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ABSTRACT  Dengue is normally emerging in tropical and subtropical countries and now 

has become a serious health problem. In Malaysia, dengue is considered endemic for the past few 

years. A reliable mathematical model of dengue epidemic is crucial to provide some means of 

interventions in controlling the spread of the disease. Many mathematical models have been 

proposed and analyzed in the literature, but very little of them used fractional order derivative in 

analyzing the dengue transmission. In this paper, a study on a basic fractional order epidemic 

model of dengue transmission is conducted using the SIR-SI model, including the aquatic phase 

of the vector. The population size of the human is assumed to be constant. The threshold quantity 

R0 is attained by the next generation matrix method. The preliminary result of the study is 

presented. It has shown that the disease-free equilibrium is locally asymptotically stable when R0 

< 1, and unstable when R0 > 1. In other words, the dengue disease is eliminated if R0 < 1, and it 

approaches a positive endemic equilibrium if R0 > 1. Finally, some numerical results are presented 

based on the real data in Malaysia in 2016. 
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ABSTRAK  Denggi berlaku di negara-negara tropika dan sub-tropika dan kini telah 

menjadi masalah kesihatan utama. Di Malaysia, denggi telah pun disifatkan sebagai endemik untuk 

beberapa tahun yang lepas. Model matematik bagi wabak denggi yang boleh diandalkan adalah 

sangat penting sebagai intervensi dalam mengawal denggi dari terus merebak. Banyak model 

matematik telah dikemukakan dan dianalisa, namun tidak banyak daripada kajian yang ada 

menggunakan pembezaan melalui tertib pecahan dalam menganalisa penularan denggi. Di dalam 

artikel ini, kajian terhadap model penularan wabak denggi menggunakan kaedah tertib pecahan 

dijalankan. Ianya berdasarkan model SIR-SI serta mengambil kira fasa kehidupan vektor di dalam 

air. Saiz populasi manusia dianggap tetap. Nilai ambang R0, diperolehi menggunakan kaedah the 
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next-generation matrix. Penemuan awal kajian ini dibentangkan. Ianya telah diperlihatkan bahawa 

titik keseimbangan bebas penyakit adalah stabil apabila R0 < 1, dan tidak stabil apabila R0 > 1. 

Dalam kata lainnya, penyakit denggi dapat dihapuskan jika R0 < 1, dan ianya akan mendekati titik 

keseimbangan endemic untuk R0 > 1. Pada penghujung artikel ini, beberapa keputusan berangka 

dibentangkan berdasarkan data sebenar di Malaysia pada tahun 2016. 

 

Kata kunci: Denggi, Kestabilan, Nombor pembiakan, Tertib pecahan, Wabak 

 

 

INTRODUCTION 

Dengue is listed second after malaria, as the 

most prevalent vector-borne disease in the 

world, caused by any of four closely related 

virus serotypes named DEN-1, DEN-11, DEN-

III, and DEN-IV. The chance of contracting 

dengue virus has increased dramatically since 

the mid-90s. Now, dengue is becoming 

endemic in more than hundred countries 

(World Health Organization (WHO)). 

 

Dengue virus is transferred to one 

individual by the bite of an infected Aedes 

female mosquito. Individuals who recuperate 

from one of the serotypes become constantly 

immune to it. However, they may become 

partially-immune or temporarily-immune or 

both to the other serotypes. Up to date, there is 

still no vaccine available for dengue patients. 

The efforts to prevent and control the spread of 

the dengue virus focus merely on the vector 

population, for instance, the implementation of 

the larvicides, residual treatment and space 

sprays. 

 

 

 

 

 

 

 

Many mathematical models have been 

established in the literature to study the 

mechanism of the dengue transmission (Esteva 

& Vargas, 1998) (Esteva & Yang, 2015) 

(Syafruddin & Noorani, 2012). Most of these 

models were developed using the system of 

ordinary differential equation.  

 

The integer order systems are ideal in 

modelling system like Markov system where 

the current state does not depend on the 

previous state. However, Sardar et al. (Sardar, 

Rana, & Chattopadhyay, 2014) explained that 

based on the entomological studies on the 

dengue transmission, memory and associative 

learning in the mosquito population and 

awareness in human population show a 

significant role in the transmission (McCall & 

Kelly, 2002). Since the behaviour of the 

trajectories of the fractional operator is non-

local, it is one of the best ways to incorporate  

memory into the dynamical process (Agarwal, 

Ntouyas, Ahmad, & Alhothuali, 2013).  
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The aims of this study are to 

formulate a fractional order dengue epidemic 

model and to study the stability of the 

disease-free equilibrium point. The 

generalized Adams-Bashforth-Moulton 

algorithm has been used to solve the system 

of differential equations (Garrappa, 2015). 

For our purposes, we have followed the 

dengue disease outbreak in Malaysia for the 

year 2016. In this paper, we presented the 

preliminary result of our study.      

 

This paper is structured as follows. In 

section 2, the formulation of the model is 

given. The basic definition of the fractional 

calculus is included followed by the                                         

construction of the proposed model. Disease-

free equilibrium point and its stability are 

discussed in section 3. Section 4 is reserved 

for numerical results for the model and 

discussions. The conclusion is presented in 

section 5.  

 

 

 

 

 

 

 

 

FORMULATION OF THE MODEL 

 

The history of fractional calculus 

started in 1695 when L’Hospitals asked in a 

letter to Leibniz for the nth derivative, 
Dnx

Dxn
  , 

what is the result for when n = 1/2. For 

more than two centuries, fractional calculus 

is only popular around pure mathematics 

branch. However, a few years back, the study 

of fractional calculus has become researcher's 

interest in many application fields such as in 

engineering, genetics, biology, statistics, and 

even finance. Researchers believe that 

fractional calculus can give more genuine 

understandings of the real-world phenomena 

(Diethelm K., 2010). 

 

There are many descriptions of 

fractional order differential equations 

introduced in the literature. Among the 

famous one are the Riemann-Liouville, 

Caputo and Grünwald-Letnikov. In this 

paper, the Caputo’s definition is used as the 

initial conditions of the integer order 

differential equation can be taken without 

encountering any problems in obtaining the 

solutions (Diethelm & Freed, 2002).

Definition 1. The Caputo derivative of fractional order α of a function f: R+ → R is defined  

by the following equation 

𝐷𝐶
𝛼𝑓(𝑥) =

1

Γ(𝑛 − 𝛼)
∫
𝑑𝑛𝑓

𝑑𝜖𝑛
(𝜀)(𝑥 − 𝜀)𝑛−𝛼−1 𝑑𝜀

𝑥

𝑎

 

where α is the order of the derivative with n-1 < α < n and n = [α] + 1. Γ(n-α) is the Euler 

gamma function.  
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In the formulation of the model, the 

total number of human and mosquito 

population is assumed to be constant. We also 

assume that the infection is produced by only 

one serotype of dengue viruses. The dynamics 

of female Aedes mosquito includes aquatic 

phase, Am, and adult mosquito stage. The adult 

stage is divided into two compartments which 

are susceptible Ms and infectious Mi. The total 

human population is partitioned into three 

compartments that are susceptible Hs, 

infectious Hi, and recovered Hr individuals. 

The derivation of the fractional order 

differential equation for the proposed host-

vector model is based on the ordinary 

differential equation introduced by Bailey for 

a single serotype dengue transmission (Bailey, 

1975) and SIR model established by Kermack 

and McKendrick (Kermack & McKendrick, 

1996). The fractionalization is done following 

the work of Diethelm (Diethelm, 2013). The 

governing equation is as follows: 

 

 

𝐷𝛼𝐴𝑚 = 𝑞𝜙 (1 −
𝐴𝑚
𝐶
)𝑀 − (𝜎𝐴 + 𝜇𝐴)𝐴𝑚 

𝐷𝛼𝑀𝑠 = 𝜎𝐴𝐴𝑚 −
𝑏𝛼𝛽𝑚
𝐻

𝑀𝑠𝐻𝑖 − 𝜇𝑚𝑀𝑠 

𝐷𝛼𝑀𝑖 =
𝑏𝛼𝛽𝑚
𝐻

𝑀𝑠𝐻𝑖 − 𝜇𝑚𝑀𝑖 

𝐷𝛼𝐻𝑠 = 𝜇ℎ(𝐻 − 𝐻𝑠) −
𝑏𝛼𝛽ℎ
𝐻

𝐻𝑠𝑀𝑖 

𝐷𝛼𝐻𝑖 =
𝑏𝛼𝛽ℎ
𝐻

𝐻𝑠𝑀𝑖 − (𝛾ℎ + 𝜇ℎ)𝐻𝑖 

𝐷𝛼𝐻𝑟 = 𝛾ℎ𝐻𝑖 − 𝜇ℎ𝐻𝑟    

(1) 

where the description of the parameters used in the model can be found in Table 1.  

 

The effective contact rate to human bβh, is 

defined as the average number of contacts per 

day that result in infection if the mosquito is 

infected. On the other hand, the effective 

contact rate bβm, is the average number of 

contacts per day that successfully transfer the 

infection (virus) to the vector. All parameters 

are assumed to be positive as the system 

monitors the dynamic of the human 

population.
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Table 1: Parameter description of system (1) and their reasonable range of values. 

Parameter Biological meaning Range of values 

𝑞 Proportion of eggs that results in female 

mosquito 

0-1 

𝜙 Oviposition rate 0-11.2 per day 

𝜎𝐴 Transition rate from aquatic stage to adult 0-0.19 per day 

𝜇𝐴 Per capita mortality rate of aquatic stage 0.01-0.47 per day 

1/𝜇𝑚 Average lifespan of adult mosquito 0-42 days 

1/𝜇ℎ Average lifespan of human 50-75 years 

𝑏 The biting rate 0-1 per day 

𝛽𝑚 Transmission probability from human to vector 0.375 

𝛽ℎ Transmission probability from vector to human 0.375 

𝛾ℎ Recovery rate in the human population 0.083-0.33 per day 

𝐶 Mosquito carrying capacity - 
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        Figure 1: The schematic diagram of the dengue transmission model (1)

 

 

DISEASE-FREE EQUILIRIUM POINT AND LOCAL STABILITY 

 

With the condition of Nh = H = Hs + Hi + Hr, we have Hr = H-Hs + Hi. Thus, we can now write 

down the corresponding system for human population exclusive of the Hr differential equation.

𝐷𝛼𝐴𝑚 = 𝑞𝜙 (1 −
𝐴𝑚

𝐶
)𝑀 − (𝜎𝐴 + 𝜇𝐴)𝐴𝑚   (2) 

𝐷𝛼𝑀𝑠 = 𝜎𝐴𝐴𝑚 −
𝑏𝛼𝛽𝑚
𝐻

𝑀𝑠𝐻𝑖 − 𝜇𝑚𝑀𝑠 

𝐷𝛼𝑀𝑖 =
𝑏𝛼𝛽𝑚
𝐻

𝑀𝑠𝐻𝑖 − 𝜇𝑚𝑀𝑖 

 

𝐷𝛼𝐻𝑠 = 𝜇ℎ(𝐻 − 𝐻𝑠) −
𝑏𝛼𝛽ℎ
𝐻

𝐻𝑠𝑀𝑖 

𝐷𝛼𝐻𝑖 =
𝑏𝛼𝛽ℎ
𝐻

𝐻𝑠𝑀𝑖 − (𝛾ℎ + 𝜇ℎ)𝐻𝑖  
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Let the set Ω be the region of biological interest that is positively invariant with respect to 

model (2).  

 

Ω = {(Am, Ms, Mi, Hs, Hi) ∈ ℝ+
5 : Hs + Hi ≤ H, Am ≤ kH,Ms +Mi ≤ mH}, 

where k is the number of larvae per human and m is the number of female mosquito per human. 

System (2) can be written as follows: 

 

where here,  
dX

dt
= Dα(Am, Ms, Mi, Hs, Hi) and F = (0,0,0, μhH, 0). Meanwhile, M(X) is the matrix 

with all off-diagonal entries are nonnegative value, and known as Metzler matrix. The Metzler 

matrix is in the following form 

 

𝑀(𝑋) =

(

 
 
 
 
 
 
 
 

−𝑞𝜙(𝑀𝑠 +𝑀𝑖)

𝐶
− (𝜎𝐴 + 𝜇𝐴) 𝑞𝜙 𝑞𝜙 0 0

𝜎𝐴 −
𝑏𝛼𝛽𝑚
𝐻

𝐻𝑖 − 𝜇𝑚 0 0 0

0
𝑏𝛼𝛽𝑚
𝐻

𝐻𝑖 −𝜇𝑚 0 0

0 0 0 −𝜇ℎ −
𝑏𝛼𝛽ℎ
𝐻

𝑀𝑖 0

0 0 0
𝑏𝛼𝛽ℎ
𝐻

𝑀𝑖 −(𝛾ℎ + 𝜇ℎ))

 
 
 
 
 
 
 
 

 

 

Since F ≥ 0, we can say that system (3) 

is positively invariant in R+
5 . Meaning that, any 

solution of the equation departing from an 

initial state in the positive orthant R+
5  will 

remain forever in R+
5 . This implies that the  

 

 

 

 

 

 

closed set Ω is positively invariant with respect 

to the system (2) (Rodrigues et al., 2012).  

 

Now we let ν = (Am, Ms, Mi, Hs, Hi) ∈

R+
5 : Hs + Hi ≤ H,Am ≤ kH,Ms +Mi ≤ mH. 

Since m ≥
σA

μA
k, it can be shown that ν is  

 

 

 

  
dX

dt
= M(X)X + F, (3) 
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positively invariant with respect to (3). Hence, we suppose that m and k are chosen such that,

 

To evaluate the equilibrium point, we 

let DαAm = 0, D
αMs = 0, D

αMi =

0, DαHs = 0, D
αHi = 0. The fractional order 

system (2) has two disease-free equilibrium 

(DFE). The first one is the straightforward 

trivial equilibrium E0. Here, Am = 0, 

indicates of the none existence of mosquito 

population, hence, no dengue outbreaks. This 

DFE is not of our interest since this state does 

not represent the real situation for the region 

that we considered in the real data set.   

 

𝐸0 = (0,0,0, 𝐻, 0) 

The second DFE obtained is given by  

𝐸1 = (�̅�𝑚, �̅�𝑠, 0, 𝐻, 0) 

where A̅m and M̅sare given by the following equation: 

A̅m = C(1-
1

Rm
)      and       M̅s =

σAA̅m

μm
 

Hence, 

𝐸1 = (𝐶(1 −
1

𝑅𝑚
),
𝐶𝜎𝐴
𝜇𝑚

(1 −
1

𝑅𝑚
),0, 𝐻, 0) 

where Rm =
qϕσA

μm(σA+μA)
. Rm represent the basic offspring of the mosquito population. This is 

biologically interesting when Rm > 1, in which mosquito population exist. This is the case when 

disease is eradicated without taking any action on the eliminating of the mosquito population.

 

 

 

 

           𝑚 ≥
𝜎𝐴
𝜇𝐴
𝑘  (4) 
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The basic reproduction number R0, is a very 

important threshold quantity in investigating 

the stability of the equilibrium point of the 

system. In general, R0 is biologically defined 

as the expected number of secondary 

infections in a completely susceptible 

population. The interpretations of R0 in terms 

of the stability are as follows 

 

 If R0 < 1, the transmission sequences are 

not self-contained, hence, incapable to cre

ate a major epidemic. 

 If R0 = 1, the infectious is maintained, no 

major outbreaks. 

 If R0 > 1, the number of infected individu

als will increase as infectious take over, he

nce, the disease will persist

 

In this paper, the next generation matrix is used to obtain the R0 for system (2).

𝑅0
2 =

𝑏2𝛼𝛽𝑚𝛽ℎ
(𝛾ℎ + 𝜇ℎ)𝜇𝑚

�̅�𝑠
𝐻

 

 

The calculated R0 is not only depend on the 

biting rate parameter as in the integer order 

case but also a memory dependent threshold 

quantity since R0 ∝ b
α (Hamdan & Kilicman,  

 

 

2018). It can be observed that if the order α is 

decreasing, the value of bα will also be 

decreasing. This result in a less efficient the 

average bite rate by each mosquito per day 

(Sardar, Rana, & Chattopadhyay, 2014). 

 

Theorem 1. The trivial disease-free equilibrium E0, is locally asymptotically stable if R0 < 1 and 

the condition of  Rm < 1 is satisfied, otherwise it is unstable. 

 

Proof. The disease-free equilibrium is locally asymptotically stable if all the eigenvalues, λi, i =

1, 2… ,5 of the Jacobian matrix J(E0) satisfy the following condition (Matignon, 1996).

|arg (𝜆𝑖)| >
𝛼𝜋

2
 

 

 

 

 

 

   
 𝑅0 = √

𝑏2𝛼𝛽𝑚𝛽ℎ
(𝛾ℎ + 𝜇ℎ)𝜇𝑚

�̅�𝑠
𝐻

 (5) 
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The Jacobian matrix of the system evaluated at the equilibrium point E0: 

 

𝐽(𝐸0) =

(

 
 

−(𝜎𝐴 + 𝜇𝐴) 0 0 0 0
𝜎𝐴 −𝜇𝑚 0 0 0
0 0 −𝜇𝑚 0 0
0 0 −𝑏𝛼𝛽ℎ −𝜇ℎ 0

0 0 𝑏𝛼𝛽ℎ 0 −(𝛾ℎ + 𝜇ℎ))

 
 

 

 

It is clearly shown that all eigenvalues are negative real parts;  

-(σA + μA), -μm, -μh, -(γh + μh). Hence, E0 is locally asymptotically stable.  

 

Theorem 2. The DFE E1, is locally asymptotically stable if R0 < 1 and is unstable if R0 > 1. 

Proof. Following the stability condition by Matignon, the Jacobian matrix of the system (2) 

evaluated at the equilibrium point E1, we have

 

𝐽(𝐸1) =

(

 
 
 
 
 

−𝑅𝑚(𝜎𝐴 + 𝜇𝐴) 0 0 0 0

𝜎𝐴 −𝜇𝑚 0 0
𝑏𝛼𝛽𝑚
𝐻

�̅�𝑠

0 0 −𝜇𝑚 0
𝑏𝛼𝛽𝑚
𝐻

�̅�𝑠

0 0 −𝑏𝛼𝛽ℎ −𝜇ℎ 0
0 0 𝑏𝛼𝛽ℎ 0 −(𝛾ℎ + 𝜇ℎ))

 
 
 
 
 

 

 

The calculated eigenvalues are λ1 = -Rm(σA + μA), λ2 = -μm, λ3 = -μh. The other roots are 

determined by solving the quadratic equation: 

 

𝜆2 + (𝜇𝑚 + 𝛾ℎ + 𝜇ℎ)𝜆 + 𝜇𝑚(𝛾ℎ + 𝜇ℎ)(1 − 𝑅0) = 0 

 

Obviously, the roots are negative real parts for when R0 < 1. Hence, proved that E1 is locally 

asymptotically stable if R0 < 1 and is unstable if R0 > 1, and the condition of Rm > 1 is satisfied.
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NUMERICAL RESULTS AND 

DISCUSSION 

 

In the case of fractional order 

differential equation, there is no general 

analytical method in solving the nonlinear 

systems. In fact, the fractional differential 

equations are difficult to solve numerically, 

compared to the integer order ODE. However, 

several analytical method and numerical 

schemes have been developed to solve the 

system. For instance, Diethelm and Freed 

introduced a new algorithm known as 

FracPECE, the generalization of the classical 

PECE type method (Diethelm & Freed, 1999).  

           In this work, we have not established 

any new numerical scheme. We used the 

available Matlab code (fde12) developed by 

Garrappa (Garrappa, 2015), based on the work 

of Diethelm and Freed. As of in the classical 

integer order derivative, we used Matlab ODE 

solver, ode45. The numerical simulations are 

done using the parameter values in Table 2 for 

the system (2) (see (Hamdan & Kilicman, 

2019) for references). The initial conditions for 

the problem: Hs0 = H-Hi0, Hi0 =

2511, Am0 = kH,Ms0 = mH, with the final 

time, tf = 52 weeks. The initial values are 

chosen based on the real data in Malaysia for 

year 2016.   

 

In this study, the values related to the 

human describe the reality of an infected 

period in Malaysia. The data used is based on 

the dengue fever cases recorded in Malaysia 

for 2016, taken from The Ministry of Health 

Malaysia (From the Desk of the Director-

General of Health Malaysia), (Dengue 

Situation Updates 2016, n.d.). However, for 

the mosquito population we have selected 

information from various sources due to the 

limited sources available in Malaysia.  

However, the choice of the parameter 

values is carefully selected to suit the 

demographic factor of Malaysia.
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Table 2: Parameter values 

Parameter Values 

𝐻 31200000 

𝑞 0.8 

𝜙 7.5 

𝜎𝐴 0.08 

𝜇𝐴 0.25 

𝜇𝑚 0.11 

𝜇ℎ 0.0000365 

𝑏 0.8 

𝛽𝑚 0.375 

𝛽ℎ 0.375 

𝛾ℎ 0.334 

𝐶 𝑘𝐻 

𝑘 3 

𝑚 6 
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Figure 2: Solution to the classical model versus the solution of the fractional model (2) with 

various value of α  for the infected human population. 

 

 

  Figure 3: Number of dengue cases recorded in Malaysia, in 2016. 
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Figure 2 represents the trajectories of 

the infected human population for the classical 

integer order derivative and fractional order 

derivative with various values of α and Figure 

3 is the plot of the dengue fever cases in 

Malaysia (2016). We can see through Figure 2, 

the maximum peak of the infected human 

solution for both integer order ODE and 

fractional order differential equation is in 

between 0 to 10 weeks, which agreed well with 

the real data value. We observed that in the 

fractional order case, the maximum peak of the 

infectious human population significantly 

drops as the value of order decreasing. 

However, the solutions required more time to 

achieve their steady state. In other words, one 

can say that the spread of the dengue disease 

can be reduced but needs more time to be 

eradicated. The order α can be represented as 

an index of memory, thus, α → 0, indicates an 

increase of memory in both human and 

mosquito population.

 

Figure 4a: Solution of the fractional order       Figure 4b: Solution of the fractional order for the 

vector model, for α = 0.95.     the human model, for α = 0.95.

Figure 5a: Solution of the fractional order for 

the vector model, for α = 0.75. 

          

 
Figure 5b: Solution of the fractional order for 

the human model, for α = 0.75.

Figure 4a, 4b and 5a, 5b revealed that 

the solution of the susceptible human 

population in the fractional order does not fall 

drastically in a relatively short period for the 

small value of α. We observed that the speed 
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of convergence for the fractional order system 

is slower than the integer order system, and this 

explained the significance of time needed for 

the population to reach the disease-free state.  

Meanwhile, in Figure 6a, 6b and Figure 7a, 7b, 

it is shown that the solutions converge to the 

disease-free equilibrium for α = 0.5, 0.55 in a 

very short period of time. These results verified 

the local stability theorem in section 3 for the 

disease-free equilibrium. However, we noticed 

that the order α, gives a significant effect on the 

results of the stability of the system. The 

required time to eliminate the disease clearly 

depends on the memory effect on the host and 

vector population, at least, to this study.

 

Figure 6a: Solution of the fractional               Figure 6b: Solution of the fractional 

order for the vector model, for α = 0.55.        order for the human model, for α = 0.5. 

                   

 

Figure 7a: Solution of the fractional order        Figure 6b: Solution of the fractional order 

for the vector model, for α = 0.5.                       for human model, for α = 0.5. 
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CONCLUSION 

In this paper, we have proposed and analyzed 

a fractional order dengue epidemic model. The 

hypothetical and epidemiological findings of 

this study are summarized as follows: 

 The disease-free equilibrium of            

system (2) is locally asymptotically   

stable if the corresponding R0<1. 

 Although the equilibrium points of     

fractional order system and integer 

order system are equal, the solution of 

the fractional order model                        

approaches the fixed point over a         

longer period (Demirci, Unal, & Ozalp, 

2011). 

 The memory of the mosquito and        

human population represented by the 

order of the differential equation has a 

significant effect on the period of       the 

disease elimination.   

 An increase in order (memory) of       

human and mosquito population (α →

0), will decrease the abundance of 

infectious mosquito, hence, reduce     

the dengue transmission in a 

population.  

 

The obtained results are significant with a real-

life situation of dengue transmission. For 

instance, mosquito does not casually feed on 

host blood, but they somehow use their 

experience about human spot and 

defensiveness in selecting the host (Sardar et 

al., 2014). Thus, plenty of time and effort are 

needed to completely eradicate the disease, in 

terms of the elimination of the Aedes mosquito, 

in which reflects the results obtained in Figure 

6 and 7.  

 

We can say that from the preliminary results 

obtained, fractional order derivative gives us a 

more realistic way to model vector-borne 

disease dynamics as it possesses memory. In 

this study, we can conclude that smaller value 

of α, gives a better approximation in reducing 

the intensity of the dengue transmission. 

However, a thorough analysis needs to be done 

on the parameter values and α value chosen, so 

that this model can be used to successfully 

predict the long-term behaviour of the disease, 

especially in Malaysia. A model of fractional 

order dengue with control parameters will be 

our future study. This model will be developed 

to see how effective the current control 

strategies used by the government specifically 

in Malaysia and how does the order α, and 

control parameter affect the stability of the 

model.
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