search operations on Υ, search always return the

correct set of ranked documents.

Q-gram Based Encrypted Codeword Dictionary for Fast Searches Over a Large Collection of Encrypted Unstructured Documents. pp 263-282

267

Malaysian Journal of Computer Science. Vol. 28(4), 2015

Q-gram: A q-gram is a contiguous sequence of 'q' bytes from a given sequence of text. A q-gram of two means

that a consecutive sequence of two bytes, similarly, q-gram of sixteen means sixteen consecutive sequences of

sixteen bytes. Queries are solved by intersecting/joining the lists of q-gram occurrences depending on whether

the query pattern is longer/shorter than q. Q-gram also used for approximate searches.

Binary Codeword Collision: We transform the words into the equivalent binary codewords, and during this

transformation, there is a probability that the different words can transform into the same binary codeword. This

condition of transformation from multiple words into a single binary codewordis referred as collision.

Bloom filter: Bloom filter is a data structure that is used for fast set membership test that is stored as an array of

bits. All the bits of the array are initialized to zeros. Hashes are performed when words are added to the set.

The input to each hash function is the word that needed to be added and output from each hash function is the

bits to be added to the array that is different for each hash. After hashes are calculated, each bit in the filter at the

indexes specified by the hash outputs set to one. To test a word for membership, it is hashed using the same

algorithms and the resulting bits are checked against array bits to see if it's set to one. One problem is the

possibility of saturation of Bloom filter [1, 2]. In Bloom filter false positive can occur, when the bits specified

by the hash outputs are already set to one, even though the word was not added originally.

Ranking: The ranking functions are used in information retrieval to calculate the scores of documents against a

given client query. Most commonly used rule for relevance scoring is𝑤𝑓 ∗ 𝑖𝑑𝑓, where the 𝑤𝑓 (word frequency)

is the number of times words appear in a document and 𝑖𝑑𝑓 (inverse document frequency) is specified through

the total number of documents divided by the number of documents that contains the given word. Among

several hundred variations of 𝑤𝑓 ∗ 𝑖𝑑𝑓 no single combination can out performs the others [6]. So, we will use

the formula originally specified by Luhn [26, 27] and Spark Jones [28] that is specified for single word client

query searches in (see chapter 6 in [3]):

𝑤𝑓 − 𝑖𝑑𝑓𝑤 ,𝑑 = 𝑤𝑓𝑤 ,𝑑 ∗ 𝑙𝑜𝑔
𝑛

𝑑𝑓𝑤
 (1)

Where 𝑛 is the total number of documents, 𝑑𝑓𝑤number of documents in the collection that contains the word 𝑤,

𝑤𝑓𝑤 ,𝑑 is the word frequency. The above equation assigns to word 𝑤 a weight in document 𝑑.

Security: In Dynamic Symmetric Search Engine (DSSE), we are concerned with, firstly, given an encrypted

index 𝛾 and ciphertext 𝑐, no partial information is leaked to the adversary (server) for document 𝑑. Secondly,

given a set of adaptive sequence of keywords 𝑤1 , . . . , 𝑤𝑚 and corresponding codewords𝑐𝑤1 , . . . , 𝑐𝑤𝑚 , no partial

information is leaked to the adversary (server) for either document 𝑑 or keywords 𝑤 [17, 18]. We achieve

adaptive security without using the random oracle model because the server is not doing any decryption [31].

The two conditions mentioned provide ideal conditions for the DSSE construction, but realistically DSSE

scheme [14, 18, 19, 20, 24] leaks some limited information about messages and query to the adversary.

Therefore, we weaken our security definition and define a leakage function, we define leakage for DSSE

constructions using the definitions given in [17, 18, 14, 24] to determine what is being leaked for the ciphertext

and codeword:

Definition 2 𝐿𝑠𝑧 , 𝑛, 𝑠𝑧 ← 𝐿1(𝛶, 𝑑𝑐𝑤 , 𝒄): Given an index 𝛶 and set of ciphertext documents 𝑐 along with the list

of codewords in document 𝑑𝑐𝑤 , this function outputs the size of the layers indexing 𝐿𝑠𝑧 , total number of

ciphertext documents 𝑛 and size of each document 𝑠𝑧.

Definition 3 (𝑐𝑤𝑠 , 𝑎𝑝) ← 𝐿2(𝛶, 𝑑, 𝑤, 𝑡): During search phase we will reveal search pattern for a query keyword

𝑤. We will define leakage as given an index 𝛶 and set of ciphertexts 𝑐 for set of documents, codeword 𝑐𝑤 for a

keyword 𝑤 and time 𝑡, this function outputs the search pattern 𝑐𝑤𝑠 and access pattern 𝑎𝑝. Where search pattern

is the binary codeword at time 𝑡, for a query keyword 𝑤. Search pattern reveals that searches being performed

in past with same search pattern. Where access pattern reveals how we are accessing set of documents for a

keyword 𝑤, at time 𝑡.

Definition 4 (𝛶′) ← 𝐿3(𝑛𝑜𝑑𝑒𝐴𝑑𝑑𝑐𝑤 , 𝑛𝑜𝑑𝑒𝐷𝑒𝑙𝑐𝑤): During add or delete phase of the documents we will

reveal the codewords𝑐𝑤 that are being added, updated or deleted in Layers Indexing and the corresponding

ciphertext for these documents. We will define leakage as given a node 𝑛𝑜𝑑𝑒𝐴𝑑𝑑𝑐𝑤 for addition or a node

𝑛𝑜𝑑𝑒𝐷𝑒𝑙𝑐𝑤 for deletion in an index 𝛶 at a time 𝑡, this function outputs the new index 𝛶′ , Where node

(𝑛𝑜𝑑𝑒𝐴𝑑𝑑𝑐𝑤 , 𝑛𝑜𝑑𝑒𝐷𝑒𝑙𝑐𝑤) contains the (codeword, doc id, doc size).

Q-gram Based Encrypted Codeword Dictionary for Fast Searches Over a Large Collection of Encrypted Unstructured Documents. pp 263-282

268

Malaysian Journal of Computer Science. Vol. 28(4), 2015

We define security using the standard security definition that is described in the [24, 29]. We present the

scheme is secure in the semi-honest model where the adversary faithfully follows the given protocol:

Ideal world execution (𝑭, 𝑺): We will devise an experiment in the simulation environment. We will have a

client that sends an ideal functionality 𝐹 a "setup" message to an adversary (also referred to as simulator) S with

a Layers Indexing and set of ciphtertext for documents.

In each time-step, the client sends the search, addition or deletion operations to the adversary 𝑆. For search

operation client sends the search pattern 𝑐𝑤𝑠 for a corresponding keyword and the adversary 𝑆 sends back the

corresponding leaf tier node 𝐿𝑒𝑎𝑓𝑁𝑜𝑑𝑒. For addition or deletion operations, client sends the

𝑛𝑜𝑑𝑒𝐴𝑑𝑑𝑐𝑤 𝑜𝑟 𝑛𝑜𝑑𝑒𝐷𝑒𝑙𝑐𝑤 for a corresponding keyword 𝑤 at a time 𝑡 and the adversary 𝑆 adds or deletes the

corresponding codeword in the Layers Indexing. 𝐹notifies𝑆 of leakage 𝐿1, 𝐿2 and 𝐿3. Finally client outputs a

bit.

Real world execution(∏𝑭𝐴): We will devise an experiment in real environment. We will have a client that send

a "setup" message to an adversary 𝐴 with a Layers Indexing and set of ciphertext for documents.

In each time-step, the client sends the search, addition or deletion operations to the adversary 𝐴. For search

operation client send the search pattern 𝑐𝑤𝑠 for a corresponding keyword 𝑤 and the adversary 𝐴 sends back the

corresponding leaf tier node 𝐿𝑒𝑎𝑓𝑁𝑜𝑑𝑒. For addition or deletion operations, client sends the

𝑛𝑜𝑑𝑒𝐴𝑑𝑑𝑐𝑤 𝑜𝑟 𝑛𝑜𝑑𝑒𝐷𝑒𝑙𝑐𝑤 for a corresponding keyword 𝑤 at a time 𝑡 and the adversary 𝐴 adds or deletes the

corresponding codeword in the Layers Indexing. Finally client outputs a bit.

In probabilistic, polynomial-time semi-honest model a real-world adversary 𝐴, there exists a simulator S, such

that for all non-uniform, polynomial-time environments, there exists a negligible function 𝑛𝑒𝑔𝑙(𝜆) such that

[𝑃𝑟 𝑅𝑒𝑎𝑙∏𝐹 ,𝐴 𝜆 = 1 − 𝑃𝑟 𝐼𝑑𝑒𝑎𝑙𝐹 ,𝑆 𝜆 = 1 ≤ 𝑛𝑒𝑔𝑙 𝜆 (2)

The definition covers correctness and privacy. Correctness is covered because the ideal-world client either

receives the correct answer of the query, or receives an abort. Privacy is covered because the ideal-world

adversary has no knowledge of the client’s queries other than the leakages defined in 2, 3 and 4.

3.0 METHODOLOGY AND CONSTRUCTION

Q-gram Size Selection: The size of the q-gram is driven, based on underlying system requirements. The q-gram

size will mostly be driven by two factors namely, the size of the desired storage system and the collision

avoidance in the binary codewords. The most important factors of these two are the collision avoidance in

binary codeword.

Each extracted distinct word 𝑤𝑚 from document 𝑑 is converted to required q-gram word. If the keyword 𝑤𝑚 is

larger than the selected q-gram size than truncate the bytes that are larger than the required q-gram size.

However, if the keyword 𝑤𝑚 is smaller than the q-gram size than remaining bytes are zeros. In our construction,

the q-gram word is further converted into the codeword and then into the binary codeword.

The bigger size of binary codeword lowers the probability of collision in the binary codeword. If we choose, for

example, the q-gram size of thirty two bytes than we will have the binary codeword size of 256-bits that means

we have collision probability of one in every 2128 binary codeword. Using the q-gram of thirty two bytes also

provides several terabytes of storage that is suitable for most storage systems. We are focusing on the codeword

searches any codeword that is greater than thirty-two, q-grams will be truncated instead of using the multiple q-

grams for codewords.

Goh Algorithm Selection: Goh’s algorithm [15] is used to generate only the Layers Indexing and the documents

are encrypted using the CPA-secure private-key encryption scheme [Please refer to [30] for definition of CPA-

security].

Q-gram Based Encrypted Codeword Dictionary for Fast Searches Over a Large Collection of Encrypted Unstructured Documents. pp 263-282

269

Malaysian Journal of Computer Science. Vol. 28(4), 2015

Goh algorithm [15] was chosen because it is based on Hash function and Bloom filter. One of the requirements

of the Layer Indexing is to minimize the probability of collision (collision-resistance) to enhance overall in-

memory search performance. But the Goh’s algorithm has false positive and results in filter saturation for Bloom

Filter. Both of these shortcomings are minimized in the enhanced Goh Algorithm described below.

Bloom filters have the following property; the time needed to add a query word or to check whether a query

word is in the set is a fixed constant. In our enhanced Goh’s algorithm, we first check using the Bloom filter to

determine if the given query word is the member of Layers Indexing, if it is a member then we perform searches

on Layers Indexing that saves run time on queries that are not part of Layers Indexing.

Another application of Bloom filter is to perform wild card searches on Layers Indexing (paper [32] uses secure

keyword searches using Bloom filter with specified character positions). We would like to use the enhanced

algorithm for multi-word query searches. Let’s assume each codeword in our Layers Indexing contains three

query words and client can perform query of these three words in any permutation. To save these three

permutations in Layers Indexing, we will require nine codeword entries in our Layers Indexing but due to the

membership property of the Bloom filter, client need to store only one codeword in the Layers Indexing. The

client can determine which member of the query is present in the Layers Indexing through first checking

membership using Bloom filter and then can perform search for the codeword that is found in the Bloom filter.

Hence Bloom filters save both space and time for client queries.

Enhanced Goh Algorithm: The Goh algorithm [15] takes a private key 𝐾, a plaintext document 𝑑, a document

ID and returns a Bloom filter representing the document index. In the Goh algorithm, document is first split into

the set of plaintext words. Then the trapdoor is constructed for each plaintext word in the document using the

trapdoor algorithm. The trapdoor is a secure form of each plaintext word. A codeword is then constructed based

on the trapdoor after taking each trapdoor input and hash with the document ID. Finally codeword is added in

the Bloom filter that is representing the index. In the algorithm, document ID is used to stop two identical

documents to generate same index.

Goh algorithm [15] uses Bloom filter for every document. This will work fine for a small collection of

documents, where user can perform searches for a given client query over a set of Bloom filters to find out query

word belongs to a given collection. When the collection of document is large then usage of Bloom filter for a

document is not a viable solution. In a large collection of documents, the query search become difficult as we

have to find Bloom filter against a document and then construct query word based on a particular Bloom filter

for index searches.

The Goh algorithm is enhanced to construct index for codewords using layers indexing. We have improved the

Goh [15] algorithm to use a Bloom filter for a set of bytes. These filters are stored in the location pointed by

these set of bytes. Multiple Bloom filters utilization for the set of bytes also helps to minimize the probability of

filter saturation and false positives. We store, retrieve and utilize these filters using the first few bytes of the q-

gram word, called q-gram segmentation. To show an example, if we choose q-gram segmentation size of three

bytes to generate pointers for store, retrieve or utilize Bloom filters, this means we will have the 224Bloom filters

available to build secure index over a collection. These q-gram segmented pointers also used to generate

codeword from the trapdoor instead of using the document ID. In our enhanced version of the Goh algorithm,

we use the Bloom filter to find out that query word belongs to a collection. We do not use the Bloom filter to

represent the overall document index.

Methodology: Our index construction departs from existing dynamic index-based techniques for DSSE [14, 18,

19, 20, 24]that uses an inverted index data structure. Instead, it stores codewords on layers indexing that is

similar to hierarchical memory approach mentioned in ORAM [21].

In our index construction, we first extract distinct words 𝑤1 , . . . , 𝑤𝑚 ∈ 𝑊𝑛 after removal of stop and stemming

words from every document over a collection. These extracted words are in the form of tuples (word, doc ID,

identifying text, word frequency). The alphabetical word list is transformed using enhanced Goh algorithm into

the equivalent codeword list. This transformation procedure is repeated for all the documents in a collection.

The codeword tuples list from all documents are then merged. The codewords are alphabetically sorted and

same codewords are combined into a single codeword and there parameters are merged. Then these codewords

are converted into binary codewords. These binary codewords are the search patterns or addresses of q-gram

size, for example, if the selected q-gram size is 256-bit then the binary codeword address range is from 0to 2256 .

Q-gram Based Encrypted Codeword Dictionary for Fast Searches Over a Large Collection of Encrypted Unstructured Documents. pp 263-282

270

Malaysian Journal of Computer Science. Vol. 28(4), 2015

Disk

S1
…….

L1

S1
…………

L2

Sm

Sm

S1
…….

L1
Sm

In-memory(RAM)

Layer L1

Sorted list using

binary

codeword

Page ∑A

D1
…….

t1 Dm

t1 node

D1
…….

tj Dm

D1
…….

tj Dm

tj node

Similar nodes

also exists for

classes over

disk

Layer L2

D1
…….

t1 Dm

Sm = {starting offset of binary codeword, ending offset of binary

codeword, destination page address}

Sm = {binary codeword, collision, doc ID pointer, doc ID size}

Dm = {doc ID, encrypted document address, identifying text, word

frequency, delete, next doc tier address}

Disk

In-memory

Searches

Fig. 1: Layers Indexing Construction

We build the layers indexing using these binary codewords. The layers indexing is shown in Fig. 1. The design

goal for our construction is to perform in-memory index searches for layers and I/O leaf operation for rank list of

documents. Layers indexing consists of layers (𝑙1 , . . . , 𝑙𝑘) and leaf tiers (𝑡1, . . . , 𝑡𝑗). Layers (𝑙1 , . . . , 𝑙𝑘) are in the

external memory and leaf tiers 𝑡1, . . . , 𝑡𝑗 are in the disk. Optionally, client provides a key to a server to encrypt

the layers (𝑙1 , . . . , 𝑙𝑘) and the leaf tiers (𝑡1, . . . , 𝑡𝑗).

Layers (𝑙1 , . . . , 𝑙𝑘) have the sorted search pattern (binary codeword) and the destination address for the leaf tier.

Layers (𝑙1 , . . . , 𝑙𝑘) are formed using memory where the top layers nodes have the address ranges based on binary

codeword along with the destination pointer for a lower layer page and the bottom layer nodes have the binary

codeword and the destination pointer for a leaf tier page. Each layer is further divided into pages and layers are

built-in hierarchical fashion, bottom layer 𝑙1 pages are rolled up to layer 𝑙2 and 𝑙2 pages are rolled up to 𝑙3 until

we left with one page at the topmost layer.

Leaf tiers (𝑡1, . . . , 𝑡𝑗) are formed using the link list. Each leaf node has the set of rank structures that contains doc

ID, identifying text, word frequency, delete and the destination tier address. Leaf tiers (𝑡1, . . . , 𝑡𝑗) have the order

list of doc ID structures based on word frequency. All parameters are encrypted except the destination tier

address. During search operations, client sees the latency of tier 𝑡1fetch from disk, whereas remaining (𝑡2, . . . , 𝑡𝑗)

tiers latencies are hidden from the client as they are being pre-fetched while client is analyzing tier 𝑡1rank

outputs.

We can add or delete document at any time as we are working with dynamic data. The addition operation is

supported using the percentage of free space (spare area) in each page of layers (𝑙1 , . . . , 𝑙𝑘) and leaf tiers

Q-gram Based Encrypted Codeword Dictionary for Fast Searches Over a Large Collection of Encrypted Unstructured Documents. pp 263-282

271

Malaysian Journal of Computer Science. Vol. 28(4), 2015

(𝑡1, . . . , 𝑡𝑗). We provide an extra (encrypted) data structure 𝐴𝑠 called the storage array that the client can query to

keep track of which locations in 𝐴𝑠are free so that client can add new document and same array is used for new

space addition that results after deletion operation. The deletion operation is handled using the delete bit in the

leaf node. To avoid risk of running out of free space and for better memory utilization layers indexing are

periodically rebuild.

In another variant of our layers indexing scheme that is not discuss here, documents are categorized into different

classes and documents are ranked using class parameter. The documents are classified using the classification

algorithm such as Naive Bayes, KNN and others [3]. On a client query side, probabilistic information retrieval

algorithm is used to categorize the client query into a particular class. The client query and its classification is

used to retrieve the document from a subset of documents.

Construction: The index construction using the multiple Bloom filters for a document is given in Table 2:

Algorithm 1: To construct keys

𝑲 ← 𝑲𝒆𝒚𝑮𝒆𝒏(𝒔): Given a security parameter 𝑠, choose a pseudo-random function 𝑓 such as SHA-512, and using the

function generate the secret key 𝐾 = (𝑘1 , . . . , 𝑘𝑟). Where (𝑘1 , . . . , 𝑘𝑟) is the secret key 𝐾 split into multiple keys, for

example, set of 32 keys.

Algorithm 2: To construct codeword and ciphertext

(𝒅𝒄𝒘, 𝒄) ← 𝑫𝒐𝒄𝑬𝒏𝒄(𝑲, 𝒅):

1. Input document: Keywords are extracted from the document. All distinct key words are kept.

2. Sorting: Sort the list of keyword indexes in alphabetical order.

3. Construct q-gram: Construct the desire q-gram for a sorted word, using:

𝑖𝑓 𝑘𝑒𝑦𝑊𝑜𝑟𝑑𝑆𝑖𝑧𝑒 > 𝑞𝐺𝑟𝑎𝑚𝑆𝑖𝑧𝑒

 𝑛𝑒𝑤𝑊𝑜𝑟𝑑 ∶= 𝑤 >> 𝑘𝑒𝑦𝑊𝑜𝑟𝑑𝑆𝑖𝑧𝑒 − 𝑞𝐺𝑟𝑎𝑚𝑆𝑖𝑧𝑒 ;

𝑒𝑙𝑠𝑒𝑖𝑓 𝑘𝑒𝑦𝑊𝑜𝑟𝑑𝑆𝑖𝑧𝑒 < 𝑞𝐺𝑟𝑎𝑚𝑆𝑖𝑧𝑒

 𝑛𝑒𝑤𝑊𝑜𝑟𝑑 ∶= 𝑤𝑜𝑟𝑄𝐺𝑅𝐴𝑀𝑆𝑍_𝑍𝐸𝑅𝑂_𝐶;

4. Generate Pointers to Store or Retrieve Bloom Filters: Now, choose the q-gram size for word to generate pointers to

find the Bloom filter. Same pointer will be used to store the Bloom filter for each word. The Bloom filter found

using this pointer would be used to build codeword for that particular word. For example, if we choose q-gram

segmentation size of three bytes to generate pointers for store or retrieve Bloom filters that mean we will have the

224Bloom filters available to build secure index.

𝑞𝐺𝑟𝑎𝑚𝑃𝑜𝑖𝑛𝑡𝑒𝑟 ∶= 𝑛𝑒𝑤𝑊𝑜𝑟𝑑 >> (𝑞𝐺𝑟𝑎𝑚𝑆𝑖𝑧𝑒 − 𝑞𝐺𝑟𝑎𝑚𝑝𝑡𝑟𝑆𝑧);

5. Select Filter: Get the respective Bloom filter using the pointer generated in step 4. Bloom filter found for the word

will be used to build the codeword for that particular word.

𝑏𝐹𝑖𝑙𝑡𝑒𝑟: = 𝑟𝑒𝑎𝑑(𝑞𝐺𝑟𝑎𝑚𝑃𝑜𝑖𝑛𝑡𝑒𝑟)

6. Split Secret key: Split the secret key. For example, when key is generated from SHA-512 then split the key into 32

keys.

(𝑘1 , . . . , 𝑘𝑟) ← 𝐾;

7. Construct Trapdoor: Construct the trapdoor using the q-gram word, keys and a hash function 𝑓. For example, we are

using the 256-bit q-gram, and secret key is generated from SHA-512 that is further split into 32 subset keys, so we

can split the q-gram into 32-bytes where each byte is padded with zeros to desire length of subset keys

𝑡𝑟𝑎𝑝𝑑𝑜𝑜𝑟 ∶= 𝑆𝐻𝐴256({(𝑛𝑒𝑤𝑊𝑜𝑟𝑑𝐵𝑦𝑡𝑒1 𝑥𝑜𝑟 𝑘1), . . . , (𝑛𝑒𝑤𝑊𝑜𝑟𝑑𝐵𝑦𝑡𝑒16 𝑥𝑜𝑟 𝑘32)}) ;

8. Construct Codeword: A codeword is then constructed using the trapdoor. This simply takes each byte of trapdoor and

hashes it with the q-gram filter pointer.

𝑐𝑤 ∶= {𝑓𝑄𝑝𝑡𝑟 (𝑡𝑟𝑎𝑝𝑑𝑜𝑜𝑟𝐵𝑦𝑡𝑒1), … , 𝑓𝑄𝑝𝑡𝑟 (𝑡𝑟𝑎𝑝𝑑𝑜𝑜𝑟𝐵𝑦𝑡𝑒32) ;

9. Adding into Filter: The codeword can then be added to the Bloom filter.

𝑛𝑒𝑤𝐹𝑖𝑙𝑡𝑒𝑟 ∶= 𝑏𝐹𝑖𝑙𝑡𝑒𝑟 𝑐𝑤 ;

10. Store the Filter: Store the filter using the using the pointer.

Q-gram Based Encrypted Codeword Dictionary for Fast Searches Over a Large Collection of Encrypted Unstructured Documents. pp 263-282

272

Malaysian Journal of Computer Science. Vol. 28(4), 2015

𝑤𝑟𝑖𝑡𝑒 𝑞𝐺𝑟𝑎𝑚𝑃𝑜𝑖𝑛𝑡𝑒𝑟, 𝑛𝑒𝑤𝐹𝑖𝑙𝑡𝑒𝑟 ;

11. Output: Perform CPA-secure private-key encryption scheme on document to generate ciphertext𝑐. Repeat steps 4 to

10 for each word in the list and output the codeword 𝑑𝑐𝑤 document and ciphertext 𝑐.

Algorithm 3: To construct Layers Indexing

𝜰 ← 𝑩𝒖𝒊𝒍𝒅𝑰𝒏𝒅𝒆𝒙(𝒅𝒄𝒘):

1. Construct the master list: Using the sequence of codeword documents 𝑑 = (𝑑cw 1 , . . . , 𝑑𝑐𝑤𝑛) generated using the

𝐷𝑜𝑐𝐸𝑛𝑐 algorithm, construct the master list of codewords.

𝑐𝑜𝑢𝑛𝑡 ∶= 𝑡𝑜𝑡𝑎𝑙𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠;

 𝑤𝑖𝑙𝑒(𝑐𝑜𝑢𝑛𝑡)

𝑏𝑒𝑔𝑖𝑛

𝑛𝑒𝑤𝐹𝑖𝑙𝑒 ∶= 𝑟𝑒𝑎𝑑𝑁𝑒𝑥𝑡𝐷𝑜𝑐 𝑑𝑐𝑤 ;

𝑤𝑖𝑙𝑒(𝑛𝑒𝑤𝐹𝑖𝑙𝑒 ! = 𝑒𝑜𝑓)

𝑏𝑒𝑔𝑖𝑛

 𝑛𝑒𝑤𝐶𝑜𝑑𝑒𝑤𝑜𝑟𝑑 ∶= 𝑟𝑒𝑎𝑑𝐶𝑜𝑑𝑒𝑤𝑜𝑟𝑑(𝑛𝑒𝑤𝐹𝑖𝑙𝑒);

 𝑑𝑜𝑐𝐼𝑑 ∶= 𝑎𝑠𝑠𝑖𝑔𝑛𝐷𝑜𝑐𝐼𝑑(𝑛𝑒𝑤𝐹𝑖𝑙𝑒);

 𝑑𝑜𝑐𝑆𝑖𝑧𝑒 ∶= 𝑎𝑠𝑠𝑖𝑔𝑛𝐷𝑜𝑐𝑆𝑖𝑧𝑒(𝑛𝑒𝑤𝐹𝑖𝑙𝑒);

 𝑛𝑜𝑑𝑒𝐸𝑛𝑡𝑟𝑦 ∶= {𝑛𝑒𝑤𝐶𝑜𝑑𝑒𝑤𝑜𝑟𝑑, 𝑑𝑜𝑐𝐼𝑑, 𝑑𝑜𝑐𝑆𝑖𝑧𝑒};

𝑖𝑛𝑠𝑒𝑟𝑡𝑁𝑒𝑤𝑁𝑜𝑑𝑒𝑠(𝑛𝑒𝑤𝐷𝑜𝑐𝐹𝑖𝑙𝑒, 𝑛𝑜𝑑𝑒𝐸𝑛𝑡𝑟𝑦);

𝑒𝑛𝑑

𝑚𝑎𝑠𝑡𝑒𝑟𝐹𝑖𝑙𝑒𝐿𝑖𝑠𝑡 ∶= 𝑟𝑒𝑎𝑑𝐴𝑙𝑙𝐶𝑜𝑑𝑒𝑤𝑜𝑟𝑑 𝑛𝑒𝑤𝐷𝑜𝑐𝐹𝑖𝑙𝑒 ;

𝑐𝑜𝑢𝑛𝑡 − −;

𝑒𝑛𝑑

Each list item is made of these tuples (codeword, doc/class id, doc/class size).

2. Convert into binary code: Convert the codewords master file list into the equivalent binary codewords.

𝑚𝑎𝑠𝑡𝑒𝑟𝐵𝑖𝑛𝑎𝑟𝑦𝐹𝑖𝑙𝑒 ∶= 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑇𝑜𝐵𝑖𝑛𝑎𝑟𝑦(𝑚𝑎𝑠𝑡𝑒𝑟𝐹𝑖𝑙𝑒𝐿𝑖𝑠𝑡);

3. Sorting: Sort the codeword binary code. Each binary codeword is itself is the address.

𝑚𝑎𝑠𝑡𝑒𝑟𝐵𝑖𝑛𝑎𝑟𝑦𝐹𝑖𝑙𝑒 ∶= 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑇𝑜𝐵𝑖𝑛𝑎𝑟𝑦(𝑚𝑎𝑠𝑡𝑒𝑟𝐹𝑖𝑙𝑒𝐿𝑖𝑠𝑡);

a) If sorted list has the identical addresses, (collision) they will combine into the same address. Collision is

resolved either by user selection of result or intersection and joining multiple word queries.

4. Count: Count the sorted binary codeword.

𝑤𝑖𝑙𝑒(𝑚𝑎𝑠𝑡𝑒𝑟𝐵𝑖𝑛𝑎𝑟𝑦𝐹𝑖𝑙𝑒 ! = 𝑒𝑜𝑓)

 totalBinaryC𝑜𝑑𝑒𝑤𝑜𝑟𝑑 + +;

5. Construct the bottom layer: Using the sorted binary codeword, construct the list 𝐿𝑖 . The list is built in layers, see the

Fig. 1. The structure of the bottom layer (𝐿1) is (binary codeword, collision, doc ID/class pointer, doc ID/class size)

and shown in Fig. 1. Every page has multiple nodes (layer node) in it. These nodes are in the form of the array up to

the page size. Page size varies from 4KB to 64 MB and it will be a user defined constant.

𝑓𝑜𝑟 𝑖 = 0; 𝑖 ≤ totalBinaryC𝑜𝑑𝑒𝑤𝑜𝑟𝑑; 𝑖 + +

𝑏𝑒𝑔𝑖𝑛

𝑓𝑜𝑟 𝑗 = 0; 𝑗 ≤ 𝐿1𝑃𝐴𝐺𝐸𝑆𝐼𝑍𝐸_𝐶; 𝑗 + +

𝑝𝑎𝑔𝑒𝐿1[𝑖][𝑗] ∶= 𝑟𝑒𝑎𝑑𝑁𝑒𝑤𝑁𝑜𝑑𝑒(𝑚𝑎𝑠𝑡𝑒𝑟𝐹𝑖𝑙𝑒𝐿𝑖𝑠𝑡);

𝑒𝑛𝑑

a) Selected page size is dependent on multiple factors i.e., external memory size, number of client queries

supported at a time, the underlying storage system (non-volatile memory versus disk cylinders), number of

desired layers for pointer search and space requirements for lookup tables. The preference is to select the

smaller 𝐿1 page size (i.e., 4KB). As codeword is generated through random process and multiple client query

is also random so the concept of locality seldom exists.

b) The doc ID pointer that is used in above structure will point to doc ID structure, shown in Fig. 1. The structure

Q-gram Based Encrypted Codeword Dictionary for Fast Searches Over a Large Collection of Encrypted Unstructured Documents. pp 263-282

273

Malaysian Journal of Computer Science. Vol. 28(4), 2015

of doc ID node is (doc ID, encrypted document address, identifying text, word frequency, delete, next doc tier

address). There are multiple doc ID structures (say 10) in a node (leaf node) and every page has multiple

nodes in it. Multiple tiers of doc ID nodes exist in the form of a linked list, see the Fig. 1

c) If the classes are used (presently not describe in this paper) then the class pointer structure will be used. The

node structure of class ID is (class ID, class vector, class address offset, class size). In every page there will be

multiple nodes of these structures.

6. Construct the top layers: Pages will be added in the 𝐿1until the complete list of binary codeword reaches to the count

that is defined in step 4. When the next page is starte𝑑, 𝑤𝑒 will save the previous page q-gram starting and ending page

offsets in layer-2 (𝐿2) using the structure (starting offset of codeword, ending offset of codeword, destination codeword

page address). Where,

𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑂𝑓𝑓𝑠𝑒𝑡𝐶𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝑆𝑖𝑧𝑒 ∶= 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑜𝑑𝑒𝑤𝑜𝑟𝑑 ≫ 𝐿1𝑃𝐴𝐺𝐸𝑆𝐼𝑍𝐸_𝐶;

𝑒𝑛𝑑𝑖𝑛𝑔𝑖𝑛𝑔𝑂𝑓𝑓𝑠𝑒𝑡𝐶𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝑆𝑖𝑧𝑒 ∶= 𝑒𝑛𝑑𝑖𝑛𝑔𝑖𝑛𝑔𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑜𝑑𝑒𝑤𝑜𝑟𝑑 ≫ 𝐿1𝑃𝐴𝐺𝐸𝑆𝐼𝑍𝐸_𝐶;

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝑃𝑎𝑔𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑆𝑖𝑧𝑒 ∶= 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑃𝑎𝑔𝑒𝑠𝐼𝑛𝐿1;

7. Layers hierarchy and page size: Layers exists in hierarchical form, for example, 𝐿2 layer lies on the top of L1 layer, see

the Fig. 1. The 𝐿2 layer page size varies from 16MB to 512MB. Every node of 𝐿2 contains a pointer for 𝐿1 pages and

the structure for 𝐿2 is (starting offset of codeword, ending offset of codeword, destination codeword page address).

8. Repeat step 6 and step 7: Step 6 and step 7 continue until we reach to the count calculated in step 4. The process of

combining the multiple pages into the above layer is continued for upward layers until all the pointers will be summed

up in a single page. This means, for example, if 𝐿2 requires one page to define all the pages used in 𝐿1 then we will

stop at 𝐿2 and no further upward layers will be constructed.

Algorithm 4: To construct search pattern for a given keyword

𝒄𝒘𝒔 ← 𝑺𝒓𝒄𝒉𝑪𝒐𝒅𝒆𝒘𝒐𝒓𝒅(𝑲, 𝒘):

1. Construct q-gram: Using the client query we need to defined q-grams.

𝑖𝑓 𝑘𝑒𝑦𝑊𝑜𝑟𝑑𝑆𝑖𝑧𝑒 > 𝑞𝐺𝑟𝑎𝑚𝑆𝑖𝑧𝑒

 𝑛𝑒𝑤𝑊𝑜𝑟𝑑 ∶= 𝑤 >> 𝑘𝑒𝑦𝑊𝑜𝑟𝑑𝑆𝑖𝑧𝑒 − 𝑞𝐺𝑟𝑎𝑚𝑆𝑖𝑧𝑒 ;

𝑒𝑙𝑠𝑒𝑖𝑓 𝑘𝑒𝑦𝑊𝑜𝑟𝑑𝑆𝑖𝑧𝑒 < 𝑞𝐺𝑟𝑎𝑚𝑆𝑖𝑧𝑒

 𝑛𝑒𝑤𝑊𝑜𝑟𝑑 ∶= 𝑤𝑜𝑟𝑄𝐺𝑅𝐴𝑀𝑆𝑍_𝑍𝐸𝑅𝑂_𝐶;

2. Generate Pointers to Store or Retrieve Bloom Filters: Now, choose the q-gram size for word to generate pointers to

find the Bloom filter. Same pointer will be used to store the Bloom filter for each word. The Bloom filter found

using this pointer would be used to build codeword for that particular word. For example, if we choose q-gram

segmentation size of three bytes to generate pointers for store or retrieve Bloom filters that mean we will have the

224Bloom filters available to build secure index.

𝑞𝐺𝑟𝑎𝑚𝑃𝑜𝑖𝑛𝑡𝑒𝑟 ∶= 𝑛𝑒𝑤𝑊𝑜𝑟𝑑 >> (𝑞𝐺𝑟𝑎𝑚𝑆𝑖𝑧𝑒 − 𝑞𝐺𝑟𝑎𝑚𝑝𝑡𝑟𝑆𝑧);

3. Select Filter: Get the respective Bloom filter using the pointer generated in step 4. Bloom filter found for the word

will be used to build the codeword for that particular word.

𝑏𝐹𝑖𝑙𝑡𝑒𝑟: = 𝑟𝑒𝑎𝑑(𝑞𝐺𝑟𝑎𝑚𝑃𝑜𝑖𝑛𝑡𝑒𝑟)

4. Split Secret key: Split the secret key. For example, when key is generated from SHA-512 then split the key into 32

keys.

(𝑘1 , . . . , 𝑘𝑟) ← 𝐾;

5. Construct Trapdoor: Construct the trapdoor using the q-gram word, keys and a hash function 𝑓. For example, we are

using the 256-bit q-gram, and secret key is generated from SHA-512 that is further split into 32 subset keys, so we

can split the q-gram into 32-bytes where each byte is padded with zeros to desire length of subset keys

𝑡𝑟𝑎𝑝𝑑𝑜𝑜𝑟 ∶= 𝑆𝐻𝐴256({(𝑛𝑒𝑤𝑊𝑜𝑟𝑑𝐵𝑦𝑡𝑒1 𝑥𝑜𝑟 𝑘1), . . . , (𝑛𝑒𝑤𝑊𝑜𝑟𝑑𝐵𝑦𝑡𝑒32 𝑥𝑜𝑟 𝑘32)}) ;

6. Construct Codeword: A codeword is then constructed using the trapdoor. This simply takes each byte of trapdoor and

hashes it with the q-gram filter pointer.

𝑐𝑤 ∶= {𝑓𝑄𝑝𝑡𝑟 (𝑡𝑟𝑎𝑝𝑑𝑜𝑜𝑟𝐵𝑦𝑡𝑒1), … , 𝑓𝑄𝑝𝑡𝑟 (𝑡𝑟𝑎𝑝𝑑𝑜𝑜𝑟𝐵𝑦𝑡𝑒32) ;

Algorithm 5: To construct node for an addition operation

Q-gram Based Encrypted Codeword Dictionary for Fast Searches Over a Large Collection of Encrypted Unstructured Documents. pp 263-282

274

Malaysian Journal of Computer Science. Vol. 28(4), 2015

𝒏𝒐𝒅𝒆𝑨𝒅𝒅𝒄𝒘 ← 𝑨𝒅𝒅𝑪𝒐𝒅𝒆𝒘𝒐𝒓𝒅(𝒅𝒄𝒘, 𝒄𝒐𝒅𝒆𝒘𝒐𝒓𝒅𝑰𝒏𝒅𝒆𝒙):

1. Construct the node: Construct the node that has tuple (codeword, doc/class id, doc/class size)

𝑛𝑒𝑤𝐶𝑜𝑑𝑒𝑤𝑜𝑟𝑑 ∶= 𝑟𝑒𝑎𝑑𝑁𝑒𝑥𝑡𝐷𝑜𝑐 𝑑𝑐𝑤 , 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝐼𝑛𝑑𝑒𝑥 ;

𝑑𝑜𝑐𝐼𝑑 ∶= 𝑎𝑠𝑠𝑖𝑔𝑛𝐷𝑜𝑐𝐼𝑑(𝑑𝑐𝑤);

𝑑𝑜𝑐𝑆𝑖𝑧𝑒 ∶= 𝑎𝑠𝑠𝑖𝑔𝑛𝐷𝑜𝑐𝑆𝑖𝑧𝑒(𝑑𝑐𝑤);

𝑛𝑜𝑑𝑒𝐴𝑑𝑑𝑐𝑤 : = {𝑛𝑒𝑤𝐶𝑜𝑑𝑒𝑤𝑜𝑟𝑑, 𝑑𝑜𝑐𝐼𝑑, 𝑑𝑜𝑐𝑆𝑖𝑧𝑒};

2. Output: Output the 𝑛𝑜𝑑𝑒𝐴𝑑𝑑𝑐𝑤 .

Algorithm 6: To construct node for deletion operation

𝒏𝒐𝒅𝒆𝑫𝒆𝒍𝒄𝒘 ← 𝑫𝒆𝒍𝑪𝒐𝒅𝒆𝒘𝒐𝒓𝒅(𝒅𝒄𝒘, 𝒄𝒐𝒅𝒆𝒘𝒐𝒓𝒅𝑰𝒏𝒅𝒆𝒙):

1. Extract the codeword: Extract the codeword from a document

𝑐𝑤𝑑 ∶= 𝑟𝑒𝑎𝑑𝑁𝑒𝑥𝑡𝐷𝑜𝑐 𝑑𝑐𝑤 , 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝐼𝑛𝑑𝑒𝑥 ;

𝑑𝑜𝑐𝐼𝑑 ∶= 𝑎𝑠𝑠𝑖𝑔𝑛𝐷𝑜𝑐𝐼𝑑(𝑑𝑐𝑤);

𝑑𝑜𝑐𝑆𝑖𝑧𝑒 ∶= 𝑎𝑠𝑠𝑖𝑔𝑛𝐷𝑜𝑐𝑆𝑖𝑧𝑒(𝑑𝑐𝑤);

𝑛𝑜𝑑𝑒𝐷𝑒𝑙𝑐𝑤 : = {𝑛𝑒𝑤𝐶𝑜𝑑𝑒𝑤𝑜𝑟𝑑, 𝑑𝑜𝑐𝐼𝑑, 𝑑𝑜𝑐𝑆𝑖𝑧𝑒};

2. Output: Output the 𝑛𝑜𝑑𝑒𝐷𝑒𝑙𝑐𝑤

Algorithm 7: To perform searches on Layers Indexing

𝑳𝒆𝒂𝒇𝑵𝒐𝒅𝒆 ← 𝑺𝒆𝒂𝒓𝒄𝒉(𝜰, 𝒄𝒘𝒔, 𝒕𝒊𝒆𝒓𝑬𝒏𝒂𝒃𝒍𝒆, 𝒕𝒊𝒆𝒓𝑨𝒅𝒓𝒆𝒔𝒔):

1. If the tierEnablebit is set then goto step 5 otherwise continue from step 2.

2. Top layer search: Codeword𝑐𝑤𝑠search will start from the top most layer of the index 𝛶, for, example, layer 𝑙2. The

searches are performed using the interval halving method. The algorithm is given below:

a) Setup variable: Let 𝑎 ∶= 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑃𝑎𝑔𝑒 𝑂𝑓𝑓𝑠𝑒𝑡; 𝑏 ∶= 𝑒𝑛𝑑𝑖𝑛𝑔𝑃𝑎𝑔𝑒𝑂𝑓𝑓𝑠𝑒𝑡; 𝑠 ∶= 𝑛𝑜𝑑𝑒𝑆𝑖𝑧𝑒; 𝑥𝑚 = (𝑎 +

 𝑏)/(𝑠 ∗ 2);Where𝑥𝑚 is the page offset, 𝑓(𝑥1) is the codeword that needed to be searched.

b) Read the codeword: Read the address from the node pointed by 𝑥𝑚 . There will be two values for 𝑓(𝑥𝑚)

that is 𝑓(𝑥𝑚 − 𝑙𝑜𝑤) and𝑓(𝑥𝑚 − 𝑖𝑔), where 𝑓(𝑥𝑚 − 𝑙𝑜𝑤) is the starting offset of a codeword and

𝑓(𝑥𝑚 − 𝑖𝑔) is the ending offset of codeword.

c) Select the lower range: If 𝑓(𝑥1) < 𝑓(𝑥𝑚 − 𝑖𝑔) and 𝑓(𝑥1) does not lie in the range 𝑓(𝑥𝑚 − 𝑙𝑜𝑤, 𝑥𝑚 −

𝑖𝑔) then region cannot lie beyond𝑥𝑚 . Therefore, set 𝑎 ∶= 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑃𝑎𝑔𝑒 𝑂𝑓𝑓𝑠𝑒𝑡; 𝑏 ∶= 𝑥𝑚 ; else goto

step e

d) Select the upper range: If 𝑓(𝑥1) > 𝑓(𝑥𝑚) and 𝑓(𝑥1) does not lie in the range 𝑓(𝑥𝑚 − 𝑙𝑜𝑤, 𝑥𝑚 − 𝑖𝑔)

then region cannot lie lower then𝑥𝑚 . Therefore, set 𝑎 ∶= 𝑥𝑚 ; 𝑏 ∶= 𝑒𝑛𝑑𝑖𝑛𝑔 𝑝𝑎𝑔𝑒 𝑜𝑓𝑓𝑠𝑒𝑡; else goto step e

e) Result or repeat: If 𝑓(𝑥1) lie in the range 𝑓(𝑥𝑚 − 𝑙𝑜𝑤, 𝑥𝑚 − 𝑖𝑔) then terminate goto f else continue from

step a

f) Output: Address of the lower layer page, for example, layer-1.

3. Bottom layer search: Using the address found in 𝑠𝑡𝑒𝑝 1 repeat 𝑠𝑡𝑒𝑝 1𝑎 𝑡𝑜 1𝑓 for pointer of the doc Id 𝑡𝑖𝑒𝑟 1 page.

4. Read 𝑡𝑖𝑒𝑟 1 leaf node: Read the 𝑡𝑖𝑒𝑟 1 leaf node.

5. Output: Output the node based on leaf node found in step 4 or using the input tierAddress.

Algorithm 8: To perform addition or update on Layer Indexing

𝜰′ ← 𝑨𝒅𝒅 𝜰, 𝑅𝑐𝑤, 𝒏𝒐𝒅𝒆𝑨𝒅𝒅𝒄𝒘 :

1. Top layer search: Using codeword𝑐𝑤𝑎 from 𝑛𝑜𝑑𝑒𝐴𝑑𝑑𝑐𝑤 search starts from the top most layer of the index 𝛶, for,

example, layer 𝑙2. The searches are performed using the interval halving method. The algorithm is given below:

a) Setup variable: Let 𝑎 ∶= 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑃𝑎𝑔𝑒 𝑂𝑓𝑓𝑠𝑒𝑡; 𝑏 ∶= 𝑒𝑛𝑑𝑖𝑛𝑔𝑃𝑎𝑔𝑒𝑂𝑓𝑓𝑠𝑒𝑡; 𝑠 ∶= 𝑛𝑜𝑑𝑒𝑆𝑖𝑧𝑒; 𝑥𝑚 = (𝑎 +

 𝑏)/(𝑠 ∗ 2);Where𝑥𝑚 is the page offset, 𝑓(𝑥1) is the codeword that needed to be searched.

Q-gram Based Encrypted Codeword Dictionary for Fast Searches Over a Large Collection of Encrypted Unstructured Documents. pp 263-282

275

Malaysian Journal of Computer Science. Vol. 28(4), 2015

b) Read the codeword: Read the address from the node pointed by 𝑥𝑚 . There will be two values for 𝑓(𝑥𝑚)

that is 𝑓(𝑥𝑚 − 𝑙𝑜𝑤) and𝑓(𝑥𝑚 − 𝑖𝑔), where 𝑓(𝑥𝑚 − 𝑙𝑜𝑤) is the starting offset of a codeword and

𝑓(𝑥𝑚 − 𝑖𝑔) is the ending offset of codeword.

c) Select the lower range: If 𝑓(𝑥1) < 𝑓(𝑥𝑚 − 𝑖𝑔) and 𝑓(𝑥1) does not lie in the range 𝑓(𝑥𝑚 − 𝑙𝑜𝑤, 𝑥𝑚 −

𝑖𝑔) then region cannot lie beyond𝑥𝑚 . Therefore, set 𝑎 ∶= 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑃𝑎𝑔𝑒 𝑂𝑓𝑓𝑠𝑒𝑡; 𝑏 ∶= 𝑥𝑚 ; else goto

step e

d) Select the upper range: If 𝑓(𝑥1) > 𝑓(𝑥𝑚) and 𝑓(𝑥1) does not lie in the range 𝑓(𝑥𝑚 − 𝑙𝑜𝑤, 𝑥𝑚 − 𝑖𝑔)

then region cannot lie lower then𝑥𝑚 . Therefore, set 𝑎 ∶= 𝑥𝑚 ; 𝑏 ∶= 𝑒𝑛𝑑𝑖𝑛𝑔 𝑝𝑎𝑔𝑒 𝑜𝑓𝑓𝑠𝑒𝑡; else goto step e

e) Result or repeat: If 𝑓(𝑥1) lie in the range 𝑓(𝑥𝑚 − 𝑙𝑜𝑤, 𝑥𝑚 − 𝑖𝑔) then terminate goto f else continue from

step a

f) Output: Address of the lower layer page, for example, layer 𝑙1.

2. Bottom layer search: Using the address found in 𝑠𝑡𝑒𝑝 1 repeat 𝑠𝑡𝑒𝑝 1𝑎 𝑡𝑜 1𝑓 for codeword 𝑐𝑤𝑎 that needed to be

added or updated.

3. Page read: If the codeword𝑐𝑤𝑎 is found in the search address then goto step 5, otherwise using the address that is the

output of step 1 read rest of the page of layer 𝑙1.

4. Insert node and write back: Insert the 𝑛𝑜𝑑𝑒𝐴𝑑𝑑𝑐𝑤 node and write back the remaining page into the layer 𝑙1.

5. Update or addition on tier layers: Read all the leaf tier layers (𝑡1, . . . , 𝑡𝑗)one at a time and based on ranking number

of 𝑅𝑐𝑤 of codeword write back the leaf tier layers with updated or added leaf node.

6. Output: After insertion of new node in tier layers, the new index is 𝛶′

Algorithm 9: To perform deletion on Layers Indexing

𝒏𝒐𝒅𝒆𝑫𝒆𝒍 ← 𝑫𝒆𝒍(𝜰, 𝒏𝒐𝒅𝒆𝑫𝒆𝒍𝒄𝒘):

1. Top layer search: Using codeword𝑐𝑤𝑑 from node 𝑛𝑜𝑑𝑒𝐷𝑒𝑙𝑐𝑤 search starts from the top most layer of the index

𝛶, for, example, layer 𝑙2. The searches are performed using the interval halving method. The algorithm is given below:

g) Setup variable: Let 𝑎 ∶= 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑃𝑎𝑔𝑒 𝑂𝑓𝑓𝑠𝑒𝑡; 𝑏 ∶= 𝑒𝑛𝑑𝑖𝑛𝑔𝑃𝑎𝑔𝑒𝑂𝑓𝑓𝑠𝑒𝑡; 𝑠 ∶= 𝑛𝑜𝑑𝑒𝑆𝑖𝑧𝑒; 𝑥𝑚 = (𝑎 +

 𝑏)/(𝑠 ∗ 2);Where𝑥𝑚 is the page offset, 𝑓(𝑥1) is the codeword that needed to be searched.

h) Read the codeword: Read the address from the node pointed by 𝑥𝑚 . There will be two values for 𝑓(𝑥𝑚)

that is 𝑓(𝑥𝑚 − 𝑙𝑜𝑤) and𝑓(𝑥𝑚 − 𝑖𝑔), where 𝑓(𝑥𝑚 − 𝑙𝑜𝑤) is the starting offset of a codeword and

𝑓(𝑥𝑚 − 𝑖𝑔) is the ending offset of codeword.

i) Select the lower range: If 𝑓(𝑥1) < 𝑓(𝑥𝑚 − 𝑖𝑔) and 𝑓(𝑥1) does not lie in the range 𝑓(𝑥𝑚 − 𝑙𝑜𝑤, 𝑥𝑚 −

𝑖𝑔) then region cannot lie beyond𝑥𝑚 . Therefore, set 𝑎 ∶= 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑃𝑎𝑔𝑒 𝑂𝑓𝑓𝑠𝑒𝑡; 𝑏 ∶= 𝑥𝑚 ; else goto

step e

j) Select the upper range: If 𝑓(𝑥1) > 𝑓(𝑥𝑚) and 𝑓(𝑥1) does not lie in the range 𝑓(𝑥𝑚 − 𝑙𝑜𝑤, 𝑥𝑚 − 𝑖𝑔)

then region cannot lie lower then𝑥𝑚 . Therefore, set 𝑎 ∶= 𝑥𝑚 ; 𝑏 ∶= 𝑒𝑛𝑑𝑖𝑛𝑔 𝑝𝑎𝑔𝑒 𝑜𝑓𝑓𝑠𝑒𝑡; else goto step e

k) Result or repeat: If 𝑓(𝑥1) lie in the range 𝑓(𝑥𝑚 − 𝑙𝑜𝑤, 𝑥𝑚 − 𝑖𝑔) then terminate goto f else goto continue

from step a

l) Output: Address of the lower layer page, for example, layer 𝑙1.

2. Bottom layer search: Using the address found in 𝑠𝑡𝑒𝑝 1 repeat 𝑠𝑡𝑒𝑝 1𝑎 𝑡𝑜 1𝑓 for pointer of the doc Id 𝑡𝑖𝑒𝑟 1 page.

3. Search 𝑡𝑖𝑒𝑟 𝑛𝑜𝑑𝑒𝑠: Search the 𝑡𝑖𝑒𝑟 𝑛𝑜𝑑𝑒𝑠 and output the delete node.

Q-gram Based Encrypted Codeword Dictionary for Fast Searches Over a Large Collection of Encrypted Unstructured Documents. pp 263-282

276

Malaysian Journal of Computer Science. Vol. 28(4), 2015

{𝑡𝑖𝑒𝑟𝑃𝑎𝑔𝑒, 𝑑𝑜𝑐𝐼𝑑, 𝑑𝑜𝑐𝑆𝑖𝑧𝑒} ∶= 𝑛𝑜𝑑𝑒𝐷𝑒𝑙𝑐𝑤 ;

𝑤𝑖𝑙𝑒(𝑗 ! = 𝑑𝑜𝑐𝑆𝑖𝑧𝑒/𝑆𝑇𝑅𝑈𝐶𝑇𝑆𝑍_𝐶)

𝑏𝑒𝑔𝑖𝑛

𝑖 ∶= 0;

𝑛𝑒𝑤𝑁𝑜𝑑𝑒 ∶= 𝑟𝑒𝑎𝑑𝑁𝑜𝑑𝑒 𝑡𝑖𝑒𝑟𝑃𝑎𝑔𝑒 ;

𝑤𝑖𝑙𝑒(𝑖 ! = 𝑁𝑈𝑀𝑂𝐹𝑆𝑇𝑅𝑈𝐶_𝐶)

𝑏𝑒𝑔𝑖𝑛

𝑛𝑒𝑤𝑆𝑡𝑟𝑢𝑐 ∶= 𝑟𝑒𝑎𝑑𝑁𝑒𝑥𝑡𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑆𝑡𝑟𝑢𝑐(𝑛𝑒𝑤𝑁𝑜𝑑𝑒);

 𝑡𝐷𝑜𝑐𝐼𝑑, 𝑒𝑛𝑐𝐷𝑜𝑐𝐴𝑑𝑑𝑟𝑒𝑠𝑠, 𝑖𝑑𝑇𝑒𝑥𝑡, 𝑟𝑎𝑛𝑘𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑑𝑒𝑙, 𝑛𝑒𝑥𝑡𝐷𝑜𝑐𝑡𝑖𝑒𝑟𝐴𝑑𝑑𝑟𝑒𝑠𝑠 : = 𝑛𝑒𝑤𝑆𝑡𝑟𝑢𝑐 ;

𝑖𝑓 𝑑𝑜𝑐𝐼𝑑 == 𝑡𝐷𝑜𝑐𝐼𝑑

𝑏𝑒𝑔𝑖𝑛

𝑑𝑜𝑐𝐴𝑑𝑑𝑟𝑒𝑠𝑠 ∶= 𝑒𝑛𝑐𝐷𝑜𝑐𝐴𝑑𝑑𝑟𝑒𝑠𝑠;

 𝑡𝑖𝑒𝑟𝑃𝑎𝑔𝑒𝑆𝑎𝑣𝑒 ∶= 𝑡𝑖𝑒𝑟𝑃𝑎𝑔𝑒;

 𝑠𝑡𝑟𝑢𝑐𝑂𝑓𝑓𝑠𝑒𝑡 ∶= 𝑖;

 𝑠𝑡𝑟𝑢𝑐𝐹𝑜𝑢𝑛𝑑 ∶= 1;

 𝑛𝑜𝑑𝑒𝐷𝑒𝑙 ∶= {𝑡𝑖𝑒𝑟𝑃𝑎𝑔𝑒𝑆𝑎𝑣𝑒, 𝑑𝑜𝑐𝐴𝑑𝑑𝑟𝑒𝑠𝑠, 𝑠𝑡𝑟𝑢𝑐𝑂𝑓𝑓𝑠𝑒𝑡};

 𝑏𝑟𝑒𝑎𝑘;

𝑒𝑛𝑑

𝑖 ∶= 𝑖 + 1;

𝑒𝑛𝑑

𝑡𝑖𝑒𝑟𝑃𝑎𝑔𝑒 ∶= 𝑛𝑒𝑥𝑡𝐷𝑜𝑐𝑡𝑖𝑒𝑟𝐴𝑑𝑑𝑟𝑒𝑠𝑠;

𝑗 ∶= 𝑗 + 1;

𝑒𝑛𝑑

4. Output: Output the 𝑛𝑜𝑑𝑒𝐷𝑒𝑙.

Algorithm 10: To rank the documents for a keyword

𝑹𝒄𝒘 ← 𝑹𝒂𝒏𝒌(𝒏, 𝒅𝒇𝒕, 𝒕𝒇𝒕,𝒅): Calculate rank and output 𝑅𝑐𝑤 using 𝑡𝑓𝑡 ,𝑑 ∗ 𝑙𝑜𝑔 𝑛/𝑑𝑓𝑡 .

Algorithm 11: To de-cipher the document

𝐝 ← 𝐃𝐞𝐜(𝐊, 𝐜): Using CPA-secure private-key decryption scheme and a ciphertext c and outputs a document d.

Table 2: Dynamic SSE scheme using layers indexing

Theorem (Security): Layers Indexing scheme, is DSSE scheme that is based on eleven algorithms as given in

the Definition 1 is secure in semi-honest model. Consider the following probabilistic experiment,𝐴is an

adversary, 𝑆 is the Simulator and 𝐿1, 𝐿2 and 𝐿3 are the leakage algorithms as defined in Definition 2, 3 and 4.

We will simulate the functionality of the Layer Indexing scheme such that it performs interactions with a real-

world semi-honest Server 𝐴.

Proof: The proof involves in demonstrating that client interact with Simulator 𝑆 using the ideal functionality 𝐹

that can simulate the real world functionality ∏𝑭 with adversary 𝐴. This is achieved using the given leakages L1,

L2 and L3. Also, this is the adaptive nature of security such that the input to the clients at any time can be

influenced by the view of the server until that time.

 Simulating Building Index (𝛶):

We describe a simulator S that interacts with adversary A in an execution of an ideal world experiment using the

leakage definitions described in definition 2. Given the leakage 𝐿1 𝐿𝑠𝑧 , 𝑛, 𝑠𝑧 it constructs the 𝑐 and 𝛶 as

follows. It simulates using the simulator S, the cipher text documents 𝑐 = (𝑐1, . . . , 𝑐𝑛) and the sequence of

codeword in the documents 𝑑 = (𝑑cw 1 , . . . , 𝑑𝑐𝑤𝑛)together with number files n and size of the each file that are

described in the leakage function 𝐿1. To simulate the Layers Indexing 𝛶 using the sequence of codeword

documents d = (dcw 1 , . . . , dcwn) generated using the DocEnc algorithm construct the master list of codewords.

Each list item in the master list is made of these tuples (codeword, doc/class id, doc/class size). Simulator then

converts every codeword into equivalent binary codewords and performs sorting on binary codewords.

Simulator counts the total number of binary codewords to build multiple layers.

Q-gram Based Encrypted Codeword Dictionary for Fast Searches Over a Large Collection of Encrypted Unstructured Documents. pp 263-282

277

Malaysian Journal of Computer Science. Vol. 28(4), 2015

Simulator starts building the Layers Indexing from the bottom layer. Each layer has the multiple pages in it

where each page consists of nodes in the form of the array. Each node in a page has these tuples (binary

codeword, collision, doc ID/class pointer, doc ID/class size). Pages will be added in the bottom layer 𝐿1until the

complete list of binary codeword reaches to the total count. While building each page in the bottom layer 𝐿1, the

simulator saves the previous page q-gram starting and ending page offsets in layer-2 (𝐿2) using the structure

(starting offset of codeword, ending offset of codeword, destination codeword page address). The process of

combining the multiple pages into the above layer is continued for upward layers until all the pointers will be

summed up in a single page. Finally, the simulator outputs the layers indexing Υ to the adversary.

 Simulating Search (𝐿𝑒𝑎𝑓𝑁𝑜𝑑𝑒):

Simulator simulates the search pattern 𝑐𝑤𝑠 for given keyword and Key 𝐾. Simulator performs searches for the

codeword𝑐𝑤𝑠in the Layers Indexing 𝛶. There are two cases as Layers Indexing 𝛶arranges the rank documents in

multiple tiers, at the beginning of search 𝑡𝑖𝑒𝑟𝐸𝑛𝑎𝑏𝑙𝑒 bit de-assertedso that𝑡𝑖𝑒𝑟𝐴𝑑𝑟𝑒𝑠𝑠 is not utilized. Simulator

starts the search pattern 𝑐𝑤𝑠 searches from the topmost layer of the Layer Indexing 𝛶, for example, layer 𝑙2.

Simulator performs searches using interval halving method. Simulator first finds the address range for 𝑐𝑤𝑠in

layer 𝑙2 and then simulator further performs searches on the destination layer 𝑙1page. The address found in layer

𝑙1page for leaf tier 𝑡1 is used to output 𝐿𝑒𝑎𝑓𝑁𝑜𝑑𝑒 that contains all the structures for tier 𝑡1 node. After sending

the first output of the searches, simulator is busy in pre-fetching the next list of rank outputs from the next leaf

node where 𝑡𝑖𝑒𝑟𝐸𝑛𝑎𝑏𝑙𝑒 bit is asserted and the 𝑡𝑖𝑒𝑟𝐴𝑑𝑟𝑒𝑠𝑠 is set from the next doc tier address.

 Simulating Addition (𝛶′):

Suppose now the simulator wishes to add a document 𝑑 containing the keyword 𝑤 in the Layers Indexing 𝛶.

There are two cases, firstly the keyword is not present in the Layers Indexing 𝛶, and this case is not discussed to

save space. Secondly, given keyword 𝑤 already exists in the Layers Indexing 𝛶. Simulator adds the new

document structure in the leaf tier layers (𝑡1, . . . , 𝑡𝑗)based on ranking 𝑅𝑐𝑤 . To add a document that has the single

keyword, simulator first call 𝐷𝑜𝑐𝐸𝑛𝑐(𝐾, 𝑑) to get codeword 𝑐𝑤. Simulator then using 𝑛𝑜𝑑𝑒𝐴𝑑𝑑𝑐𝑤 generates the

layer node that needs to be inserted in the layer 𝑙1. Simulator then adds the leaf node in leaf tier layers

(𝑡1, . . . , 𝑡𝑗). The leaf node has the storage location pointer to store document 𝑑 in the storage array. This pointer

is calculated from the storage array 𝐴𝑠.

 Simulating Deletion (𝑛𝑜𝑑𝑒𝐷𝑒𝑙):

Suppose now the simulator delete a document 𝑑 containing the keyword 𝑤 from the Layers Indexing 𝛶. Let's

assume that there are several documents exist for keyword 𝑤 for a corresponding codeword 𝑐𝑤. Simulator

deletes the document 𝑑 from the leaf tier layers (𝑡1, . . . , 𝑡𝑗). To delete a document that has the single keyword,

simulator first call 𝐷𝑜𝑐𝐸𝑛𝑐(𝐾, 𝑑) to get the codeword 𝑐𝑤. Simulator using 𝒏𝒐𝒅𝒆𝑫𝒆𝒍𝒄𝒘 searches the leaf node

that is deleted from the leaf tiers. Simulator then deletes a leaf node from a respective leaf tier layers (𝑡1, . . . , 𝑡𝑗).

Finally, simulator mark up the bit in the storage array 𝐴𝑠 to represent it as a free storage space.

 Simulating Ranking (𝑅𝑐𝑤):

Simulator calculates rank and output 𝑅𝑐𝑤 using 𝑡𝑓𝑡 ,𝑑 ∗ 𝑙𝑜𝑔 𝑛/𝑑𝑓𝑡 .

It is important to show that ciphertext documents from a Real (∏𝑭𝐴) and from an Ideal (𝑭, 𝑺) experiment are

negligibly close. This is because, the keys used are indistinguishable from real keys since they are constructed

pseudo-random function 𝑓 such as SHA-512, which is indistinguishable. Therefore, the CPA-security guarantees

that adversary cannot distinguish between the real and simulated encryptions of the documents. This concludes

our proof.

Theorem 2 (search time): Let 𝑊 denotes the universe of words. If 𝑑 = (𝑤1 , . . . , 𝑤𝑚) ∈ 𝑊𝑛 then these words

are represented in equivalent secure form as codeword𝑑𝑐𝑤 = 𝑐𝑤1 , . . . , 𝑐𝑤𝑚 ∈ . Then dynamic hierarchical

Layers Indexing exists for query searches such that the search time for the codeword is 𝑂(𝑙𝑜𝑔 𝒲/𝔜 , 𝑛 is the

size of the document collection, 𝒲 = ∑𝔴 number of words in 𝑛 collection of documents and 𝔜 is the number of

nodes in a page.

Proof: As we have discussed before our Layers Indexing 𝛶defined as:

i. If 𝑙 is the list then 𝑙𝑘 denotes total number of layers that contains the list.

Q-gram Based Encrypted Codeword Dictionary for Fast Searches Over a Large Collection of Encrypted Unstructured Documents. pp 263-282

278

Malaysian Journal of Computer Science. Vol. 28(4), 2015

ii. The array is presented through 𝐴 and total number of cells in the array is presented through∑𝐴. A

Layers Indexing𝛶 consists of multiple layers (𝑙1 , . . . , 𝑙𝑘) and leaf tiers(𝑡1, . . . , 𝑡𝑗). Layers (𝑙1 , . . . , 𝑙𝑘) are

in the external memory and leaf tiers 𝑡1, . . . , 𝑡𝑗 are in the disk.

iii. Each layer of (𝑙1, . . . , 𝑙𝑘) is made of multiple pages, where each page size is equal to the array size∑𝐴.

iv. We further define a layer node in a page that store structure at location i ∈ [∑𝐴] is 𝐴[𝑖] and 𝐴 𝑖 ∶= 𝑠

represent the operation that stores 𝑠 at location 𝑖 in 𝐴.

v. 𝔜is the number of nodes in a page.

We are using the Interval Having Method within page so its search complexity in literature [3] defined as O(log

W) and as we divided the memory into pages where each page has 𝔜 number of nodes therefore our search

complexity becomes O(log (W/ 𝔜). The searches are performed in memory in parallel time and if P denote the

number of processors to perform searches then overall search complexity become O(1/P log(W/ 𝔜). This

completes the proof.

4.0 ARCHITECTURE, ANALYSIS AND PERFORMANCE RESULTS

Architecture: The system level architecture for the proposed Layers Indexing is as shown in the Fig. 2. The

client side supports multi-user environment that communicate with the cloud servers. The cloud servers use the

Layers Indexing consists of multiple layers (𝑙1, . . . , 𝑙𝑘)that are divided over many servers to accommodate

address space in the server memories. This is possible because our scheme uses sorted linear address space with

free space for addition operations. These servers then communicate over the LAN with the storage nodes that

has leaf tiers (𝑡1, . . . , 𝑡𝑗).

Cloud

Client

Client

Client

Server
Server

Server
Server

Server
Server

Server
Server

Node

Node

Node

Node

Layers Indexing

(layers nodes in

RAM)

Storage

Cluster of nodes

Server
Server

Server
Server

Node

Node

Liner Addressing

A0 -An

An+1 – An+m

…..

Ax – Ax+h

Fig. 2: System Level Architecture

Analysis parameters: The analysis is performed for layers indexing scheme against real data sets to see how

many memory layers are required, the number of blade server with memory and storage nodes required and to

verify that overall search time performance is consistent with 𝑂(1/𝑝 log(𝒲/ 𝔜). To achieve this, we have used

the collection statistics from Reuters-RCV1collection [3] and very large collection [3]. The Reuters-RCV1

collection has 800,000 documents with average number of tokens per document of 200. The average byte per

token without spaces or punctuation is 7.5 bytes. The number of distinct words in the collection is 400,000.

This results in 80 million codewords for our searches. The very large collection has the 1,000,000,000 documents

with average token per document of 1,000. The number of distinct words in the collection is 44,000,000. This

results in 44 billion codewords for our searches. The document storage requirement for large size collection is

10 TB (rounded to next number). We further assume that for large collection, we have 200 documents for every

codeword to rank. We are using 100 B for each tier structure in the leaf node, this gives us the overall leaf tiers

(𝑡1, . . . , 𝑡𝑗)space of 890 TB. To further analyze our layers indexing scheme, we define the intermediate

collection that has the 900 million codewords for searches.

In today's computing servers have up to 768 GB of DDR3 memory using the LRDIMM. Our scheme analysis is

based on the Blade server with 512 GB of DDR3-2000 memory and 1 TB of disk. The Blade server uses the

Intel Xeon processor with 20M cache and the 3.1 GHz CPU clock.

Q-gram Based Encrypted Codeword Dictionary for Fast Searches Over a Large Collection of Encrypted Unstructured Documents. pp 263-282

279

Malaysian Journal of Computer Science. Vol. 28(4), 2015

Table 3: Memory Layers and Storage Nodes

Number of

documents

(Millions)

Codewords

(Millions)

Node

Size

(Bytes)

Overall

memory size

with 20 %

free space

(GB)

Memory

layers

(64 MB

Page)

Blade

server

with 512

GB

memory

Number of

storage

nodes (1 TB)

0.8 80 32 96 2 1

0.8 80 40 120 2 1

0.8 80 48 144 2 1

9 900 32 1080 3 1

9 900 40 1350 3 2

9 900 48 1620 3 3

1000 44000 32 52800 3 104 890

1000 44000 40 66000 3 129 890

1000 44000 48 79200 3 155 890

Fig. 3: Search Time versus Memory Size

Analysis: Table 3 shows the analysis for our in-memory layers indexing using the page size of 64 MB for all

memory layers. The memory page sizes can vary from 4MB to 64MB. We analyze the layers indexing against

three layer node sizes 32B, 40B and 48B to see its effect on memory layers for index construction. We use the

20% free space for additions or updates to support dynamic operations. We concluded that layers indexing

memory layers increases from two to three, when the number of codeword increases from 80 million to 44

billion.

Secondly, we are interested in the implementation of our scheme using the Blade server, as shown in table 3 that

number of storage nodes and Blade server required for our in-memory layers indexing. Our scheme for 32B

node size uses 52 Blade servers and 890 nodes for storage using 1 TB disk. In scenario's, where construction

requires multiple Blade servers, dictionary address space is divided across servers, see Fig 2. This is possible

because our scheme uses sorted linear address space with free space for addition operations.

Thirdly, we perform the analysis to see the impact of collection sizes against the search time. Table 1 shows

overall search time 𝑂(1/𝑝 log(𝒲/ 𝔜)in multi-processor environment. Now, we look more closely to search

time using the system parameters specified for analysis. We have this equation for 64 MB pages:

𝑇𝑠 = 𝑙𝑘 ∗ (15 ∗ 𝑇𝑐 + 8 ∗ 𝑇𝑚𝑎𝑣𝑔) + 𝑇𝑑𝑎𝑐𝑐𝑠 (3)

0

50

100

150

200

0 20000 40000 60000 80000 100000

Time (uS)

Storage size (GB)

Search Time vs Memory Size

seacrh time

Q-gram Based Encrypted Codeword Dictionary for Fast Searches Over a Large Collection of Encrypted Unstructured Documents. pp 263-282

280

Malaysian Journal of Computer Science. Vol. 28(4), 2015

Where 𝑇𝑠 is the overall search time using the scheme described in Table 2, 𝑇𝑐 is the CPU cycle time using cache,

𝑙𝑘 is the number of layers used in layers indexing, 𝑇𝑚𝑎𝑣𝑔 is the average access time for DDR3 memory and the

𝑇𝑑𝑎𝑐𝑐𝑠 is the disk access time for leaf layer. We are using 256 KB blocks for CPU processing. We have plotted

search times against the memory sizes in Fig. 3.

5.0 CONCLUSIONS

In this paper, we provided DSSE scheme to enable fast searches and to perform searches over large collections of

unstructured documents. We have provided hierarchical in-memoryLayersIndexing dictionary construction

scheme for fast rank searches over encrypted unstructured documents.

REFERENCES

[1] MadihaWaris, Dr. Shoab Ahmad Khan, "Indexing of unstructured data for searchable encryption in

 cloud environment", Accepted in IEEE Technically Cosponsored Science and Information Conference

 2013, London (To be held 7-9 October, 2013)

[2] Muhammad Zaman Fakhar, Dr. Shoab Ahmad Khan, MadihaWaris, " position based sentence search

 for encrypted unstructured data in a cloud environment", Proceedings of International Conference on

 Cloud Computing and eGovernance 2013

[3] Christopher D. Manning, PrabhakarRaghavan and HinrichSchütze, "Introduction to Information

 Retrieval", Cambridge University Press. 2008

[4] Ferragina, Paolo, and RossanoVenturini. "The Compressed Permuterm Index", ACM Transactions on

 Algorithms (TALG), 7.1 (2010): 1-21

[5] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM,

 13(7):422-426, 1970

[6] C. Wang, N. Cao, K Ren and W. Lou, "Enabling secure and Efficient Ranked Keyword Search over

 Outsourced Cloud Data", IEEE Transactions on Parallel and Distributed Systems, Vol. 23, No. 8,

 August 2012

[7] Zittrower, S., Zou, C.C., "Encrypted Phrase Searching in the Cloud", Global Communications

 Conference (GLOBECOM), 764-770, December 2012

[8] Burden, Richard L. Faires, J. Douglas (1985), "2.1 The Bisection Algorithm", Numerical Analysis (3rd

 ed.), PWS Publishers, ISBN 0-87150-857-5

[9] Prosenjit Bose,Karim Douïeb, Stefan Langerman, "Dynamic optimality for skip lists and B-

 trees", Proceeding 19th Annual ACM-SIAM Symposium on Discrete Algorithms, 1106–1114, 2008

[10] Paolo Ferragina, Rodrigo Gonza´ lez, Gonzalo Navarro, RossanoVenturini, "Compressed Text

 Indexes: From Theory to Practice", ACM Journal of Experimental Algorithmic, Vol. 13 Article 1.12,

 December 2008

[11] Manber, U. Andwu, S., "Glimpse: a tool to search through entire file systems", In Proceedings of the

 USENIX Winter 1994 Technical Conference. USENIX Association, 4–4

[12] Ricardo Baeza-Yates, Gonzalo Navarro, "Block addressing indices for approximate text retrieval",

 CIKM '97 Proceedings of the sixth international conference on Information and knowledge management

[13] P. Ferragina, R. Grossi., "The String B-tree: a new data structure for string search in external memory

 and its applications", Journal of the ACM, 46(2): 236-280, 1999

Q-gram Based Encrypted Codeword Dictionary for Fast Searches Over a Large Collection of Encrypted Unstructured Documents. pp 263-282

281

Malaysian Journal of Computer Science. Vol. 28(4), 2015

[14] D. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on encrypted data”, in Proc. of

 S&P, 2000.

[15] E.-J. Goh, “Secure indexes”, Cryptology ePrint Archive, 2003, http://eprint.iacr.org/2003/216.

[16] M. A. Shayegan, S. Aghabozorgi, and R. G. Raj, “A Novel Two-Stage Spectrum-Based Approach for

Dimensionality Reduction: A Case Study on the Recognition of Handwritten Numerals,” Journal of

Applied Mathematics, vol. 2014, Article ID 654787, 14 pages, 2014. doi:10.1155/2014/654787.

[17] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric encryption: improved

 definitions and efficient constructions", in Proc. of ACM CCS, 2006.

[18] S. Kamara and C. Papamanthou, "Parallel and dynamic searchable symmetric encryption", in Financial

 Cryptography (FC), 2013.

[19] S. Kamara, C. Papamanthou, and T. Roeder, "Dynamic searchable symmetric encryption", in ACM

 Conference on Computer and Communications Security, pages 965–976, 2012.

[20] P. van Liesdonk, S. Sedghi, J. Doumen, P. H. Hartel, and W. Jonker, "Computationally efficient

 searchable symmetric encryption", in Secure Data Management, pages 87–100, 2010.

[21] O. Goldreich and R. Ostrovsky, "Software protection and simulation on oblivious RAMs", J. ACM,

 1996.

[22] Moohebat, M., Raj, R.G. , Kareem, S.B.A., Thorleuchter, D., “Identifying ISI-indexed articles by their

lexical usage: A text analysis approach”, Journal of the Association for Information Science and

Technology, Vol. 66, No. 3, pp. 501–511. doi: 10.1002/asi.23194.

[23] K. Kurosawa and Y. Ohtaki, "UC-secure searchable symmetric encryption", in Financial Cryptography

 (FC), pages 285–298, 2012.

[24] Practical Dynamic Searchable Symmetric Encryption with Small Leakage,

 "Emil Stefanov, Charalampos Papamanthou, and Elaine Shi", in Network and Distributed System

 Security Symposium (NDSS), 2014.

[25] AshwinSwaminathan, Yinian Mao, Guan-Ming Su, Hongmei Gou, Avinash L. Varna, Shan He, Min Wu,

and Douglas W. Oard, "Confidentiality-preserving rank-ordered search", In StorageSS ’07:Proceedings of the

2007 ACM workshop on Storage security and survivability, pages 7–12, New York,NY, USA, 2007. ACM.

[26] Luhn, Hans Peter., “A statistical approach to mechanized encoding and searching of literary

 information.”, IBM Journal of Research and Development 1(4):309–317. 133, 527 1957

[27] Luhn, Hans Peter.. “The automatic creation of literature abstracts”, IBM Journal of Research and

 Development 2(2):159–165, 317. 133, 527 1958

[28] Spärck Jones, Karen, “A statistical interpretation of term specificity and its application in retrieval”,

 Journal of Documentation 28(1):11–21. 133, 525, 1972

[29] O. Goldreich, “Foundations of Cryptography: Volume 2, Basic Applications”, Cambridge University

 Press, New York, NY, USA, 2004.

[30] J. Katz and Y. Lindell, “Introduction to Modern Cryptography”, Chapman & Hall/CRC, 2008

[31] M. Naveed, M. Prabhakaran and C. A. Gunter, "Dynamic searchable encryption via blind storage", Proc.

 IEEE Symp. Secur. Privacy, pp.639 -654

Q-gram Based Encrypted Codeword Dictionary for Fast Searches Over a Large Collection of Encrypted Unstructured Documents. pp 263-282

282

Malaysian Journal of Computer Science. Vol. 28(4), 2015

[32] T. Suga, T. Nishide, and K. Sakurai, "Secure keyword search using bloom filter with specified character

 positions," in Provable Security, ser. Lecture Notes in Computer Science, T. Takagi, G. Wang, Z. Qin, S.

 Jiang, and Y. Yu, Eds. Springer Berlin Heidelberg, 2012, vol. 7496, pp. 235-252

	OLE_LINK1
	OLE_LINK5
	OLE_LINK6

