
Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

156
Malaysian Journal of Computer Science. Vol. 29(3), 2016

ANALYSIS OF DYNAMIC WEB SERVICES: TOWARDS EFFICIENT DISCOVERY IN CLOUD
 Faisal Ahmad 1 and Anirban Sarkar 2

1 Tata Consultancy Services Limited, Edison, NJ, USA, 08837
2 National Institute of Technology, Durgapur, India, 713209

 Email: 1faisal.nitdgp@gmail.com, 2sarkar.anirban@gmail.com

ABSTRACT
Web services are very dynamic as they can be added, modified and deleted from the repository on the fly.
Discovering web services for service composition have special requirements. In the service composition, service
requirement is not only to satisfy its functional specification but it also needs to ensure that the selected
composing services are compatible with respect to their input/output structure and its associated data types.
Web Service community [1] organized the functionally similar services together in a group. But one important
drawback of using web service community in the service composition is that it requires further analysis of the
discovered service communities for selecting appropriate service which can be composed based on its
input/output structure and data types. This paper proposes data structures, which can be used to create web
service family [2] by filtering not only on the basis of functionality but also on the basis of its input/output
structure, which are required for composing services with one another. In order to speed up the web service
family creation process, the creation of web service family is divided in two phases. The first phase of the
proposed approach introduces a novel concept of business family and dynamic business web service (DBWS)
tree, which are used to organize all web services in the tree structure on the basis of their business context and
input/output structure. In the second phase, the concept of DBWS tree is used further to create the web service
families. The DBWS resembles the classification and organization of businesses in NAICS. The DBWS tree can
be used very efficiently for creating web service families, which in turn can be used for selecting service
efficiently in service composition.
Keywords: Web Services, Service Discovery, Web Service Composition, Web Service Orchestration, Dynamic
Web Services, Repository, Web Service Community, Data Structure
1.0 INTRODUCTION

Web services describe a standardized way of integrating Web-based applications. In recent days, the use of web
services has dramatically increased due to the easiness, interoperability, and flexibility that web services offer to
the software systems, which other software structures don't support or support poorly. The web services are
composed to implements complex business requirements. In service composition more than one web services
are glued together to achieve a new functionality. The process of service composition can be separated into the
following tasks: (i) Requirements analysis and specification, (ii) Abstract designing, (iii) Formal representation
(iv) validation (v) Execution. These steps are implemented manually [3, 4] or automatically [5, 6, 7]. In most of
the approaches, web service composition design is represented graphically at a high level with help of an
abstract representation of web services like web service family [2] or community of services [1]. These abstract
representation of web service based business processes are further converted to formal languages, which are
finally executed with help of execution engines [1, 3, 17].

Service discovery is a significant activity in service composition process. Efficient discovery plays a crucial role
in decreasing service composition time. Although existing discovery techniques have produced promising
results that are certainly useful, they may not very well aligned with the specific needs of web service
composition. In most of the discovery approaches the focus is given to search web services based on only
functional requirements. The concept of service community [1] is used as a solution to the problem of
composing a potentially large number of dynamic Web services. Web service community is defined as a
collection of Web services with a common functionality, although these Web services have distinct non-
functional properties. The concept of grouping similar services in groups, called as communities [1] have helped
to a large extent in improving the service selection process for service composition but the service communities
are not organised by its input/output structures. Further processing of the selected communities is required to
find suitable service for compositing. In composite web services, apart from checking the functional
specification of services, it is also equally important that web services have some additional features for
composing like, specific relationship between their input/output parameters, specific data type of their

Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

157
Malaysian Journal of Computer Science. Vol. 29(3), 2016

input/output parameters and business context of participating web services. Service communities help in quick
service selection as per the functional specification of the composing services. In such functional oriented
groups, systems have to browse the community in detail to select the service which can be composed based on
its input/output structure and associated data structures. A better organized and dynamic grouping at more
granular level is required, which can speed up the composition process. Due to these drawbacks with the service
composition, the concept of web service family [16] was proposed. Web service family not only group services
on the basis of their functionality but also on the basis of Input/output structures, business context and
associated data structures. Web service family can be used very efficiently in the service composition process as
detail searching on the web service family is not required as it is required while using service communities.
Once web service families are created, only searching appropriate web service family will suffice the need of
service composition.

Creating a web service family from very large number of dynamic web services, which are hosted independently
on clouds, is every challenging. To handle the challenge, this paper presents an efficient step by step filtering
approach for creating web service families. The paper analyze dynamic web services in detail and propose an
efficient novel data structures to reorganize existing web services of the repository in semantic groups by
fetching web services metadata from the existing repositories. It presents an efficient discovery mechanism for
creating web service families. The existing services are clustered in a tree on the basis of its business context
and input/output parameters. The same tree structures are used further to fetch potential web services to create
web service family by further filtering them. This will not only help in the faceted browsing of web services but
also speed up the composition process, which are built using dynamic web services. The creation of web service
family can resolve some of the challenges associated with web services composition. Under the proposed
approach in this paper the web service family creation process is divided in two level tasks namely web service
family level and discovery level tasks. Web service family level task used a novel data structure named as the
business family, which organized web services in semantic groups based on their business context and
input/output parameter relationships. The discovery level task used the novel dynamic business web service
(DBWS) tree to further organized business families in a top-down approach on the basis of their business
classifications. This organization of dynamic web services in the business family and the DBWS tree can help in
representing, analyzing, discovering, and grouping dynamic web services. Different operations, algorithms
possible on the DBWS tree are also illustrated. This paper discussed in detail not only usage of the DBWS tree
but also its role in the efficient discovery process. A coding scheme for the nodes of the DBWS tree closely
resemble coding scheme of NAICS [18], which enable browsing services with NAICS business code.

The rest of the paper is organized as follows. Section 2 discusses specific problems associated with service
composition, which this paper targets to accomplish. Section 3 discussed some of important related works
carried out before. Section 4 introduces some of the taxonomies related to the previous works on dynamic web
services. Section 5 presents a two layered approach for the discovery process for web service family creation
named as web service family and discovery layer. Section 6 presented the architecture of the web service family
layer and discovery layer. It discusses the concepts of business family and DBWS tree data structure, which is
used to organized the web services. Section 7 presents the concept of (dynamic business web service) DBWS
tree in detail, which further organizes business families in a tree based data structure. This section also presents
coding schemes, different operations, algorithms and advantages of the DBWS tree and presents its similarity
with NAICS standards. Section 8 presents the dynamic web service discovery (DWSD) machine, which manages
and executes all remaining activities required for the creation of web service families. Section 9 demonstrated an
analytical approach for measuring discovery time and it further compares the results of discovery time of
keywords based discovery with web service family based discovery. Section 10 concludes and proposed the
possible future work.
2.0 PROBLEM FORMULATION

This section discussed the important challenges in the service composition process which increases the
processing time of service composition.
2.1 Challenges in Service Composition
The requirement for standalone service discovery and service discovery for composite services are different. In
the service composition, more than one service is composed with one another to form a new service. The gluing
of one service with another service has special need for service selection. Some of the important challenges
pertaining to service composition are as follow.

Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

158
Malaysian Journal of Computer Science. Vol. 29(3), 2016

 (1) Discovering service as per the functional specification. Discovering service as per required functionality
is key to the successful service composition. If the service selected is not semantically same as per the
specification then the whole composite service will fail. A single inappropriate selection of a service
would spoil the complete composite service. The initial need is to select service as per their functional
specification.
 (2) Importance of business context- There are large number of web services available with diverse business
objectives. There are possibilities of two services looking structurally same and also might have same
description but might actually differ functionally. The functional objectives of similar looking web
services might vary on the basis of their business context. Business groups or contexts are very important
in differentiating web services.
 For example in Table 1, web service w1 and w2 have same input, output parameters and also have similar
description but their business objectives might be different. w1 returns bank account detail like(saving
account, current account or recurring account) whereas w2 provide telecom's customer detail for a given
customer account number whether customer have prepaid or post-paid account. w1 belongs to banking
domain and w2 belongs to telecom domain. The ambiguity between w1 and w2 can be easily resolved
using their business context. For banking domain based composite web services, w1 will suits best and
for telecom domain based composite web services, w2 is the best.
 (3) Compatible Input/output structures of composing service. In the service composition, output of one
service is the input of another composing service. It is very important that the selected service can accept
the output of incoming composing service.
 If an address decomposer service with one input and one output needs to be composed with a weather
service, which also have one input and one output. The requirement here is for a web service which
provides climate information for one input i.e. zip code. This web service should have one inputs and
one output. In Table 1 web service w3, w4 and w5 provide temperature information of a place but w5 have
two inputs whereas w3 and w4 have only 1 input and 1 output. Thus potential web service will be w3 and
w4, which can be filtered using the relationship types between input/output parameters.
 (4) Importance of Data type for composing service. Not only input/output relationship is important between
composing services but also the data structure is equally vital. If data type of the output of one
composing service is different as required by the input of another composing service then the two
services cannot be composed even if there functionality and input/output structures are compatible.
Either the data type needs to be converted as per the input specification of the service or appropriate
service with exact data type needs to be searched.
 If a requirement is to search a web service, which provides temperature of a place for a given zip code
(Integer) then in Table 1, w3 and w4 both provide temperature information but w3 takes input zip code
(integer) whereas w4 takes city (String). So here w3 is the suitable web service, which can be used
directly for composition. Data types of the input/output parameters helps in selecting suitable web
services, which can easily fit in the composition with other web services.

These above problems are potential areas which needs focus with respect to efficient and speedy composition.
The service discovery for service composition should be carried out keeping these concerns in focus. The
grouping in service community is built by focusing only on the functional perspective of services. Further
analysis and filtering are required to be carried out in the selected community to select the appropriate service
which can be composed with respect to its Input/output and associated data type structures. Web service family
groups web services not only based on the functional specification but also on the input/output structure. The
complete process is divided in two phase. In the first phase web services are organized in tree based structure,
considering the business context and input/output structure. This phase is carried out in background. In the
second phase, for a given web service request, the tree can be used to fetch potential candidate services and it is
analyzed further to create web service family.

Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

159
Malaysian Journal of Computer Science. Vol. 29(3), 2016

 Table 1. Example of web services [2]
Web
service Web service

name
Business

group Operation
Input

datatype
input Output

data
type

Output Description

w1
Account
detail Banking GetActdetail

Integer Account
number

String AccountDetail Return detail of account
like(saving, current),
account opening date etc.

w2 Account
detail Telecom GetActdetail Integer Account number String Acvcountdetail Return detail of account like (postpaid, prepaid),

account opening date
w3 Climate

Info
Informati
on

Temperature
Bypostal
Code

Integer Postal
Code

String Temperature Returns temperature for a
given postal Code

w4 Temperatue Info Information Temperature ByCity String City String Temperature Returns temperature for a given city
w5 Climate

Info
Informati
on

Temperature
BySateAnd
City

String State,
City

String Temperature,
rainfall

Returns temperature and
rainfall for a given State
and city

3.0 RELATED WORK

The web service discovery is a hot research topic in the past a few years. Zhang et al. [1] indicate that the
service discovery and composition play the crucial role in the area of services computing. There are many
approaches for discovering similar services. Some of the important work related to this work is discussed in this
section.

One of the wide spread approaches used service discovery is clustering [8, 9, 10]. The clustering methodology is
a technology that transforms a complex problem into a series of simpler ones, which can be handled more
easily. Specifically, this technology reorganizes a set of data into different groups based on some standards of
similarity. Dong et al. [8] puts forward a clustering approach to search web services where the search consisted
of two main stages. A service user first types keywords into a service search engine, looking for the
corresponding services. Then, based on the initial web services returned, the approach extracts semantic
concepts from the natural language descriptions provided in the web services. In particular, with the help of the
co-occurrence of the terms appearing in the inputs and outputs, in the names of the operations and in the
descriptions of web services, the similarity search approach employs the agglomerative clustering algorithm for
clustering these terms to the meaningful concepts. Arbramowicz et al. [9] proposes architecture for web services
filtering and clustering. The service filtering is based on the profiles representing users and application
information, which are further described through Web Ontology Language for Services (OWL-S). In order to
improve the effectiveness of the filtering process, a clustering analysis is applied to the filtering process by
comparing services with related the clusters. The objectives of the proposed matchmaking process are to save
execution time, and to improve the refinement of the stored data. Our approach also divides the complete
discovery process in two stages with the objective of improving the search time. Another similar approach is by
Nayak et al. In [10] Nayak et al. concentrates on web service discovery with OWL-S and clustering technology,
which consists of three main steps. The OWL-S is first combined with WSDL to represent service semantics
before a clustering algorithm is used to group the collections of heterogeneous services together. Finally, a user
query is matched against the clusters, in order to return the suitable services. Constantinescu et. al. [11] focuses
on service discovery based on a directory where Web services are clustered into the predefined hierarchical
business categories. In this situation, the performance of reasonable service discovery relies on both service
providers and service requesters having prior knowledge on the service organization schemes.

Another approach used for service discovery is Indexing. To enable fast discovery of web services, available
web services can be indexed using one of the indexing mechanisms such as inverted indexing and latent
semantic indexing. Huang et al. [12] describe how inverted indexing can be used for quick, accurate and
efficient web service discovery. Aiello et al. [13] describe VitaLab system which is web service discovery
system based on indexing using hashtable. They have implemented indexing on WSDL descriptions which are
parsed using Streaming API for XML (StAX). As centralized web service discovery approach has many
disadvantages such as single point of failure and high maintenance cost. Emekci et al. [14] propose a peer-to-
peer framework for web service discovery which is based on process behavior. Framework considers how
service functionality is served. All available web services are represented using finite automaton. Each web
service is defined as follows: A Web service p is a triple, p= (I, S, R), such that, I is the implementation of p

Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

160
Malaysian Journal of Computer Science. Vol. 29(3), 2016

represented as a finite automaton, S is the service finite automaton, and R is the set of request finite automata.
When user wants to search for web service, PFA of finite automaton of web service(R) is sent for matching.
Matching is done against S by hashing the finite automata onto a Chord ring. Chord is a peer-to- peer system for
routing a query on hops using distributed hash table. Regular expression of the queried PFA is used as the key to
route the query to the peer responsible for that PFA.

Saadon et al. [19] proposed CMDis, an enhancement of cloud-based MWS discovery framework, with
semantic-based matchmaking approach. In their work, semantic lightweight web service descriptions were used
with a REST-based architecture. Accordingly, a preliminary prototype was developed on android-based to
evaluate the applicability of the framework. Hamza et al. [20] propose a new algorithm of comparison between
the request of the client and the description of the Web services. Their system is composed of two areas of
Cloud. The first deals with Key words based research and second supports the filtering of the found web
services. This discovery is performed by an algorithm based on the calculation of similarities between the
request and the description of the web services.
Khan et. al. [21] proposes a framework for dynamic service discovery and mapping that supports the
identification of service during its run time in Enterprise Cloud Bus (ECB) systems. They present a Web Service
Relational Model (WSRM) for distributed service discovery that supports functional aspects of Web service and
allow various trade-offs between the accuracy of discovery results and the efficiency of the service discovery
process. The implementation aspects using SQL of WSRM are also discussed. Zhang et al. [22] presented a
method for web service structural network construction based on web service description documents. Secondly,
they propose a community discovery algorithm based on web service interaction relationships and analyze
community structure of web service networks. Finally, we preform experiment on several real datasets, and the
results show the efficiency and feasibility of community discovery algorithm.

An important approach is to put the similar services in groups. Such groups help in efficient searching services
as it contains all functionally similar services in one group. Several previous works gather functionally similar
web services into communities that are accessed via a common interface. Such an approach is proposed in
SELF-SERV framework [1], Self-Serv leverages emerging Web services standards and an established modeling
notation (state charts) to provide high-level support for defining composite web services involving a variable
number of participants. Self-Serv enacts the resulting composite services in a P2P way within a dynamic
environment. In addition, the system allows for monitoring and tracing the execution of composite services.
Benatallah et al. [15], authors propose an approach that supports the concepts, architecture, operation and
deployment of web service communities. The notion of community serves as an intermediary layer to bind to
web services. A community gathers several slave web services that provide the same functionality. The
community is accessed via a unique master web service. Users bind to the master web service that transparently
calls a slave in the community. . This work details the management tasks a master web service is responsible
for. Such tasks include among other things registering new Web services into the community, tracking bad Web
services, and removing ineffective web services from the community.

In this work, web service family, which is similar to web service community in its approach of grouping similar
services, is created. Web service family is richer concepts than web service community [1] as the service
communities are not organised by input/output structures of its member so it needs more time in selecting
suitable compatible services. In service composition the business context and input/output structures plays a
very important role. The web service family organized the services not only on the basis of functionality but also
on the basis of their business contexts and input/output structures. The discovery approach divides the approach
in two stages. In first stage the existing web services are reorganized in a novel data structure with respect to its
business context and input/output structure. In the second stages, further filters are applied on the output of first
stages to put similar services in web service families.
4.0 TAXONOMY FOR DYNAMIC WEB SERVICES
 NAICS [18] - The North American Industry Classification System (NAICS) is the standard used by Federal
statistical agencies in classifying business establishments for the purpose of collecting, analyzing, and
publishing statistical data related to the U.S. business economy. NAICS was developed under the auspices of the
Office of Management and Budget (OMB), and adopted in 1997 to replace the Standard Industrial Classification
(SIC) system. NAICS is used by business and government to classify business establishments according to type
of economic activity (process of production) in Canada, Mexico and the United States.

Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

161
Malaysian Journal of Computer Science. Vol. 29(3), 2016

The NAICS numbering system employs six-digit code at the most detailed industry level. The first two digits
designate the largest business sector, the third digit designates the sub sector, the fourth digit designates the
industry group, the fifth digit designates the NAICS industries, and the sixth digit designates the national
industries.

Web service Family [2] - There is many web service instances available in the cloud, which are managed
independently. It is not possible to keep track of each and every web service, which are added or deleted from a
registry without any prior notification. Families of web services are created to capture and manage the dynamic
nature of web services in groups. Each web service family corresponds to one or many web service instances
with a common business objective and same input /output structures. For example, Fig. 1 represents a web
service family named as “Fetch Weather of a Place” (say W1), which takes one input as zip code and returns
temperature and humidity of that place. All such similar web services are placed in this family.

 Fig. 1. Web-service family

5.0 WEB SERVICE DISCOVERY PROCESS FOR CREATING WEB SERVICE FAMILY

There can be many ways of discovering similar web services. Efficient discovery of dynamic web services
largely depends on the data structures of the underlying repositories. In any discovery process many filters are
required to search similar web services. These filters help in removing unwanted services. To improve the
efficiency and discovery time of service composition in particular, all web services are reorganized in web
service families. Once web service families are created, discovery process needs only to search appropriate web
service family as per abstract family definition in composition design and any instances of selected web service
family can be selected for composing. No further analysis and filtering are required. The main effort in this
process is to create web service families using the existing web services of the repositories.

5.1 Web service discovery and Cloud environment The cloud provides software and hardware resources via the Internet. The connections into the cloud are often
referred to as application programming interfaces (APIs). These APIs use Web services, such as SOAP, REST,
and JSON. The content sent over these APIs is usually XML or some form of name/value pairs. In general,
cloud computing services that include Web hosting can be an alternative to other traditional kinds of Web
hosting that are not based on cloud computing principles. One of the biggest differences could be called a
"single client" versus "multi-tenant" approach. Cloud computing services that include Web hosting are usually
multi-tenant. That means that the files and data resources of multiple clients are housed on the same server. This
provides flexibility and on-demand services for individual clients, so that providers can scale up or scale down
delivery easily.

Technological advances in Service Oriented Architecture (SOA) and cloud computing have led to a significant
increase in the number of loosely coupled independent services available in the cloud. Discovery these cloud
based web services is very complex. The complexity, in general, comes from the following sources. First, the
number of web services available over the web increased dramatically during recent years and one can expect to
have a huge web service repository to be searched. Second, web services can be created and updated on the fly,
thus the composition system needs to detect the changes at run time and decisions should be made based on up-
to-date information. Third, Web services can be developed by different organizations, which use different
models to describe their services, however, there does not exist a unique language to define and evaluate web
services in a consistent manner. There is a need for an architectural framework for discovering web service that
can provide features and facilities for end-to-end web service discovery.

This paper presented a discovery model which manages the discovery of web services considering the
challenges posed by the cloud. Though the model is designed considering the services hosted on the cloud in a
multi-tenant approach but the model is equally compatible for discovering web services hosted using traditional

Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

162
Malaysian Journal of Computer Science. Vol. 29(3), 2016

approach on single client. The proposed data structure business family and DBWS tree holds web services
hosted across clouds.

5.2 Two Layers Approach for Discovery
One simple and trivial approach of discovery is to start each time by traversing the whole repository to filter out
services. Clustering and Classification approaches also browse entire repository every time.

Fig. 2. Web service discovery process

This approach takes very long time in the discovery as each time it starts with traversing and filtering complete
repository exhaustively. It does not store results of the filtering steps, which can be reused in other discovery
processes. Also any updation or modification of services in repository is identified only when complete
repository is traversed.
A novel approach is presented, which divides all filtering steps of the discovery process in layers, where each
layer performs some steps of the filtering and its results (web services) are stored in data structures, which can
be used later in other filtering steps. In this direction a new rich architecture is designed. A two layered approach
for service discovery is proposed for creating web service family. Each layer not only carries out some filtering,
which helps in reducing discovery space i.e. number of web services to be searched but it also adds some
semantic information, which helps in efficient and error free discovery for creating web service families. Fig. 2
represents two layer approaches for discovery.
Web service family Layer- This layer interacts with the repository directly to fetch web services. This layer
implements some of the filtering steps like business group filtering, input/output relationship types. This layer
organizes and stores the results of this filtering step in a dynamic data structure named as the business family.
This layer organized web services in groups and further store these groups in a tree structure named as the
DBWS tree. The data structures of the web service family layer are reused to complete the discovery process.
The web service family layer helps in creating a proxy repository, which reorganized all existing web services in
groups on the basis of different filtering steps i.e. business group filtering and input/output parameters
relationship types filtering. Creation of this proxy repository helps in reducing the initial discovery space as all
further discovery steps will start by searching a subset of the repository. The proxy repository contains web
services organized in groups named as business family on the basis of their business context and relationship
types between their input/output parameters. These business families are linked to each other on the basis of
their business classification to form a dynamic business web service (DBWS) tree. The DBWS tree can be
traversed and searched efficiently to find out suitable business families for further discovery.

Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

163
Malaysian Journal of Computer Science. Vol. 29(3), 2016

Discovery Layer- The main purpose of discovery layer is to create web service family by fetching potential
web services from the web service family layer for further filtering. The discovery layer does not interact
directly with the repository. The discovery layer filters on the output of the web service family layer by
executing remaining filters required for the creation of web service families i.e. Input/output data type filtering,
semantic filtering of input/output parameters, semantic filtering on web service textual description.
The two layers of the discovery approach are managed independently and are loosely coupled, which helps in
efficient organization and management of dynamic web services. The web service family layer always remains
in sync with the repository and the discovery layers remains in sync with the web service family layer. This can
provides a real time managing for dynamic web services.
6.0 ARCTITECTURE OF WEB SERVICE FAMILY LAYER

This section discussed the first layer and its associated data structures. All filtering steps required for the
creation of web service family can be organized in a specific order, which helps in increasing the efficiency of
the discovery process. Outputs of each filtering steps (web service) are stored in a dynamic data structures,
which are reused in all further discovery process. Exhaustive traversing and filtering all web services of the
repository is only one time process. Once web service families are created, it is required to keep it in sync with
the repository.
6.1 Web Service Family Creation
For the given definition of the web service family (refer taxonomy section), filters can be determined, which are
required to be executed in specific order to find its members (web service instance). For a given web service
family following filtering steps are required to be carried out in the given order to find its members.

(1) Business group filtering- The complete repository is traversed and filtered to search all web service instances

that belongs to specific business group for the given web service family definition. As discussed in section 2,
the functional objectives of similar looking web services mostly vary on the basis of their business context.
Business groups or contexts are very important in differentiating web services.

(2) Input/output relationship types filtering- After business group filtering, web services need to be filtered on
the basis of the relationship types between their input/output parameters (i.e. 1-k, 1-n, k-1, k-n, n-m, 1-1).
Relationship types based filtering is very important as web services, which are searched and used in
composite web service largely depends on their number of input/output parameters.
.

(3) Input/output data type filtering- Web services to be discovered may have pre-requisite requirements of their
data type of input/output parameters. Even if their business objectives matched but if their input/output data
types do not match then it cannot be used in the composition with other web services. Web services needs to
be filtered on the basis of their input/output data type after filtering on the basis of relationship between
input/output parameters.

(4) Semantic filtering of input/output parameters- After input/output data type filtering, it is also important to

establish the semantic similarity between their input/output parameters. This helps in establishing similarity
in their business objectives and validates correctness of the web services to be used.

For example w4 and w6 both have same business objectives, which can be established by semantically
analyzing their input parameters (city, town). City and town are semantically same so both w4 and w6 can be
used.

(5) Semantic filtering of web service description- After semantic filtering of input/output parameters, it is also
important to establish similarity in their objectives on the basis of their descriptions. Descriptions of web
services help in establishing and verifying objectives of web services.

For example in Table 1, w4 and w6 descriptions can be semantically analyzed to established similarity in their
business objective.
 Fig. 3 represents all the filters required to be executed to create web service family. If all the above 5 filtering

steps are executed in the given order then a web service family will be created. Execution of each step reduced

Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

164
Malaysian Journal of Computer Science. Vol. 29(3), 2016

the number of web services to be searched in the consecutive filter. If these steps are not followed and web
service are directly searched based only on the keyword then it required to search the complete repository
exhaustively every time, which is time consuming and expensive. These 5 steps can help not only in the creation
of web service families but also in the process of efficient service composition.
6.2 Data Structures of Web Service Family Layer
Efficiency of discovery process largely influence by the data structure in which web services are organized. In
the web service family layer two data structures name as business family and DBWS tree are used to store and
organized web services, which results from different filtering steps.

 Fig. 3. Filters required for the creation of Web service family

6.2.1 Business Family Each web service is associated with some business. Objectives of web services are largely influenced by its
business contexts. There is high possibility for two web services having same input/output structure will differ
in their business objectives if their business contexts are different. The relationships between input/output
parameters also play a very important role in the discovery process for composite services. Applying two filters
(business group filter and input/output relation filter) on web services of existing repository, services are
grouped in families called as business family.

 Fig. 4. Business family

The business family is a group of one or more web service instances, which belongs to same business group.
Business context can be fetched from Yellow pages of the web service description file, which provide a
classification of services or businesses, based on standard taxonomies like NAICS and SIC. The web service

Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

165
Malaysian Journal of Computer Science. Vol. 29(3), 2016

instances in the business family are grouped in separate lists named as web-service I/O relation list. Each web
service I/O relation list contains web services belonging to a specific I/O relationship type. All possible
relationship between input/output parameters can be divided into 6 types (e.g. 1-k, 1-n, k-1, k-n, n-m, 1-1).
Corresponding to each relationship type there exist one web-service I/O relation list. There can be maximum 6
web service I/O relation lists in a business family. All web service instances in lists are unordered and belong to
a single business group. Business family is graphically represented in the Fig. 4.

A business family can be defined formally as BF= {key, B, RL} where
Key- Is the unique key, which identified a business family uniquely.
B- Is the business group to which the business family belongs.
RL- Is the mapping between input/output relationship type I/OR to list of web service instances i.e. I/OR →W.

6.2.2 Others Related Definition (1) Concrete business family- A business family is said to be concrete if it cannot be further divided on the basis
of business groups and its web service I/O relation lists (I/OR) are not derived from business families of its
sub groups.

(2) Abstract business family- A business family is said to be abstract if it can be further divided on the basis of
business group and its web service I/O relation lists is derived from business families of its sub groups.

(3) Empty business family- A business family is said to be empty if it belongs to a business group but its all web
service I/O relation lists is empty.

(4) Homogeneous Business family- Business family is homogeneous if all its web services belongs to a single
business family and have only one type of web service I/O relation list.

(5) Heterogeneous Business family- Business family is heterogeneous if its web services belongs to different
business families and have more than one type of web service I/O relation lists.

6.2.3 Different Operations on the Business Family (1) Union operation- Union operation on two non-empty business families BFi and BFj results in a
heterogeneous business family BFk such that BFk contains all types of web-service I/O relation lists and
each list contains web services, which results from the union of the corresponding web-service I/O relation
lists(I/OR) of BFi and BFj . (2) Unary union operation- Unary union operation is a special case of union operation where union operation is
applied only one type of I/OR list. Unary union operation on two non-empty business families BFi and BFj on
basis of a relationship type I/ORi results in a homogeneous business family BFk such that BFk contains all
web services of BFi and BFj having I/O relationship types as I/ORi. (3) Intersection operation- Intersection operation on two non-empty business families BFi and BFj results in

a business family BFk such that BFk contains all common web services of BFi and BFj in their respective
type of web service I/O relationship lists.

6.2.4 Advantages of the Business Family
Business family organized the services on the basis of similar functionality and input/output structures which
helps in selecting potential services for the composing services for a given definition of the services. Business
family works as the starting point from where further filtering is carried out for creating the web service family.

 (1) Organizes web services on basis of business context- Business families helps in organizing and grouping
web services in context of their businesses. This helps not only in efficient discovery but also provide
provision of efficient browsing of web services on basis of their business groups and contexts.

(2) Reduce the discovery space- Business families divide the complete repository in many groups on the basis of
their business context and input /output parameter relationship types. Discovery process starts with searching
in one or more appropriate business families rather than searching exhaustively complete repository.
Reducing the discovery space has direct impact on the efficiency of the discovery.

(3) Helps in real time managing- Business family organized web services in small manageable groups, which
have potential to be managed efficiently. It can modify its member on the fly with help of appropriate agents
if any changes occurred in the repository. Business families remain in sync with the repository to supports
real time updation.

(4) Building block of the DBWS tree- Business family is the building block of the DBWS tree which organized
business families in a tree structure on the basis of business relationships among business family.

Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

166
Malaysian Journal of Computer Science. Vol. 29(3), 2016

6.3 Dynamic Business Web Service (DBWS) Tree
All web service instances are part of one or other business families on the basis of their business context and
relationship types between their input/output parameters. These business families can be further organized in a
top-down hierarchy structure with respect to business relations among them. One business family is related to
other business family on the basis of their business hierarchy. For instance if business family BF1 belongs to
business group of rice farming and business family BF2 belongs to wheat farming then both BF1 and BF2 is
related to each other as they both belong to business group of crop production. Similarly all business families
have some or other relationship with each other. Such organization (see section 7) of business families can help
not only in efficient and dynamic organization of web services but also can help in efficient discovery.
7.0 DYNAMIC BUSINESS WEB SERVICE (DBWS) TREE

The DBWS tree is an unordered general tree, which have only one type of node called as business node. A
business node represents a business family. Leaves nodes of this tree represent concrete business family, which
cannot be further sub classed on the basis of business groups. Each non leave nodes can have any number of
child nodes. Each node has a value (code), level (business group name) and a list of references to other child
nodes (its children). The height of the DBWS tree can be of any value. All nodes except leave nodes are abstract
business families as they do not have their own web service I/O relation lists but have lists derived from their
child nodes. All non-leaves nodes (abstract business family) derived their web service I/O relation lists by
executing union operation on all possible leaves nodes, which can be reached starting from that node.

Fig. 5. The DBWS tree

Formally a dynamic business web service (DBWS) tree can be defined as tuple DBWS= {BN, SN, H, C} where
BN= set of all business nodes (i.e. abstract business family).
SN= set of all leaves nodes (i.e. concrete business family).
H= is the height of the tree.
C= is the maximum number of child node a business node can have.
Fig. 5 represents a DBWS tree. The DBWS tree represents a complete organization of web services in a tree
structure using top-down approach. The DBWS tree organizes business families on basis of the business
relationships among business families. The DBWS tree is very generic and can easily be extended in the future
to include more number of different web service instances belonging to diverse business groups. This
organization closely resembles with NAICS business classification. The DBWS tree helps in capturing and
managing large number of dynamic web services. The DBWS tree helps in putting similar web services together
with respect to their business context. The DBWS tree also helps in the web service discovery process.

Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

167
Malaysian Journal of Computer Science. Vol. 29(3), 2016

7.1 Labeling and Coding of Nodes of the DBWS Tree
Nodes of the DBWS tree needs to be identified uniquely. Each node of the DBWS tree has a value, a label, links
to child nodes and direct or indirect derived collection of web service I/O relation lists. The label of a node is the
textual name of the business family, which closely resembles with the business group of the family. The value
of a node is a special code named as business family (BF) code, which uniquely identifies a business family in
the tree. The BF code is similar to codes used in NAICS classification of business.
BF code for a node of the DBWS tree depends on the BF code of its parent and on the position of the node from
its left most sibling. Its position from the left most sibling is appended to the BF code of its parent node to
generate its BF code. If the BF code of the parent node is “0356” and the node is at the 2nd position from the
leftmost sibling then the BF code for this node will be “03562” i.e. its position from the left most sibling is
appended to BF code of its parent. The BF code of the root node is “0’. The length of the BF code depends on
the level of the node. If the root node starts at level “0” then size of the BF code for nodes at level L is L+1. The
maximum size for the BF code in the DBWS tree depends on the maximum level. If the number of child node is
more than 9 then 10th child is represented as “A”, 11th child as “B” and so on i.e. if a node is at 11th position from
its leftmost sibling and its parent BF code is “0524” then its BF code will be “0524B”.
7.2 Searching Node in the DBWS Tree

Searching is an important operation for any data structure. The DBWS tree has nodes, which are uniquely
identified by its BF code. The sequence and position of BF code digits have special significance. The sequence
of digits in the BF code indicates the position of the node in the DBWS tree. An algorithm can be design to
search a specific node in the DBWS tree for a given BF code.
ALGORITHM 1. SearchNodeInDBWS // searching node in DBWS tree for given BF code
Input: BF code. Output: Node of DBWS tree. Read the BF code; Array BFCodeArray = parse (BF code); //Parse the BF code and placed it in an array. node_Pointer = Root node; ArraySize= size (BFCodeArray) For i 1 to ArraySize { Read BFCodeArray [i]; BF_value = BFCodeArray [i]; If BF_valueth left child of the node represented by node_Pointer does not exist Print (node does not exist) and break; else node_Pointer = BF_valueth left child of the node represented by node_Pointer } Result = node at node_Pointer. End

The efficiency of the search algorithm is very high. Number of search required is equal to number of digits in
the BF code. In the other word searching algorithm is directly depends on the height of the DBWS tree. The
maximum number of comparison required to search any node in the DBWS tree is equals to the height of the
DBWS tree. As per NAICS classification, DBWS tree will have maximum height of 6, so it time complexity will
be O (6) which is equivalent to order of constant C.

7.3 Traversing the DBWS Tree
Traversing is an important operation which is very often used in a tree. It is used either to traverse complete tree
starting from the root node or to traverse part of the tree starting from a specific node. Traversing the DBWS tree
from a node means visiting all its possible reachable leaves nodes. Traversing helps non-leaves nodes (abstract
business family) in fetching web service I/O relationship lists from their leaves nodes.
Traversing the DBWS tree, which is a general tree, is complex and time consuming process .To improves the
efficiency of traversing, the DBWS tree is first converted to a binary tree. The converted binary tree is traverse
from a given node. The DBWS tree can be converted to a binary tree using any standards algorithms.

Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

168
Malaysian Journal of Computer Science. Vol. 29(3), 2016

ALGORITHM 2. TraverseDBWS //traversing from a node Ni having BF code as BFi Input: node Ni, BF code of Ni i.e. BFi Output: List of leaves node. Read BFi, Ni DBWSBinaryTree = Convert DBWS tree to Binary Tree.
ResultArray=null Node_Pointer = null Node_Pointer = SearchNodeInDBWSBinaryTree (BFi) // search the node Ni in the converted binary tree. Start from the node present at Node_Pointer
Inorder traversal on binary tree. while traversing
 { if nodes have no child
 add the node in the ResultArray. }While end Return ResultArray End
ALGORITHM 3. SearchNodeInDBWSBinaryTree
Input: BF code of Node i.e. BFi Output: Node of DBWSBinary tree. Read BFi Array BFCodeArray = parse (BF code) //Parse the BF code and placed it in an array.
node_Pointer = Root element ArraySize= size (BFCodeArray) For i 1 to ArraySize
{ Read BFCodeArray [i] If (i=1){ If BFCodeArray[i]>1 Then node_Pointer= node after traversing in right direction (BFCodeArray[i]-1)
times Else if BFCodeArray[i]=1 Then node_Pointer = node after traversing in left direction once } else if (i>1){ If BFCodeArray[i]>1 Then node_Pointer = node after traversing left once and traverse in right direction (BFCodeArray[i]-1) times Else if BFCodeArray[i] =1 Then node_Pointer = node after traversing in left direction once
} Result = node at parent_Pointer. } End

 The time complexity for searching and traversing is O (n) where n is the total number of nodes in the tree.

7.4 Operations on the DBWS Tree
The DBWS tree has collections of concrete business families and abstract business families. In the web service
family creation or in the discovery process, a specific business family needs to be processed to fetch all its web
service instances. If the processing node is leaves node (i.e. concrete business family) then its web services can
be directly fetched. If the processing node is non-leaves node (i.e. abstract business family) then further
processing is required, which includes traversing of all its possible leaves down in the hierarchy to fetch web
services instances and combine all results. Also some operations are required for fetching web services
belonging to a business family that have a specific type of input/output relation type I/OR.
Relation(R) operation- The R operation on a node Ni returns all its web service instances belonging to all types
of web-service I/O relation lists requested. If the node is concrete business family (leave node) then the list can
be fetched directly but if the node represents an abstract business family (non-leave nodes) then web-service
I/O relation list of all requested types is combined for all possible reachable leaves nodes from Ni to form the
result.

Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

169
Malaysian Journal of Computer Science. Vol. 29(3), 2016

ALGORITHM 3. R (Node Ni, BF Code, Relationship I/OR List)
Input: Node Ni, BF code, I/O Relationship list I/OR Output: List of nodes Read the BF code; Convert DBWS tree to Binary tree
Node_Pointer = SearchNodeInDBWSBinaryTree (BF Code) Node Ni = node at Node_Pointer LeavesNodesArray = TraverseDBWS (Ni, BF code) For each nodes in the LeavesNodesArray For each Relationship types in I/OR List in the node Appends corresponding lists Return lists End

The time complexity for the above algorithm is O (n2) where n is the total number of nodes in the tree.

7.5 NAICS and the DBWS Tree
The DBWS tree has a very close resembles with NAICS approach of business classification. The value of
business family (BF) code is same as NAICS code for business group. Each web services are part of one or other
business node. In NAICS all business are parts of some business group. This helps in efficient managing large
number different businesses. Similarly, concept of web service family and business family is used to organized
large number of dynamic web services instances. The DBWS tree represents complete organization of web
services in a tree structure using top-down approach. If the height of the DBWS tree is six then it represents
exact 6 digit code of NAISC. Coding schemes of DBWS tree and NAICS are similar. In NAICS also, code of a
business group is dependent on code of its parent group and one additional digit is added to create NAICS code.

7.6 Use of DBWS Tree in Discovery
The DBWS tree can help in the efficient discovery. The DBWS tree organized all web services in business
families in a top-down approach on the basis of their business context and input/output relationships. This tree
can be searched efficiently and quickly to find out lists of relevant web services in context of their business and
input/output relationships. This tree can help in reducing the discovery space by arranging web services
belongings to similar business groups and input/output relationships. The tree can be traversed to return lists of
web services, which have same input/output relationship and have same business context. This lists needs to be
filtered further to discover required web services. The DBWS tree helps in getting initial list of web services
which have potential candidates without traversing or searching complete repository.

7.7 Advantages of the DBWS Tree
 The DBWS tree helps in efficient searching and traversing business families to select potential services for
creating web service family and for service composition.

(1) Organized web services in top-down tree structure- The DBWS tree organized the business families in a top

down hierarchy with more generic business families placed in the top. Top down approach helps in the
efficient searching by eliminating the search options in the early stage.

(2) Business oriented tree structure- Web services are used in businesses. Functionalities/objectives of web
services largely depend on their business context. The DBWS tree organized web services on basis of their
business context. These helps in efficient discovery.

(3) Faceted Browsing- The DBWS tree has rich faceted data structure, which is groups in more generic (abstract)
business classes and builds a deep hierarchy to support browsing. The DBWS tree can be used to browse web
services at different level of business hierarchy and within each business further browsing can be done on
the basis of different parameters like relationship between input/output parameters, data type of input/output
parameters.

(4) Resembles NAICS- Similar to the classification and organization of businesses in NAICS, the DBWS tree also
classify and organizes business families with respect to their business context. The coding standards of nodes
of the DBWS tree are same as codes for business groups in NAICS.

(5) Searching with NAICS code- The BF code of the DBWS tree is same as that of the NAICS code. It can be
used to search the potential web services from the DBWS tree.

Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

170
Malaysian Journal of Computer Science. Vol. 29(3), 2016

(6) Focused at group label rather than at instance level- The number of web services in the repository are
increasing exponentially. Managing large number of web services at its instance level will not be efficient.
The DBWS tree organized web services at an abstract level rather than at its instance level. This helps in
managing large number of web services.

(7) Potential to assist in efficient web service discovery- The DBWS tree organizes the web services of business
families on the basis of their business context and input/output relationships. The DBWS tree can be used to
fetch lists of web services having specific business context and specific input/output parameters relationship.
These lists can be further processes to discover similar web services.

(8) Open ended to include future business hierarchies and web services- The DBWS tree is very flexible and
generic in design, which can easily be extended to include more business groups and web services in the
future

(9) Filters on business context and input/output relationship- The DBWS tree filter the original repository on the
basis of web services business context and their input/output parameters. These filters are basic filters which
are required in the discovery process. These filters save times in the discovery process as it is carried out in
the back end.

8.0 DISCOVERY LAYER

This section discussed the implementation of the discovery layer of the two layered discovery architecture,
which focused on the creation of the web service family using the DBWS tree. Web service families are created
with the help of the dynamic web service discovery (DWSD) machine, which manages and executes all
remaining activities required for the creation of web service families. This section also discussed a novel
concept of pull wave operation and push wave operation to keep the web service families sync in the real time.
8.1 Synchronization Operations For the real time updation of web services, it is important to keep web service families in sync with the
repository. For this purpose two important operations are introduced, which helps in keeping web service
families in sync with the repository.
Pull Wave Operation- This operation is initiated by the DWSD module to fetch web services, which falls under a
specific business context. The Pull wave requests contain details of web service business type and I/O
relationships type (I/OR) between input/output parameters. The DWSD machine decides when to initiates a pull
wave request and also selects an appropriate external business agent to which the pull request is passed. The
external business agents fetch the business context information from the incoming pull requests. It searches
business nodes in the DBWS tree to find appropriate nodes having requested business group and returns all web
services of that node. The external business agent returns pull wave response to the requesting DWSD machine.
The response contains list of web services having requested business context and input/output relationships. Pull
wave have both request and response part.

Push Wave Operation- External business agents maintained list of all interacting DBWS machines and list of all
web services, which are send to different DWSD machines as part of the pull wave operation. The push wave
operation has only response part. This is initiated by the external business agent to notify its registered DWSD
machine partners about any changes in web services in the repository. This operation is triggered whenever any
web services, which are used by the DWSD machine is modified in registries. The business agents keep all
business families of its DBWS tree in sync with the repository. The response contains deletion command if the
associated web service is deleted from the repository, updation command if it is updated, or addition command
if new similar web service is added. The push wave response helps in notifying DWSD machines related to the
dynamic behavior of independently developed web services.

8.2 Dynamic Web Service Discovery (DWSD) Machine The DWSD is a machine model, which accepts requests for creation of web service families and carries out all
activities and interaction with external interfaces required to create web service families. The DSWD machine
also helps in keeping service instances of web service families in sync with the repository in real time. The
DSWD machine interacts with external business agents to fetch relevant web services required for the creation
of families. The DWSD machine has many components. Each component has fixed objectives and all
components are loosely coupled, which enables scope for the future enhancement. Some of the important
components of the WSDM machine are as follows.

Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

171
Malaysian Journal of Computer Science. Vol. 29(3), 2016

Business Agents- The business agents manages and executes all activities of the first layer. These are developed
and managed by third party vendors. These agents play a very crucial role in the construction of web service
families. Each business agents are specialized in one or many business domains. They maintain lists of all web
services instances falling in their domains. Lists of services are maintained in the form of a DBWS tree, which
provides quick updation, deletion and modification operations. These agents keep browsing and listening
repositories. When any new web service instance is added or any existing web service’s WSDL files are
modified, it updates appropriate nodes of its DBWS tree and triggers push wave to notify all DWSD machines,
which are using that particular web service instances. The Business agents received requests from the DWSD
machine for fetching list of all web services, which have same input/output relationship type and belongs to
same business context. If requests are triggered from DWSD machine to business agents then it is called pull
wave. If Agents initiate requests to send any notification to DWSD machines then it is called push wave
operation.

Agent Interface- The agent interface is responsible for all communication to or from business agents. Agent
interface establish and negotiate SLA with external business agents to get lists of web services on the basis of the
business domain it is serving. Once SLA agreement is finalized, business agents assign a unique identification
number to the DWSD machine, which will be used by the external business agents for future communications
like sending push wave response.

Web Service Execution Engine- This is the engine which accepts the abstract high level design of the composite
service either in a form of graphs or as a formal language. It analyzes the composite service to determine the
sequence of the flow. It also determines details of the web services corresponding to each abstract service used
in the composite service. Fig. 6 represents the Dynamic Web services Discovery (DWSD) machine.

Fig. 6. Dynamic Web Services Discovery (DWSD) Machine

DWSD Controller- This is very important part of the DWSD machine. This component controls all process of
discovery and web service family creation. As per the incoming web service family request it checks the
existing web service database to confirm if it is present , if it is available then it selected and returned to
execution engine for its execution otherwise process of creating a web service is initiated. It analyzes incoming
web service family requests to determine the types of business agents required. It creates and manages SLA,
which are used by the agent interface. It is the controller, which decides when to send a pull wave request to
business agents. If the controller receives a push wave response containing deletion command then it sends the
response directly to the web service family database through the web service family database (WSDB) interface

Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

172
Malaysian Journal of Computer Science. Vol. 29(3), 2016

to delete the web service. If push wave contains updation or addition command then it sends to the semantic
analyzer stack for further filtering and validation.

DataType Filter Module- This module is responsible for filtering web services on the basis of data types of their
input/output parameters. It works on the list of web services received from business agents.

Semantic Analyzer Stack- This is the stack containing different semantic analyzer tools and algorithms, mostly
word sense disambiguation tools like GWSD, senceLerner, semCor, which are used to established semantic
similarity of input/output parameters by analyzing ambiguity in their input /output parameters. This also
semantically analyses descriptions of web service. They work on the output of the DataType filter module. Each
semantic analyzer tools analyze independently and its outputs are passed to web service unit tester.

Web Service Unit Tester- This module is responsible for unit testing of the web service instances. All outputs
(web service) of the Semantic Analyzer is executed with sample inputs and it outputs are analyzed to determine
whether it full fills requirements as per the request like, data type of outputs, business type of the web service,
etc
Web service family database- This is the database where all similar web services are stored in different families.
The modification in the database is carried out by a database interface.

Discovery controller- This is responsible for querying the web service family database to search out appropriate
web service family. When a user searches a web service by specifying the web service family properties then the
discovery controller uses these properties to search appropriate web service family. Any instance of the selected
family can be used as they all are semantically similar.

8.3 Working of the DWSD Machine
A composite service is created and submitted to web service execution engine. Web service execution engine
analyze the design and determine the details of the web service family required for its execution. Requests for
creating a web service family are received by the request analyzer, where requests are validated. It passed the
request to the DWSD controller. The DWSD controller further analyses and prepares pull wave request
containing business type and input/output relationship type (I/OR) and invokes the agent interface. It also
prepares the SLA, which is used for establishing connection with business agents. The agent interface
established connections with appropriate business agents and negotiates as per the SLA. If negotiation is
successful then connection is established and the pull request is passed to the business agent. The agent prepares
response, which contains list of all web services having same input/output relation type and business context as
per pull request and send the response back to the DWSD machine’s agent interface. The agent interface forward
the response to the DWSD controller, which analyzed the response and sends it to the DataType filter modules to
filter out those web services, which have same input/output relationships but their data type are different as per
initial web service family request definition. The output of the DataType filter is forwarded to all word sense
disambiguation tools and algorithms to filter out semantically similar input/output parameters and semantically
similar descriptions. The outputs are collected in an array and send to unit-tester module to carry out unit testing
before saving them in the web service family database. In the unit test, each web service is checked against the
web-service family definition and also real time request is send to the web service using dummy inputs. Once
web service family database is ready, the discovery controller can query the web service family database to
search out the appropriate web service family. As all instances of the web service family hold semantically
similar services, any service can be used in the business process flows or in composite web services.
 8.4 Advantages of the DWSD Machine

The DWSD machine helps in creating and managing web service families. It incorporates some of the
remaining filters. It is very flexible and fetches the potential services from the DBWS tree.

(1) Real time discovery– It supports real time discovery of web services. The push wave operations helps in
notifying the DWSD machine related to any addition of new web services. If any new web services are added
to the repository, an appropriate business agent adds them to its data structure (DBWS tree) and notifies all
DWSD machines registered with that agent.

(2) Real time management of dynamic web service- It supports real time managements of web services.
Whenever any existing web services is deleted or its definition is changed in the registry, appropriate agent,
update its details in its data structure and notify all registered DWSD machines, which analyze the change
request and make necessary changes in their database.

Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

173
Malaysian Journal of Computer Science. Vol. 29(3), 2016

(3) Validation- It supports special features of performing validation before adding the web service in a family.
As most of participating modules are outsourced and managed by third party, it is very important to carry out
unit testing of selected web services to cross check its functionality and validates it before adding in a
family.

(4) Flexible and loosely coupled-The whole DWSD machine is very loosely coupled and flexible, which enable
easily future extension and enhancement. Any new modules can be easily integrated in the future

(5) Works on the existing repository system- It is based on the existing UDDI repository. Information in the
existing repositories is processed and fetched to create families.

9.0 EXPERIMENTS AND ANALYSIS

Creations of web service families require fetching and processing information like input/output data type,
business context, descriptions etc. This information is analyzed to create web service families by filtering the
complete repository. This is a one-time process. In the web service family based discover mechanism, discovery
is made by searching a pool of web service families whereas in the traditional keywords based discovery, whole
repository needs to be traversed. This section compared the execution time for both approaches.
Web service discovery time largely depends on the time required in processing web services to fetch its relevant
information. More the information required to be fetched, more the discovery time. Discovery time also depends
on the size of the repository to be traversed. In the cloud environment, network and data communication also
have large impact on the discovery time.
To establish and compare the execution time following notations are used.
p = represent properties of web service like data type of input/output parameters, business context of the service,
descriptions of the services.
Cpi = cost of fetching data related to the property p from a web service wi.

 = cost of fetching data related to q number of properties from a web service wi.
 = data transfer cost. ∝ = network cost. n= number of web services in the repository.

m= number of web service family. q= number of properties of web service under consideration.
FCTime = Total time for creating a web service family
DTkeyword - Discovery time for keyword based mechanism.
DTfamily - Discovery time for family based mechanism.
TCi = Total cost of fetching and processing a web service wi for q properties.

Where
9.1 Analysis of keyword Based Discovery
In the keyword based discovery mechanism, all web services of the repository are traversed and its description
are fetched and analyzed to establish the similarity. In this approach, total discovery time depends on the size of
the repository and the time required in fetching description from each web services. In keywords based
discovery only one property (keyword) are used.

Where n= maximum number of web services in the repository.
The keywords based discovery process cannot be used in the compositional based business flows. In the
composition based business flows further filtering is required like data type of the input/output parameters,
business context etc. The additional filtering will increase the discovery time. More the filters required, more
information needs to be fetched and more will be the discovery time. A general formula for calculating
discovery time with k filters can be written as below

Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

174
Malaysian Journal of Computer Science. Vol. 29(3), 2016

Where n1, n2, n3, n4, nk are size of the web services needs to be traversed. k is the number of filters applied. P1, P2, P3, P4…Pn are different properties on which filters are applied. Subsequent filter is applied on the output of
the previous filter result i.e. n1 ≥ n2 ≥ n3 ≥ n4 ≥…nk
In keyword based discovery, the major factor on which the discovery time depends is the size of the repository.
In cloud based environment where size of the repository in increasing every day, the discovery time will
increase exponentially. Further, results of keywords based discovery are not stored, which can be used in other
similar discovery process to improve the discovery time.
9.2 Analysis of Web Service Family Based Discovery
The most time taking process is the web service family creation as it involves many filtering steps and needs to
be applied on the complete repository. This web service family creation process is executed only once in the
back ground and in the future only needs to keeps it in sync with the repository. Web service family creation
time can be calculated using equation 3. Total 5 filters are required in this process.
If all 5 filters are applied in the equation (3), which is used in the creation of web service family then equation
can be written as below-

In the web service family based discover most of the filtering activities are carried out in the background and
results are organized in groups called as web service family. Each web service family is very well defined and
holds semantically similar web services. Each web service family has a description, which not only describes its
common functionality but also specify briefly all other properties required for discovery. In this discovery
process, it is not required to traverse the complete repository rather needs to traverse only web service families.
The number of web service family will always be less than number web services of the repository.

9.3 Experiment
A simulation environment was set up using matlab to compare the discovery time of keywords based discovery
and web service family based discovery. A random number of web services are created in the matrix with all its
relevant information. Random time (millisecond) required for fetching different properties of each web services
are also maintained. This matrix, which simulate like a repository is used for keywords based discovery.
Discovery time is calculated using equation (2). For calculating discovery time of web service family based
discovery, same web services of the matrix are grouped in families with each family having some specific
number of web services and have a common description. This experiment is repeated for 10 times with different
number of web services and the graph is drawn. Fig. 7 represents outputs, when number of web service family
increase with the increase in number of web services in the repository. Fig. 6II represents outputs, when number
of filters used in the discovery process is increased.

9.4 Analysis of the Result
The outcome of the Fig. 6I clearly depicts efficiency of the web service family based discovery as compared to
keywords based discovery. With the increase in the number of services in the repository, discovery time of the
keywords based process increases very steeply whereas family based discovery time increases gradually. For
any number of instances, the family based discovery time is always less than the keyword based discovery time.

Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

175
Malaysian Journal of Computer Science. Vol. 29(3), 2016

Fig. 7 Comparison of keyword and family based discovery

The output of the Fig. 6II illustrates that the impact of increasing number of filters on the keywords based
discovery and family based discovery. The increasing numbers of filters have no impacts on the family based
discovery whereas discovery time of keywords based discovery processes increases exponentially. The most
important reason of this immunity of family based discovery towards the filters is that these filers are applied in
the background during the creation of web service families, which is one time process.

Fig. 8. Variation of discovery time with increasing filters

The family based discovery outperformed in comparison to keywords based discovery. The most important
reason is that during the web service family creation all different required filters are applied one time in the
background and a single web service family represents many semantically similar web services. Therefor
number of web service families in comparison to number of service instance is very less.

Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

176
Malaysian Journal of Computer Science. Vol. 29(3), 2016

10.0 CONCLUSION

This paper has novel approach toward rich analysis of dynamic web services, which helps not only in its
managing but it also established an efficient discovery mechanism for searching similar services for composite
web services. The concept of web service family is semantically richer concepts than web service community
[1] as the service communities are not organised by input/output structures of its member so it needs more time
in selecting suitable compatible services. In service composition the business context and input/output structures
plays a very important role. The web service family organized the services not only on the basis of functionality
but also on the basis of their business contexts and input/output structures. The paper presents the two layer
discovery process for creating web service family, which are used efficiently in searching service instances as
per the specific need of service composition. Abstract semantic groups of web services named as business family
is introduced to manage web services at abstract label. These business families are further organized to create a
dynamic data structure named as DBWS tree, which organizes business families in top down hierarchy on the
basis of their business classification. Different algorithms and operations of the DBWS tree in presented. The
coding schemes of DBWS tree resembles with NAICS. The paper focused on the searching of dynamic web
services in real time. Pull and push wave operation is introduced for managing web service families in real time.
This paper focused on the discovery mechanism by filtering web services on the basis of many parameters,
which are required in particular for selecting and executing web services belonging to composite services. The
paper targets discovering web services for large scale business processes, which are built as composition
(orchestrating or choreographing) of web services. Some of the key features of the proposed approach are as
follow.
(1) Existing systems are not affected- All solutions and approaches are built using existing repositories and

standards. Web service families, which are the basis of this discovery, are built using the information, which
can be easily fetched from web services using existing repositories and standards.

(2) New dynamic data structures are introduced- New data structures like business families and DBWS tree are
introduced to reorganized web services in more dynamic structure, which can help in managing services
efficiently

(3) Discovery time is improved- Web service family based discovery has very less discovery time as compared
with the existing keyword based discovery. Web service families are created by applying filters in back
ground, which saves processing time. At any instance, number of web service families as compared to
number of web services is always less.

(4) Selection of web service used in composite service- The proposed discovery process is very suitable for
selecting and executing web services, which are used in large scale business processes as composition or
orchestration. The web service family organizes the services not only on the basis of functionality but also
on the basis of business context and input/output structures.

(5) Real time updation of web service families- Pull wave and push wave concept is used to keep web service
families in sync with repositories.

The main focus of the future work will be towards building a working model of the proposed approach to test
the above mentioned discovery approach and web service selection process for composite services in real time
scenario. The future work shall also focus on the web service scheduling using the concept of web service
family.

REFERENCES
 [1] Sheng, Q.Z., Benatallah, B., Dumas, & M. Mak, E.O-Y. “SELF-SERV: a platform for rapid composition of web
services in a peer-to-peer environment”, Proceedings of the 28th VLDB Conference, Hong Kong, China, 2002,
pp 1051-1054,.

[2] Faisal Ahmad, Anirban Sarkar, Narayan C Debnath, "Analysis of Dynamic Web Services", IEEE International
Conference on Computing, Management and Telecommunications (ComManTel 2014), Vietnam, April 27 –
29,2014, PP 275 – 279.

[3] Sun, H., Wang, X., Zhou, B. and Zou, P., “Research and Implementation of Dynamic Web Services

Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

177
Malaysian Journal of Computer Science. Vol. 29(3), 2016

Composition”, Advanced Parallel Processing Technologies (APPT), LNCS 2834, Springer-Verlag Berlin
Heidelberg, 2003, pp.457–466.

[4] Raj, R.G., Abdul-Kareem, S., “Information Dissemination And Storage For Tele-Text Based Conversational
Systems' Learning”, Malaysian Journal of Computer Science, Vol. 22(2):2009. Pp. 138-159.

[5] Preuner, G. and Schrefl, M., ‘Integration of web services into workflows through a multilevel schema
architecture’, Proceedings of the 4th IEEE Int’l Workshop on Advanced Issues of E-commerce and Web-based
Information Systems (WECWIS), 2002.

[6] Hansen, M., Madnick, S. and Siegel, M., Bussler, C. et al. (Eds.): “Process Aggregation Using Web Services”,
Web Services, E-Business, and the Semantic Web WES, LNCS 2512, Springer-Verlag Berlin Heidelberg,
2002,pp.12–27.

[7] Moohebat, M., Raj, R.G. , Kareem, S.B.A., Thorleuchter, D., “Identifying ISI-indexed articles by their lexical
usage: A text analysis approach”, Journal of the Association for Information Science and Technology, Vol. 66,
No. 3, pp. 501–511. doi: 10.1002/asi.23194.

[8] X. Dong, A. Halevy, J. Madhavan, E. Nemes and J. Zhang. “Similarity Search for Web services”. In
Proceedings of the 30th VLDB Conference, Toronto, Canada, 2004.

[9] W. Abramowicz, K. Haniewicz, M. Kaczmarek and D. Zyskowski. “Architecture for Web services filtering and
clustering”. In Internet and Web Applications and Services, (ICIW '07), 2007.

[10] R. Nayak and B. Lee. “Web service Discovery with Additional Semantics and Clustering”. In Web Intelligence,
IEEE/WIC/ACM International Conference, 2007.

[11] I. Constantinescu, W. Binder and B. Faltings. “Flexible and efficient matchmaking and ranking in service
directories”. In Proceedings of the IEEE International Conference on Web Services (ICWS’05), 2005.

[12] L. B. Huang, V. Balakrishnan, R.G. Raj, "Improving the relevancy of document search using the multi-term
adjacency keyword-order model." Malaysian Journal of Computer Science, Vol. 25, No. 1, 2012, pp. 1-10.

[13] Marco Aiello, Christian Platzer, Florian Rosenberg, Huy Tran, Martin Vasko, Schahram Dustdar, “Web Service
Indexing for Efficient Retrieval and Composition”, Proceedings of the 8th IEEE International Conference on E-
Commerce Technology and the 3rd IEEE, 26-29 June 2006, pp 63.
 [14] Fatih Emekci, Ozgur D. Sahin, Divyakant Agrawal, Amr El Abbadi, “A Peer-to-Peer Framework for Web
Service Discovery with Ranking”, In proceedings of the IEEE International Conference on Web Services
(ICWS’04), 2004.

[15] Benatallah,B Dumas,M , & Sheng, Q Z. “Facilitating the Rapid Development and Scalable Orchestration of
Composite Web Services”. Distributed and Parallel Databases,Vol 17, 2009, pp. 5-37.,.

[16] Faisal Ahmad, Suvamoy Changder, Anirban Sarkar, Title – “Architectural framework for web service
dynamics: a layered approach”, 22nd International Conference on Software Engineering and Data Engineering,
September, 2013.

[17] Faisal Ahmad, Suvamoy Changder, Anirban Sarkar, "Web service execution model for cloud environment",
ACM SIGSOFT Softw. Eng. Notes Vol. 38, No. 6 (November 2013), PP 1-13.

[18] NAICS: North American Industry Classification System, http://www.census.gov/eos/www/naics/ (accessed 10
Jan. 2014). http://www.naics.com/history-naics-code/
 [19] N. A. Saadon ,R. Mohamad , “Cloud-based Mobile Web Service Discovery framework with semantic
matchmaking approach”, Software Engineering Conference (MySEC), 2014 8th Malaysian ,pp 113 – 118.
 [20] S. Hamza; Mohamed khider, B.Aïcha-Nabila ; K. Okba ; A. Youssef, “A Cloud computing approach based on
mobile agents for Web services discovery”, Second International Conference on Innovative Computing

Analysis of Dynamic Web Services: Towards Efficient Discovery in Cloud. pp 156-178

178
Malaysian Journal of Computer Science. Vol. 29(3), 2016

Technology (INTECH), pp 297 – 304, 2012.

[21] G. Khan; S. Sengupta; A. Sarkar, “WSRM: A Relational Model for Web Service Discovery in Enterprise Cloud
Bus (ECB)”, 3rd International Conference on Eco-friendly Computing and Communication Systems
(ICECCS), pp 217 – 222, 2014.

[22] Xizhe Zhang ;Shenyang, China ; Shuai Feng ;Ying Yin ;Bin Zhang, “Community discovery of public cloud
web services based on structural networks”, Ninth International Conference on Natural Computation (ICNC),
2013,pp 1129 – 1133.

