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VIRTUAL SYMPOSIUM ON MULTIDISCIPLINARY SCIENCE 2021 

ON SOME PATTERNS OF TNAF FOR SCALAR MULTIPLICATION OVER KOBLITZ CURVE 
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Abstract: A 𝜏-adic non-adjacent form (TNAF) of an element 𝛼 of the ring ℤ(𝜏) is an expansion whereby the digits are generated by 

iteratively dividing 𝛼 by 𝜏, allowing the remainders of −1, 0 or 1. The application of TNAF as a multiplier of scalar multiplication (SM) on 

the Koblitz curve plays a key role in Elliptical Curve Cryptography (ECC). There are several patterns of TNAF (𝛼) expansion in the form of  

[𝑐0, 0, … ,0, 𝑐𝑙−1], [𝑐0, 0, … , 𝑐𝑙−1

2

, … ,0, 𝑐𝑙−1], 2 + 2𝑘, 3 + 4𝑘, 5 + 4𝑘 and 8𝑘1 + 8𝑘2 that have been produced in prior work in the 

literature. However, the construction of their properties based upon pyramid number formulas such as Nichomacus’s theorem and 

Faulhaber’s formula remains to be rather complex. In this work, we derive such types of TNAF in a more concise manner by applying the 

power of Frobenius map (𝜏𝑚) based on v-simplex and arithmetic sequences. 

 

Keywords: Non adjacent form, Koblitz curve, scalar multiplication. 
 

 
1. Introduction 
 

Koblitz curves are a special type of curve for which the 

Frobenius endomorphism can be applied to enhance its 

performance of computing SM (Koblitz, 1992) in ECC. It is 

defined over 𝑭𝟐𝒎   as 𝑬𝒂: 𝒚𝟐 + 𝒙𝒚 = 𝒙𝟑 + 𝒂𝒙𝟐 + 𝟏. The 

Frobenius map 𝝉: 𝑬𝒂(𝑭𝟐𝒎) → 𝑬𝒂(𝑭𝟐𝒎) is defined by 

𝝉(𝒙, 𝒚) = (𝒙𝟐, 𝒚𝟐) 𝐚𝐧𝐝 𝝉(∞) = ∞, where ∞ represents a 

point at infinity. Therefore, it satisfies the roots of the 

polynomial 𝝉𝟐 − 𝒕𝝉 + 𝟐. Since 𝝉  =
𝒕+√−𝟕

𝟐
 is a quadratic 

integer, the set ℤ(𝝉) = {𝒓 + 𝒔𝝉 | 𝒓, 𝒔 ∈ ℤ} forms a ring 

(Heuberger & Krenn, 2013b). Suppose P and Q are points on 

a Koblitz curve. SM is 𝒏 multiple repetitions of a point on the 

curve, and is denoted as 𝒏𝑷 = 𝑷 + 𝑷 + ⋯ + 𝑷, such that 

𝒏𝑷 = 𝑸. 

Solinas (1997) introduced a multiplier of SM in the form 

of TNAF on a Koblitz curve to reduce SM costs. TNAF of 

nonzero 𝜶 = 𝒓 + 𝒔𝝉 in ℤ(𝝉) can be written as TNAF (𝜶) =

∑ 𝒄𝒊𝝉𝒊𝒍−𝟏
𝒊=𝟎  where 𝒄𝒊 ∈ {−𝟏, 𝟎, 𝟏} and  𝒄𝒊𝒄𝒊+𝟏 = 𝟎. If  𝒄𝒍−𝟏 ≠ 𝟎, 

then 𝒍 is assumed to be the length of TNAF. This 𝜶 is divisible 

by 𝝉 iff r is even. That is, 
𝜶

𝝉
= (𝒔 +

𝒕𝒓

𝟐
) −

𝒓

𝟐
𝝉, where 𝒕 =

(−𝟏)𝟏−𝒂 for 𝒂 ∈ {𝟎, 𝟏}. If 𝜶 is not divisible by 𝝉 (i.e., r is odd), 

then the remainder is chosen to be either 𝟏 or −𝟏. The 

coefficients 𝒄𝒊 of TNAF are generated successively by dividing 

𝜶 with 𝝉 until 𝒓 and 𝒔 are equal to 0. Since 𝒄𝒊 𝒄𝒊+𝟏 = 𝟎, the 

next coefficient (𝒄𝒊+𝟏) of TNAF expansion after 𝒄𝒊 must be 0. 

Furthermore, it has a unique digit representation and the 

average density of nonzero digits in the expansion is 

approximately 
𝟏

𝟑
 . The following examples describe the 

division process of TNAF (𝟏 − 𝟐𝝉).  

 

Example 1. 

Here we consider 𝒏 = 𝟏 − 𝟐𝝉  and  �̅� = 𝟏 − 𝝉 represent 

the conjugate of 𝝉. Firstly, consider the elliptic curve 𝑬𝟏  

where 𝒂 = 𝟏. Therefore, 𝝉 ∙ �̅� = −𝝉𝟐 + 𝝉 = (−𝝉 + 𝟐) + 𝝉 =

𝟐 is shown.  Next, the following steps are applied for finding 

TNAF (𝒏).  

Step 1:  Since 𝟏 − 𝟐𝝉  is indivisible by 𝝉, we choose 𝒄𝟎 = 𝟏. 

That is, 
𝟏−𝟐𝝉−𝟏

𝝉
= −𝟐. Thus, TNAF(𝒏) =

[𝟏, 𝒄𝟏, 𝒄𝟐, … , 𝒄𝒍−𝟐, 𝒄𝒍−𝟏]. The next coefficient (𝒄𝟏) must be 0.  

Step 2: Since −𝟐 is divisible by 𝝉, then 𝐜𝟏 = 𝟎. That is, 
−𝟐

𝝉
=

−𝟐

𝝉
∙

�̅�

�̅�
= −𝟏 + 𝟏𝝉. Thus, TNAF(𝒏) = [𝟏, 𝟎, 𝒄𝟐, … , 𝒄𝒍−𝟐, 𝒄𝒍−𝟏]. 

Step 3:  Since −𝟏 + 𝝉 is indivisible by 𝝉, we choose 𝒄𝟐 = 𝟏. 

That is, 
−𝟏+𝟏𝝉−𝟏

𝝉
= 𝝉. Thus, TNAF(𝒏) =

[𝟏, 𝟎, 𝟏, 𝒄𝟑, 𝒄𝟒, … , 𝒄𝒍−𝟐, 𝒄𝒍−𝟏]. 

Step 4:   Since 𝝉 is divisible by 𝝉 (i.e., 
𝝉

𝝉
= 𝟏), then 𝒄𝟑 is 𝟎 and 

TNAF(𝒏) = [𝟏, 𝟎, 𝟏, 𝟎, 𝒄𝟒, … , 𝒄𝒍−𝟐, 𝒄𝒍−𝟏]. 
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Step 5:  Since 𝟏 is indivisible by  , we choose 𝒄𝟒 = 𝟏. That is, 
𝟎

𝝉
= 𝟎.  

Lastly, TNAF(𝒏) = [𝟏, 𝟎, 𝟏, 𝟎, 𝟏] = 𝟏 + 𝝉𝟐 + 𝝉𝟒 .   

 

For this example, we utilized a point 𝑷 in the form of 

polynomial basis which satisfies 𝑬𝟏. By choosing a certain 

irreducible polynomial, we can obtain the output of SM in the 

form of Q.  

Solinas (2000) also considered other properties of TNAF. 

That is,  𝜶 is divisible by 𝝉𝟐 iff 𝒓 ≡  𝟐𝒔 (𝒎𝒐𝒅 𝟒). For length 

𝒍(𝜶) > 𝟑𝟎 then  𝒍𝒐𝒈𝟐 𝑵(𝜶) − 𝟎. 𝟓𝟓 < 𝒍 (𝜶) <

𝒍𝒐𝒈𝟐 𝑵(𝜶) + 𝟑. 𝟓𝟐 , where 𝑵(𝜶) = 𝒓𝟐 + 𝒕𝒓𝒔 + 𝟐𝒔𝟐  is 

denoted as a norm of α. Besides that, he developed among 

the most efficient algorithms for converting TNAF in the form 

of 𝒓 + 𝒔𝝉 into ∑ 𝒄𝒊𝝉𝒊𝒍−𝟏
𝒊=𝟎  as follows. This can eliminate the 

elliptic doublings in SM, and increase the number of addition 

operations.  

 

Algorithm 1.1. (Converting 𝒓 + 𝒔𝝉  to ∑ 𝒄𝒊
𝒍−𝟏
𝒊=𝟎 𝝉𝒊) 

Input: integers 𝒓, 𝒔 

Output: TNAF (𝒓 + 𝒔𝝉) 

Computation: 

1. 𝒄𝟎 ←  𝒓,  𝒄𝟏 ←  𝒔   

2. 𝑺 ← [ ]  

3. While 𝒄𝟎 ≠  𝟎 or 𝒄𝟏 ≠  𝟎    

4. If 𝒄𝟎 odd then  

5. 𝒖 ←  𝟐 − (𝒄𝟎 − 𝟐𝒄𝟏  𝒎𝒐𝒅 𝟒)   

6. 𝒄𝟎 ←  𝒄𝟎 − 𝒖 

7. Else 

8. 𝒖 ←  𝟎 

9. Prepend 𝒖 to 𝑺 

10. (𝒄𝟎, 𝒄𝟏) ←  (𝒄𝟏 +  
𝒕𝒄𝟎

𝟐
−

𝒄𝟎

𝟐
) 

11. End While 

12. Output 𝑺 

 

The detailed algorithm for SM of 𝒏𝑷 where n is in the 

form of TNAF (𝒓 + 𝒔𝝉) can be referred to in Algorithm 3 (see 

Solinas, 2000). Other concepts of TNAF for SM have also 

been investigated in prior research (Avanzi et al., 2007, 2011; 

Blake et al., 2008; Heuberger, 2010; Hakuta et al., 2010; 

Heuberger & Krenn, 2013a; Yunos & Atan, 2016; Yunos & 

Suberi, 2018.) on Koblitz curves as well as the other types of 

curves. 

Yunos et al. (2014) introduced 𝝉 in the expression in the 

form of 𝝉𝒊 = 𝒃𝒊 𝒕𝒊 + 𝒂𝒊𝒕
𝒊+𝟏 𝝉 , where 𝒂𝟎 = 𝟎, 𝒃𝟎 = 𝟏, 𝒂𝒊 =

𝒂𝒊−𝟏 + 𝒃𝒊−𝟏 and 𝒃𝒊 = −𝟐𝒂𝒊−𝟏 for 𝒊 > 𝟎.  It is based on the 

Lucas sequence and is useful to accelerate the process of 

transforming TNAF in the form of  ∑ 𝒄𝒊
𝒍−𝟏
𝒊=𝟎 𝝉𝒊  into 𝒓 + 𝒔𝝉  with  

𝒓 = ∑ 𝒄𝒊
𝒍−𝟏
𝒊=𝟎  𝒃𝒊 𝒕𝒊 and 𝒔 = ∑ 𝒄𝒊

𝒍−𝟏
𝒊=𝟎 𝒂𝒊 𝒕

𝒊+𝟏 (Yunos et al., 

2015a, b, c).  

Based on their theory, we rewrite the conversion process 

developed by Suberi et al. (2018) as follows: List all the 

patterns of 𝐓𝐍𝐀𝐅(𝑨) = [𝒄𝟎, 𝟎, … , 𝟎, 𝒄𝒍−𝟏]  (see Tables 1 and 

2) and 𝐓𝐍𝐀𝐅(𝑩) = [𝒄𝟎, 𝟎, … , 𝒄𝒍−𝟏

𝟐

, … , 𝟎, 𝒄𝒍−𝟏] for 

𝒄𝟎, 𝒄𝒍−𝟏

𝟐

, 𝒄𝒍−𝟏 ∈ {−𝟏, 𝟏} (𝐬𝐞𝐞 𝐓𝐚𝐛𝐥𝐞 𝟑) and describe the 

properties of TNAF with the least number of nonzero 

coefficients, as in Proposition 1.1.    

 

Algorithm 1.2.   (Converting  ∑ 𝒄𝒊
𝒍−𝟏
𝒊=𝟎 𝝉𝒊 to 𝒓 + 𝒔𝝉) 

Input: coefficient 𝒄𝒊 for 𝒊 = 𝟎, 𝟏, 𝟐, … , 𝒍 − 𝟏 𝒂𝒏𝒅  trace  𝒕 =

(−𝟏)𝟏−𝒂  for  𝒂 ∈ {𝟎, 𝟏}.   

Output: 𝒓 + 𝒔𝝉  

Computation: 

1. 𝒂𝟎 ←  𝟎, 𝒃𝟎 ← 𝟏      

2. For i from 1 to 𝒍 − 𝟏 do    

3. 𝒂𝒊 ← 𝒂𝒊−𝟏 + 𝒃𝒊−𝟏      

4. 𝒃𝒊 ←  −𝟐𝒂𝒊−𝟏     

5. 𝒈𝒊  ←  𝒂𝒊𝒕
𝒊             

6. 𝒉𝒊 ←  𝒃𝒊𝒕𝒊+𝟏   

7. End do 

8. 𝒓 ←   ∑ 𝒄𝒊𝒉𝒊
𝒍−𝟏
𝒊=𝟎     

9. 𝒔 ←  ∑ 𝒄𝒊
𝒍−𝟏
𝒊=𝟎 𝒈𝒊 

10. Return to (r,s) 

 

Proposition 1.1. Let, 𝒂𝟎 = 𝟎 and 𝒃𝟎 = 𝟏.   If 𝝉𝒊 = 𝒃𝒊 𝒕
𝒊 +

𝒂𝒊 𝒕
𝒊+𝟏𝝉 for 𝒂𝒊 = 𝒂𝒊−𝟏 + 𝒃𝒊−𝟏 ,  𝒃𝒊 = −𝟐𝒂𝒊−𝟏  and 𝒕 ∈

 {−𝟏, 𝟏} then    

(i) 𝑻𝑵𝑨𝑭(𝒄𝟎 + 𝒄𝒍−𝟏  𝝉𝒍−𝟏)  = (𝒄𝟎 +

𝒄𝒍−𝟏 𝒃𝒍−𝟏 𝒕𝒍−𝟏 ) + (𝒄𝒍−𝟏 𝒂𝒍−𝟏 𝒕𝒍)𝝉 

for 𝒄𝟎, 𝒄𝒍−𝟏 ∈ {−𝟏, 𝟏 } and 𝒍 ≥  𝟑. 

(ii) 𝑻𝑵𝑨𝑭(± (𝟏 + 𝝉
𝒍−𝟏

𝟐  + 𝝉𝒍−𝟏 )) = ± (( 𝟏 +

𝒃𝒍−𝟏

𝟐

  𝒕
𝒍−𝟏

𝟐  + 𝒃𝒍−𝟏 𝒕𝒍−𝟏)  +  (𝒂𝒍−𝟏

𝟐

  𝒕
𝒍−𝟏

𝟐
+𝟏 +

𝒂𝒍−𝟏  𝒕𝒍) 𝝉)  

for 𝒍 = 𝟑 + 𝟐𝜼 with 𝜼 ∈ ℕ. 

 

The following is an example for Proposition 1.1. 

 

Example 2. 

TNAF ([𝟏, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟏]) = 𝝉𝟔 + 𝟏 in Table 1 and 

𝐓𝐍𝐀𝐅 ([−𝟏, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟏]) = −𝝉𝟔 + 𝟏 in Table 2 can be 

written as 𝟑 + 𝟓𝝉  and 𝟏 + 𝟓𝝉  respectively. The converting 

process uses Proposition 1.1 (i) and each expansion has a 

density of 2/7. Meanwhile, 𝐓𝐍𝐀𝐅([𝟏, 𝟎, 𝟎, 𝟏, 𝟎, 𝟎, 𝟏]) =

𝝉𝟔 + 𝝉𝟑 + 𝟏  in Table 3 can be transformed into 𝟏 + 𝟒𝝉 by 

using Proposition 1.1 (ii) and its density 3/7.  

Yunos et al. (2019) proposes other patterns of TNAF 

expression (see Table 4) in the form of 𝐓𝐍𝐀𝐅(𝑪) =

[𝟎, 𝒄𝟏, … , 𝒄𝒍−𝟏 ] , 𝐓𝐍𝐀𝐅(𝑫) = [−𝟏, 𝒄𝟏, … , 𝒄𝒍−𝟏], 

𝐓𝐍𝐀𝐅(𝑬) =  [𝟏, 𝒄𝟏, … , 𝒄𝒍−𝟏]  and 𝐓𝐍𝐀𝐅(𝑭) =

[𝟎, 𝟎, 𝟎, 𝒄𝟑, 𝒄𝟒, … , 𝒄𝒍−𝟏 ], which occur between integer 𝜸 

from 1 to 21, which use Algorithm 1.1 for converting  

𝜸 into TNAF(𝜸) (or alternatively, use Algorithm 1.2 for 

converting TNAF(𝜸) into 𝜸). 
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Table 1. TNAF(A) with 𝑐0, 𝑐𝑙−1 = ±1 and 𝑐i = 0 for 𝑖 = 1,2, … , 𝑙 − 2  with its 𝑟 + 𝑠𝜏  and length,  3 ≤ 𝑙 ≤ 15. 

TNAF(A) 𝑟 + 𝑠𝜏 𝑙  TNAF(A) 𝑟 + 𝑠𝜏 𝑙 

±[1,0,1] ±(−1 + 𝜏) 3  ±[1,0,0,0,0,0,0,0,0,1] ±(7 − 17𝜏) 10 
±[1,0,0,1] ±(−1 − 𝜏) 4  ±[1,0,0,0,0,0,0,0,0,0,1] ±(35 − 11𝜏) 11 
±[1,0,0,0,1] ±(3 − 3𝜏) 5  ±[1,0,0,0,0,0,0,0,0,0,0,1] ±(23 + 23𝜏) 12 
±[1,0,0,0,0,1] ±(7 − 𝜏) 6  ±[1,0,0,0,0,0,0,0,0,0,0,0,1] ±(−45

+ 45𝜏) 
13 

±[1,0,0,0,0,0,1] ±(3 + 5𝜏) 7  ±[1,0,0,0,0,0,0,0,0,0,0,0,0,1] ±(−89 − 𝜏) 14 
±[1,0,0,0,0,0,0,1 ±(−9 + 7𝜏) 8  ±[1,0,0,0,0,0,0,0,0,0,0,0,0,0,1] ±(3 − 91𝜏) 15 
±[1,0,0,0,0,0,0,0,1] ±(−13 − 3𝜏) 9     

 
 
 
Table 2. TNAF(A) with 𝑐0 = ∓1, 𝑐𝑙−1 = ±1 and 𝑐i = 0 for 𝑖 = 1,2, … , 𝑙 − 2   with its     𝑟 + 𝑠𝜏  and length,  3 ≤ 𝑙 ≤ 15. 

TNAF(A) 𝑟 + 𝑠𝜏  𝑙  TNAF(A) 𝑟 + 𝑠𝜏  𝑙 

±[−1,0,1] ±(−3 + 𝜏) 3  ±[−1,0,0,0,0,0,0,0,0,1] ±(5
− 17𝜏) 

10 

±[−1,0,0,1] ±(−3 − 𝜏) 4  ±[−1,0,0,0,0,0,0,0,0,0,1] ±(33
− 11𝜏) 

11 

±[−1,0,0,0,1] ±(1 − 3𝜏) 5  ±[−1,0,0,0,0,0,0,0,0,0,0,1] ±(21
+ 23𝜏) 

12 

±[−1,0,0,0,0,1] ±(5 − 𝜏) 6  ±[−1,0,0,0,0,0,0,0,0,0,0,0,1] ±(−47
+ 45𝜏) 

13 

±[−1,0,0,0,0,0,1] ±(1 + 5𝜏) 7  ±[−1,0,0,0,0,0,0,0,0,0,0,0,0,1] ±(−91
− 𝜏) 

14 

±[−1,0,0,0,0,0,0,1] ±(−11
+ 7𝜏) 

8  ±[−1,0,0,0,0,0,0,0,0,0,0,0,0,0,1] ±(181
− 89𝜏) 

15 

±[−1,0,0,0,0,0,0,0,1] ±(−15
− 3𝜏) 

9     

 
 
Table 3. TNAF(B) with 𝑐0, 𝑐𝑙−1

2

, 𝑐𝑙−1 = ±1 and 𝑐𝑖 = 0 , 𝑖 = 1,2, … , 𝑙 − 2  with its 𝑟 + 𝑠𝜏 and length, 𝑙 = 5, 7, 9, … , 21. 

TNAF(B) 𝑟 + 𝑠𝜏 𝑙 

±[1, 0, 1, 0, 1] ±(1 − 2𝜏) 5 
±[1, 0, 0,1, 0, 0, 1] ±(1 + 4𝜏) 7 
±[1, 0, 0, 0, 1, 0, 0, 0, 1] ±(−11 − 6𝜏) 9 
±[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] ±(41 − 12𝜏) 11 
±[1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1] ±(−43 + 50𝜏) 13 
±[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1] ±(−7 − 84𝜏) 15 
±[1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1] ±(165 + 90𝜏) 17 
±[1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1] ±(−535 +  68𝜏) 19 

±[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] ±(949 − 636𝜏) 21 

 
Table 4. TNAF(𝜸) for integer 𝟏 ≤ 𝜸 ≤ 𝟐𝟏 and its HW and length (𝒍). 

𝜸 TNAF(𝜸) HW  𝒍  𝜸 TNAF(𝜸) HW 𝒍 

1 [𝟏] 1 1  12 [𝟎, 𝟎, −𝟏, 𝟎, −𝟏, 𝟎, −𝟏, 𝟎, −𝟏] 4 9 

2 [𝟎, −𝟏, 𝟎, −𝟏] 2 4  13 [𝟏, 𝟎, −𝟏, 𝟎, −𝟏, 𝟎, −𝟏, 𝟎, −𝟏] 5 9 

3 [−𝟏, 𝟎, 𝟏, 𝟎, 𝟎, −𝟏] 3 6  14 [𝟎, 𝟏, 𝟎, −𝟏, 𝟎, 𝟎, −𝟏, 𝟎, −𝟏] 4 9 

4 [𝟎, 𝟎, 𝟏, 𝟎, 𝟎, 𝟏] 2 6  15 [−𝟏, 𝟎, 𝟎, 𝟎, 𝟏, 𝟎, 𝟎, 𝟎, −𝟏] 3 9 

5 [𝟏, 𝟎, 𝟏, 𝟎, 𝟎, 𝟏] 3 6  16 [𝟎, 𝟎, 𝟎, 𝟎, 𝟏, 𝟎, 𝟎, 𝟎, −𝟏] 2 9 

6 [𝟎, 𝟏, 𝟎, 𝟎, 𝟎, 𝟏] 2 6  17 [𝟏, 𝟎, 𝟎, 𝟎, 𝟏, 𝟎, 𝟎, 𝟎, −𝟏] 3 9 

7 [−𝟏, 𝟎, 𝟎, −𝟏, 𝟎, 𝟏] 3 6  18 [𝟎, −𝟏, 𝟎, 𝟏, 𝟎, 𝟏, 𝟎, 𝟎, −𝟏] 4 9 

8 [𝟎, 𝟎, 𝟎, −𝟏, 𝟎, 𝟏]  2 6  19 [−𝟏, 𝟎, 𝟏, 𝟎, −𝟏, 𝟎, 𝟎, 𝟏, 𝟎, 𝟎, 𝟏] 5 11 

9 [𝟏, 𝟎, 𝟎, −𝟏, 𝟎, 𝟏] 3 6  20 [𝟎, 𝟎, 𝟏, 𝟎, −𝟏, 𝟎, 𝟎, 𝟏, 𝟎, 𝟎, 𝟏] 4 11 

10 [𝟎, −𝟏, 𝟎, 𝟎, −𝟏, 𝟎, −𝟏, 𝟎, −𝟏] 4 9  21 [𝟏, 𝟎, 𝟏, 𝟎, −𝟏, 𝟎, 𝟎, 𝟏, 𝟎, 𝟎, 𝟏] 5 11 

11 [−𝟏, 𝟎, −𝟏, 𝟎, −𝟏, 𝟎, −𝟏, 𝟎, −𝟏] 5 9      
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Hamming Weight (HW) in Table 4 is defined as the 

number of nonzero coefficients in the expression of an 

element in ℤ(𝝉) (Solinas, 2000; Yunos & Atan, 2013). The 

following proposition illustrates the pattern of all TNAF (𝜸) in 

this table, where 𝜸 in terms of                       𝟐 + 𝟐𝒌,    𝟑 + 𝟒𝒌,

𝟓 + 𝟒𝒌 and     𝟖𝒌𝟏 + 𝟖𝒌𝟐. 

 

Proposition 1.2.  

Let k be any integer, 𝒌𝟏, 𝒌𝟐 ∈ ℕ and 𝒄𝒊 ∈ {−𝟏, 𝟎, 𝟏}. Then,  

(i) 𝑻𝑵𝑨𝑭(𝟐 + 𝟐𝒌) =  ∑ 𝒄𝒊
𝒍−𝟏
𝒊=𝟏 𝝉𝒊. 

(ii) 𝑻𝑵𝑨𝑭(𝟑 + 𝟒𝒌) = −𝟏 +  ∑ 𝒄𝒊
𝒍−𝟏
𝒊=𝟏 𝝉𝒊.  

(iii) 𝑻𝑵𝑨𝑭(𝟓 + 𝟒𝒌) = 𝟏 +  ∑ 𝒄𝒊
𝒍−𝟏
𝒊=𝟏 𝝉𝒊. 

(iv) TNAF(𝟖𝒌𝟏 + 𝟖𝒌𝟐) =  ∑ 𝒄𝒊
𝒍−𝟏
𝒊=𝟑 𝝉𝒊. 

This study then determines the actual formula for TNAF of A-

F in the form of  𝒓 + 𝒔𝝉. Hadani et al. (2019a, b) resolved this 

issue by applying 𝝉𝒎 = −𝟐𝒔𝒎−𝟏 + 𝒔𝒎𝝉 for 𝒔𝒎 =

∑𝒎
𝒊=𝟏

(−𝟐)𝒊−𝟏𝒕𝒎−𝟐𝒊+𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊  as follows.  

 

Proposition 1.3.   

If 𝝉𝒎 = −𝟐𝒔𝒎−𝟏 + 𝒔𝒎𝝉 for    𝒔𝒎 =

∑𝒎
𝒊=𝟏

(−𝟐)𝒊−𝟏𝒕𝒎−𝟐𝒊+𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊  and 𝒕 ∈ {−𝟏, 𝟏},   then  

(i) 𝑻𝑵𝑨𝑭(𝒄𝟎 + 𝒄𝒍−𝟏𝝉𝒍−𝟏) = (𝒄𝟎 − 𝟐𝒄𝒍−𝟏 (𝟏 +

∑𝒍−𝟐
𝒊=𝟐

(−𝟐)𝒊−𝟏𝒕𝒍−𝟏

(𝒊−𝟏)!
∏ (𝒍 − 𝟐 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 )) +  

𝒄𝒍−𝟏𝝉 (𝒕 + ∑𝒍−𝟏
𝒊=𝟐

(−𝟐)𝒊−𝟏𝒕𝒍

(𝒊−𝟏)!
∏ (𝒍 − 𝟏 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 )   

for 𝒄𝟎, 𝒄𝒍−𝟏 ∈ {−𝟏, 𝟏} 𝒂𝒏𝒅 𝒍 ≥ 𝟑. 

 

(ii) TNAF(± (𝟏 + 𝝉
𝒍−𝟏

𝟐 + 𝝉𝒍−𝟏)) = ± [𝟏 − 𝟐 (𝒕𝜼+𝟏 +

∑𝜼
𝒊=𝟐

(−𝟐)𝒊−𝟏𝒕𝜼+𝟏

(𝒊−𝟏)!
∏ (𝜼 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 ) − 𝟐 (𝟏 +

∑𝟐𝜼+𝟏
𝒊=𝟐

(−𝟐)𝒊−𝟏

(𝒊−𝟏)!
∏ (𝟐𝜼 + 𝟏 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 ) + (𝒕𝜼 +

∑𝟏+𝜼
𝒊=𝟐

(−𝟐)𝒊−𝟏𝒕𝜼

(𝒊−𝟏)!
∏ (𝟏 + 𝜼 − 𝒋) + 𝒕 +𝟐𝒊−𝟐

𝒋=𝒊

∑𝟐+𝟐𝜼
𝒊=𝟐

(−𝟐)𝒊−𝟏𝒕

(𝒊−𝟏)!
∏ (𝟐 + 𝟐𝜼 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 ) 𝝉] 

for  𝒍 = 𝟑 + 𝟐𝜼  with integer 𝜼 ≥ 𝟐.   

 

Proposition 1.4.  

Let 𝒌 be any integer, 𝒌𝟏, 𝒌𝟐 ∈ ℕ and 𝒄𝒎 ∈  {−𝟏, 𝟎, 𝟏}.  If 

𝝉𝒎 = −𝟐𝒔𝒎−𝟏 + 𝒔𝒎𝝉 for 𝒔𝒎 =

∑𝒎
𝒊=𝟏

(−𝟐)𝒊−𝟏𝒕𝒎−𝟐𝒊+𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 , then  

(i) 𝑻𝑵𝑨𝑭(𝟐 + 𝟐𝒌) = −𝟐 ∑ 𝒄𝒎𝒕𝒎𝒍−𝟏
𝒎=𝟏 (𝟏 +

∑𝒎−𝟏
𝒊=𝟐

(−𝟐)𝒊−𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝟏 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 ) + 

𝝉 ∑ 𝒄𝒎𝒕𝒎+𝟏𝒍−𝟏
𝒎=𝟏 (𝟏 + ∑𝒎

𝒊=𝟐
(−𝟐)𝒊−𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 ) 

. 

(ii) 𝑻𝑵𝑨𝑭(𝟑 + 𝟒𝒌) = −𝟏 − 𝟐 ∑ 𝒄𝒎𝒕𝒎𝒍−𝟏
𝒎=𝟏 (𝟏 +

∑𝒎−𝟏
𝒊=𝟐

(−𝟐)𝒊−𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝟏 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 )   

+𝝉 ∑ 𝒄𝒎𝒕𝒎+𝟏 (𝟏 + ∑𝒎
𝒊=𝟐

(−𝟐)𝒊−𝟏

(𝒊−𝟏)!
∏ (𝒎 −𝟐𝒊−𝟐

𝒋=𝒊
𝒍−𝟏
𝒎=𝟏

𝒋)). 

(iii) 𝑻𝑵𝑨𝑭(𝟓 + 𝟒𝒌) = 𝟏 − 𝟐 ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟏 𝒕𝒎 (𝟏 +

∑𝒎−𝟏
𝒊=𝟐

(−𝟐)𝒊−𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝟏 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 )+  

𝒕𝝉 ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟏 𝒕𝒎 (𝟏 + ∑𝒎

𝒊=𝟐
(−𝟐)𝒊−𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 ).  

(iv) 𝑻𝑵𝑨𝑭(𝟖𝒌𝟏 + 𝟖𝒌𝟐) = −𝟐 ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟑 𝒕𝒎 (𝟏 +

∑𝒎−𝟏
𝒊=𝟐

(−𝟐)𝒊−𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝟏 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 ) + 

𝒕𝝉 ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟑 𝒕𝒎 (𝟏 + ∑𝒎

𝒊=𝟐
(−𝟐)𝒊−𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 ).  

 

However, the construction of 𝒔𝒎 in Propositions 1.3 and 

1.4 are still rather complex. They are based upon the pyramid 

number formula, Nichomacus’s theorem and Faulhaber’s 

formula, as described by Hadani and Yunos (2018). The 

primary objective of this research is to derive TNAF of A-F in 

a more concise form by applying 𝝉𝒎 = −𝟐𝒔𝒎−𝟏 + 𝒔𝒎𝝉, 

where 𝒔𝒎 = 𝒕𝒎+𝟏 ∑ (−𝟐)𝒊−𝟏 (
𝒎 − 𝒊
𝒊 − 𝟏

)
⌊

𝒎+𝟏

𝟐
 ⌋  

𝒊=𝟏 , which is based 

on v-simplex and arithmetic sequences. The detailed 

development of 𝒔𝒎 can be obtained in Yunos et al. (2021). 

This paper is structured as follows. In this section, we give 

some properties describing the patterns for TNAF of A - F (see 

Propositions 1.1-1.4) produced by previous researchers. In 

the next section, we describe the preliminaries of this study. 

In Section 3, we discuss how to improve Propositions 1.3 and 

1.4 using a new approach, which is the main objective of this 

research, and describe its advantages in cryptosystems. The 

final chapter concludes. 

 

2. Preliminaries 
 

The following are propositions and algorithms that were 

used throughout this study. 

 

Proposition 2.1. (Hadani et al., 2019a)  

Given 𝝉𝒎  =  𝒓𝒎  +  𝒔𝒎 𝝉  an element of  ℤ(𝝉) for 𝒎 ∈ ℤ+. 

Let 𝒔𝟏 = 𝟏 and      𝒔𝟐 = 𝒕. If     𝒇𝒊𝒎
=

(−𝟐)𝒊−𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊  for 

𝟐 ≤ 𝒊 ≤
𝒎+𝟏

𝟐
 and 𝒎 ≥ 𝟐𝒊 − 𝟏, then 𝒔𝒎  =

∑ 𝒇𝒊𝒎

⌊
𝒎+𝟏

𝟐
 ⌋  

𝒊=𝟏 𝒕𝒎−𝟐𝒊+𝟏 with 𝒇𝟏𝒎
 =  𝟏 and 𝒎 ≥  𝟑. 

Subsequently, 𝒓𝒎  =  −𝟐𝒔𝒎−𝟏. 

 

Yunos et al. (2021) described an argument that 𝒇𝒊𝒎
=

(−𝟐)𝒊−𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊  is equal to 𝜷𝒌𝒎
 =  (−𝟐)𝒌−𝟏 (

𝒎 − 𝒌
𝒌 − 𝟏

)  

for 𝒎 ≥  𝟐 . This new approach reduced the complexity of 

formula 𝒔𝒎 in Proposition 2.1, and obtained a more practical 

formula for 𝝉𝒎. That is,  

𝝉𝒎 =  −𝟐𝒔𝒎−𝟏  +  𝒔𝒎𝝉 =  −𝟐 ∑ 𝜷𝒌𝒎−𝟏

⌊
𝒎

𝟐
 ⌋  

𝒌=𝟏
𝒕𝒎 + 

𝝉 ∑  𝜷𝒌𝒎

⌊
𝒎+𝟏

𝟐
 ⌋  

𝒌=𝟏
𝒕𝒎+𝟏                           (1) 
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The first application of using this result is TNAF (𝜶) in the 

form of 𝒓 + 𝒔𝝉 can be obtained from ∑ 𝒄𝒎 𝝉𝒎𝒍−𝟏
𝒎=𝟎   , and its 

algorithm is developed as follows: 

 

Algorithm 2.2.  Converting  ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟎 𝝉𝒎 to 𝒓 + 𝒔𝝉  (Yunos et 

al., 2021) 

Input: 𝒕 ←  (−𝟏)𝟏−𝒂  for 𝒂 ∈ {𝟎, 𝟏}, all coefficients 𝒄𝒎 ∈

{−𝟏, 𝟎, 𝟏} for 𝒎 = 𝟎, 𝟏, . . . , 𝒍 − 𝟏. 

Output: 𝒓 + 𝒔𝝉  

Computation:       

1. For m from 0 to 1 do                                       

2. 𝒅𝒎 ← 𝝉𝒎                                                 

3. End do                                                              

4. For m from 2 to 𝒍 − 𝟏 do                                  

5.   𝒉𝒎 ← ⌊
𝒎

𝟐
⌋,   𝒈𝒎 ←  ⌊

𝒎+𝟏

𝟐
⌋                    

6. 𝒓𝒎 ←  𝒕𝒎 ∑  
 𝒉𝒎
𝒌=𝟏

(−𝟐)𝒌 (𝒎−𝟏−𝒌)!

(𝒌−𝟏)! (𝒎−𝟐𝒌)!
 

7. 𝒔𝒎 ←  𝒕𝒎+𝟏 ∑  
𝒈𝒎

𝒌=𝟏

(−𝟐)𝒌−𝟏 (𝒎−𝒌)!

(𝒌−𝟏)!(𝒎−𝟐𝒌+𝟏)!
 

8. 𝒅𝒎 ←  𝒓𝒎  + 𝒔𝒎𝝉 

9. End do 

10. 𝒓 + 𝒔𝝉 ← ∑  𝒍−𝟏
𝒎=𝟏 𝒄𝒎𝒅𝒎 

 

Therefore, it is easy to get back, for example: 𝟏 −

 𝟐𝝉 from 𝟏 + 𝝉𝟐 + 𝝉𝟒 (refer to the reverse calculation in 

Example 1). Besides that, transforming (𝝆𝟎 + 𝝆𝟏𝝉) 
𝝉𝒎−𝟏

𝝉−𝟏
 to 

𝒓 + 𝒔𝝉 where 𝝉𝒎, based on Equation (1), is more efficient 

than applying the Lucas sequence.  Therefore, this can 

enhance the performance of the conversion process as 

required in TNAF of n modulo (𝝆𝟎 + 𝝆𝟏𝝉) 
𝝉𝒎−𝟏

𝝉−𝟏
 prior to doing 

SM. Meanwhile, the second advantage of using Equation (1) 

is given in the following section. 

 

3. Result  
 

The following theorems improve the formulas for TNAF 

expansions of type A-F that were mentioned in Propositions 

1.3 and 1.4. 

Theorem 3.1.  If 𝝉𝒎 = −𝟐𝒔𝒎−𝟏 + 𝒔𝒎𝝉 for 𝒔𝒎  =

∑  𝜷𝒌𝒎

⌊
𝒎+𝟏

𝟐
 ⌋  

𝒌=𝟏
𝒕𝒎+𝟏, then  

(i)  𝑻𝑵𝑨𝑭(𝒄𝟎 + 𝒄𝒍−𝟏𝝉𝒍−𝟏) = (𝒄𝟎 − 𝟐𝒄𝒍−𝟏𝒔𝒍−𝟐) +

𝒄𝒍−𝟏𝒔𝒍−𝟏𝝉 

   for  𝒄𝟎, 𝒄𝒍−𝟏 ∈ {−𝟏, 𝟏} 𝐚𝐧𝐝 𝒍 ≥ 𝟑.   

(ii) TNAF (± (𝟏 + 𝝉
𝒍−𝟏

𝟐 + 𝝉𝒍−𝟏)) = ±[(𝟏 − 𝟐(𝒔𝜼 +

𝒔𝟐𝜼+𝟏)) + (𝒔𝜼+𝟏 + 𝒔𝟐𝜼+𝟐)𝝉] 

  for 𝒍 = 𝟑 + 𝟐𝜼 with integer 𝜼 ≥ 𝟐.   

Proof. 

Let 𝝉𝒎 = −𝟐𝒔𝒎−𝟏 + 𝒔𝒎𝝉 with 𝒔𝒎  = ∑  𝜷𝒌𝒎

⌊
𝒎+𝟏

𝟐
 ⌋  

𝒌=𝟏
𝒕𝒎+𝟏. 

(i) By considering 𝒎 = 𝒍 − 𝟏 for 𝒍 ≥ 𝟑 , we obtain 

𝒄𝟎 + 𝒄𝒍−𝟏𝝉𝒍−𝟏 = 𝒄𝟎 + 𝒄𝒍−𝟏(−𝟐𝒔𝒍−𝟐 + 𝒔𝒍−𝟏𝝉) = (𝒄𝟎 −

𝟐𝒄𝒍−𝟏𝒔𝒍−𝟐) + 𝒄𝒍−𝟏𝒔𝒍−𝟏𝝉. 

 

(ii) Suppose 𝒍 = 𝟑 + 𝟐𝜼 for integer 𝜼 ≥ 𝟐,  thus  𝒍 − 𝟏 =

𝟐 + 𝟐𝜼 and  
𝒍−𝟏

𝟐
= 𝟏 + 𝜼.    

Now,  ± (𝟏 + 𝝉
𝒍−𝟏

𝟐 + 𝝉𝒍−𝟏) = ±[𝟏 + 𝝉𝟏+𝜼 + 𝝉𝟐+𝟐𝜼]  

= ± [(𝟏 + (−𝟐𝒔𝜼 + 𝒔𝟏+𝜼𝝉) + (−𝟐𝒔𝟐𝜼+𝟏 + 𝒔𝟐+𝟐𝜼𝝉))]  

= ±[(𝟏 − 𝟐𝒔𝜼 − 𝟐𝒔𝟐𝜼+𝟏) + (𝒔𝟏+𝜼 + 𝒔𝟐+𝟐𝜼)𝝉].  

 This completes the proof. 

Theorem 3.2. Let 𝒌 be any integer, 𝒌𝟏, 𝒌𝟐 ∈ ℕ, and 𝒄𝒎 ∈

 {−𝟏, 𝟎, 𝟏}.  If 𝝉𝒎 = −𝟐𝒔𝒎−𝟏 + 𝒔𝒎𝝉 for 𝒔𝒎  =

∑  𝜷𝒌𝒎

⌊
𝒎+𝟏

𝟐
 ⌋  

𝒌=𝟏
𝒕𝒎+𝟏 , then 

(i) TNAF (𝟐 + 𝟐𝒌) = −𝟐 ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟏 𝒔𝒎−𝟏 +𝝉 ∑ 𝒄𝒎

𝒍−𝟏
𝒎=𝟏 𝒔𝒎. 

(ii) TNAF (𝟑 + 𝟒𝒌) = −𝟏 − 𝟐 ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟏 𝒔𝒎−𝟏 +

𝝉 ∑ 𝒄𝒎𝒔𝒎.𝒍−𝟏
𝒎=𝟏   

(iii) TNAF (𝟓 + 𝟒𝒌) = 𝟏 − 𝟐 ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟏 𝒔𝒎−𝟏 +

𝝉 ∑ 𝒄𝒎𝒔𝒎.𝒍−𝟏
𝒎=𝟏   

(iv) TNAF(𝟖𝒌𝟏 + 𝟖𝒌𝟐) =

−𝟐 ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟑 𝒔𝒎−𝟏+𝝉 ∑ 𝒄𝒎

𝒍−𝟏
𝒎=𝟑 𝒔𝒎. 

Proof.  

Let 𝝉𝒎 = −𝟐𝒔𝒎−𝟏 + 𝒔𝒎𝝉  with 𝒔𝒎 =  ∑  𝜷𝒌𝒎

⌊
𝒎+𝟏

𝟐
 ⌋  

𝒌=𝟏
𝒕𝒎+𝟏. 

(i)  By using Proposition 1.2 (i), we have 

 𝐓𝐍𝐀𝐅(𝟐 + 𝟐𝒌) = ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟏 𝝉𝒎 = −𝟐 ∑ 𝒄𝒎𝒔𝒎−𝟏

𝒍−𝟏
𝒎=𝟏 +

𝝉 ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟏 𝒔𝒎. 

(ii) By using Proposition 1.2 (ii), we have 

 𝐓𝐍𝐀𝐅(𝟑 + 𝟒𝒌) = −𝟏 + ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟏 𝝉𝒎  

= (−𝟏 − 𝟐 ∑ 𝒄𝒎𝒔𝒎−𝟏
𝒍−𝟏
𝒎=𝟏 ) + 𝝉 ∑ 𝒄𝒎

𝒍−𝟏
𝒎=𝟏 𝒔𝒎.  

(iii) By using Proposition 1.2 (iii), we have 

 𝐓𝐍𝐀𝐅(𝟓 + 𝟒𝒌) = 𝟏 + ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟏 𝝉𝒎  

= (𝟏 − 𝟐 ∑ 𝒄𝒎𝒔𝒎−𝟏
𝒍−𝟏
𝒎=𝟏 ) + 𝝉 ∑ 𝒄𝒎

𝒍−𝟏
𝒎=𝟏 𝒔𝒎.  

(iv) By using Proposition 1.2 (iv), we have 

TNAF(𝟖𝒌𝟏 + 𝟖𝒌𝟐) = ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟑 𝝉𝒎 = −𝟐 ∑ 𝒄𝒎𝒔𝒎−𝟏

𝒍−𝟏
𝒎=𝟑 +

𝝉 ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟑 𝒔𝒎 . 

This completes the proof.  

 

Consequently, we can create another algorithm that has 

a similar performance to the running process with Algorithm 

2.2 for converting TNAF (for example of types A and E) in the 

form of  ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟏 𝝉𝒎 to 𝒓 + 𝒔𝝉 (refer to the formulas of r and 

s in Theorem 3.1 part (i) and Theorem 3.2 part (iii)) as follows: 

 

Algorithm 3.1.   

Input:   𝒕 ←  (−𝟏)𝟏−𝒂 for 𝒂 ∈ {𝟎, 𝟏}, all coefficients 𝒄𝒎 ∈

{−𝟏, 𝟎, 𝟏} for 𝒎 = 𝟏, . . . , 𝒍 − 𝟏. 

Output: 𝒓 + 𝒔𝝉 

Computation:           

1. For m from 1 to 𝒍 − 𝟏 do    

2. 𝒉𝒎 ← ⌊
𝒎

𝟐
⌋,   𝒈𝒎 ←  ⌊

𝒎+𝟏

𝟐
⌋   

3. 𝒓𝒎 ←  𝒕𝒎 ∑  
𝒉𝒎
𝒌=𝟏

(−𝟐)𝒌 (𝒎−𝟏−𝒌)!

(𝒌−𝟏)! (𝒎−𝟐𝒌)!
            

4. 𝒔𝒎 ←  𝒕𝒎+𝟏 ∑  
𝒈𝒎

𝒌=𝟏

(−𝟐)𝒌−𝟏 (𝒎−𝒌)!

(𝒌−𝟏)!(𝒎−𝟐𝒌+𝟏)!
    

5. End do 

6. 𝒓 ←  𝟏 − 𝟐 ∑  𝒍−𝟏
𝒎=𝟏 𝒄𝒎𝒔𝒎−𝟏 

7. 𝒔 ←  ∑  𝒍−𝟏
𝒎=𝟏 𝒄𝒎𝒔𝒎 
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8. Return(𝒓, 𝒔) 

 

Besides, Figure A1 illustrates this algorithm by applying 

Maple programming with a computer with an Intel(R) Core 

(TM) i7 processor, 8 GB RAM and a 64-bit operating system.   

This result is also an extension of a prior study (Suberi et al., 

2016; Yunos & Suberi, 2018) to scrutinize the property of 

unsecure keys prior to doing SM on Koblitz Curves. Algorithm 

3.1 helps Alice to list down some patterns of unsecure keys 

and acts as a multiplier of SM before sending a cypher text 

(𝑸) to Bob.  The following example is an impact of being able 

to identify a plain text (𝑷) by choosing some value of  

𝒓 + 𝒔𝝉  and their TNAF and 𝑸.   

 

TNAF 𝒓 + 𝒔𝝉 𝑸 = 𝒏𝑷 

[𝟏, 𝟎, 𝟏] −𝟏 + 𝝉 (𝒙𝟐 + 𝒙 + 𝟏, 𝟎) 

[𝟏, 𝟎, 𝟎, 𝟏] −𝟏 − 𝝉 (𝒙 + 𝟏, 𝒙 + 𝟏) 

[𝟏, 𝟎, 𝟎, 𝟎, 𝟏] 𝟑 − 𝟑𝝉 (𝒙 + 𝟏, 𝟎) 

[𝟏, 𝟎, 𝟎, 𝟎, 𝟎, 𝟏] 𝟕 − 𝝉 (𝒙𝟐 + 𝒙 + 𝟏, 𝟎) 

 

Although Alice sends different values of 𝑸 to Bob with 

different multipliers of P,   

the third parties can attack 𝑷 = (𝒙, 𝒙𝟐 + 𝟏) easily. 

Therefore, such keys need to be avoided in real-world 

scenarios of cryptosystems.  

 

5. Conclusion 
 

In this work, we derive TNAF of types A-F in more concise 

forms by applying Equation (1), which is based on v-simplex 

and arithmetic sequences. This research can be extended by 

looking at the nature of such patterns such that TNAF has a 

low-density. Besides, their possible attacks by third parties 

need to be explored when implementing such kinds of 

expansions as secret keys.  
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Appendix 

 

Figure A1. Programming for Algorithm 3.1 by Using Maple 
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